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ABSTRACT 

This paper models a supply chain problem and employs simulation-based optimization to analyze it. The 

model represents a manufacturer of multiple  products from multiple raw materials that has control over 

the price of the products. The decisions to be optimized in the model are ordering policies of raw materi-

als, inventory control of finished goods, manufacturing capacity of each product, and prices set on the 

products. The uncertainties involved are lead times of ordering inventory and the demand of the products. 

We consider the case of periodic review of raw materials and finished goods inventories on discrete time. 

The objective is to find the best configuration of the system to maximize profit. We show how simula-

tion-based optimization could find the best configuration through an example. 

1 INTRODUCTION 

Coordination of organizational functions and among different enterprises working together to provide 

goods and services to the customers is a subject studied in the literature of supply chain management. 

Supply chain activities transform natural resources, raw materials, and components into a finished product 

that is delivered to the end customer. The main operations involved in a supply chain are sourcing, pro-

curement, conversion, and logistics; however models developed for supply chains may surpass operation-

al issues and encompass other departments of an enterprise such as marketing, accounting or research and 

development. Even though there is no single model of supply chain to include all complexities of opera-

tions involved, there has been a variety of models and analysis tools developed to address certain types or 

parts of a supply chain. We attempt to develop one such model in this paper and analyze it through simu-

lation-based optimization. 

 As an example of an application of our model, consider an imaginary small business such as Ice-

Cream Masters (ICM). The business produces different types of ice cream by mixing and processing dif-

ferent ingredients such as milk, sugar, nuts, and saffron. ICM has a weekly production schedule in which 

production level of each type of ice cream is determined at the end of each week considering production 

capacities, available food ingredients, and demand. It takes one week to complete a production order 

placed at the end of the prior week-end. Once the production for an order is complete, the ice cream pack-

ages are stored in refrigerators for the retail customers and ice-cream distributors to buy in the following 

week. ICM has observed that even though the weekly demands are random, average demand of each ice 

cream per week is negatively correlated with the price that ICM asks for that type of ice-cream. In addi-

tion to price tags put on the products, ICM must also find the best policies of production schedule and or-

dering of raw materials. The raw materials are bought from different suppliers. Purchase orders are placed 

at the end of each week based on inventory levels of milk, sugar, nuts, etc. However, it takes a random 

time for the order to be filled. The stochastic model developed in this paper tries to find optimal market-
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ing, inventory and production-control policies simultaneously to maximize the average total weekly profit 

of a company such as ICM.  

There are different streams of research related to this paper. This research addresses the problem of 

finding the best prices of some products in manufacturing operations management; however the problem 

has been extensively studied in revenue management especially for service operations such as airlines, 

hotels, etc. See Talluri and van Ryzin (2004) for a comprehensive review of revenue management.  

The coordination of pricing and inventory replenishment has received considerable attention in the 

literature (Ardalan 1995). This topic, starting with the work of Whitin (1955) who analyzed the news 

vendor problem with price-dependent demand, has been the focus of many papers (Chao et al. 2008). 

Federgruen and Heching (1999) characterized the optimal inventory and pricing policy as a base-stock 

list-price policy for both the finite and infinite horizon problems. Chen and Simchi-Levi (2004a,b) ex-

tended the work in Federgruen and Heching (1999) by considering a fixed setup cost for ordering. Opti-

mal policies of joint pricing and replenishment for both finite and infinite horizons have also been de-

rived. Sharkey (2011) derived optimal pricing and network flow decisions. In most of these works, only 

one stream of inventory policy of one product is modeled along with pricing decisions, ignoring down-

stream of the materials required to produce these products in a supply chain. The main reason stochastic 

models of simultaneously integrating pricing, upstream and downstream inventory policies, and produc-

tion capacity constraints have gained less attention is because the models can easily get intractable analyt-

ically and difficult to optimize under realistic assumptions. Simulation-based optimization is a strong al-

ternative that has less restriction in accommodating realistic assumptions about the model and the set of 

decisions needing simultaneous optimization. 

Over the past couple of decades, many new methods have been developed for solving optimization 

models for stochastic systems when the objective function and/or some functions in the constraints of the 

model are not available in closed-form; the only way to get an idea about the values that these functions 

take is to estimate them by simulating the stochastic system. In the literature, this class of optimization 

methods is called simulation-based optimization. A review of these methods could be found in Fu (2002) 

and Fu, Glover, and April (2005). 

This paper is organized as follows. In Section 2, we develop a model for the type of supply chain con-

sidered in this paper. Section 3 applies the model on a case study and analyzes the results. Section 4 con-

cludes the paper. 

2 MODELING 

2.1 The Problem 

The problem of interest is about a simple supply chain in which a manufacturer is trying to coordinate 

marketing function with production and inventory management to maximize profit (see Figure 1). Here, 

we construct an optimization model for the problem.  

There are   products that are manufactured from   Raw Materials (RMs). A unit of product   re-

quires     units of RM  .  

The manufacturer has a retail outlet to sell the products to customers. We assume the manufacturer 

can set a static price    on product   for foreseeable future. However, the demand of each product is a 

function of the price. The higher the price asked by the manufacturer, the less the average demand will be 

in the market. We discretize time in our model by breaking each year into a number of periods. The peri-

ods could be days, weeks, or months as examples. Let   
  be the demand of product   in period  .  We as-

sume, for simplicity,   
  for         be independent and identically distributed (iid) random variables. 

However, the expected value of   
  is assumed to be a known function of   , that is     

         . In 

addition, assume the demand of different products are independent, that is   
  for           are inde-
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pendent. Since we use simulation to analyze the supply chain, it should be easy to extend the model and 

relax these two independency assumptions in a different research. 

The finished goods are stored and wait in line in the retail outlet for the customers to pick up. We as-

sume there is a limited space available to store product   in the outlet which can accommodate a maxi-

mum of    units of product   at any time. If this maximum is hit, the associated product could no longer 

be stored in the outlet. Since the production system directly transfers the manufactured products to the 

outlet, this means if maximum capacity to hold a product in the outlet is hit, the production of this good 

must halt. The length of product  ’s queue in the outlet fluctuates every period; let   
  be the queue length 

at the end of period  .  

 

Figure 1: Supply chain with Raw Material (RM) Stock, Production Facilities and Retail Outlet of the 

Products (P)  

The production system has separate manufacturing facilities for each product. The production capaci-

ty of product   per period, denoted by   , is assumed limited. Product   could be manufactured up to    

provided that enough raw materials are available. The supply chain follows a Kanban-based pull policy  

of production. At the end of period  , the level of finished product   (i.e.   
 ) is observed in the outlet; if 

  
    , a Kanban is raised that signals the production facility   is allowed to schedule producing up to 

     
  units in the next period. Indeed, the finished goods inventory of product   in the outlet has a two-

bin (       inventory control policy in which the level    is production trigger of product   which is set at 

less than or equal to   . Products manufactured in a period are transferred directly to the relevant queue in 

the outlet at the end of the period; i.e these recently manufactured products may not be used to satisfy the 

demand in the same period. 

The stock of raw materials also has a separate queue for each RM. The length of queue of RM   at the 

end of period   is denoted by   
 . The ordering policy in this stock follows a two-bin (         for RM   

where     is the maximum storage capacity and     is the ordering trigger. If   
      , an order of size 

      
  is placed with the supplier of RM   at the end of period  . The time between placement of the or-

der till arrival of RM, lead time, is assumed to be a discrete random variable with a known distribution. 

Let    be the lead time of RM   and assume it is independent of the period of ordering. We also assume 

the lead times of different RMs are independent for simplicity. Again since simulation is used for analy-

sis, it should be easy to relax these two assumptions about lead times. The RMs ordered arrive at the end 

of period     after ordering, join the RM queue immediately and will be available to production system in 

the following period. 
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P 𝒏 
  

Facility 𝟏 
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The production quantity of each product in each period is constrained by production signals from the 

outlet at the end of previous period, available raw materials and a production policy. If multiple produc-

tion facilities have the go-ahead signal of production from the outlet and raw materials are available to 

produce any or a combination of them, then the production policy should determine the production quan-

tity of each product. Different policies could be used. For instance, a policy may assign production quota 

of each product proportional to the strength of production signals (     
 ). Another policy may deter-

mine production quantities based on RM levels solely. Here we use yet another simple policy as follows. 

We assume the products are prioritized based on anticipated profitability with product 1 having the high-

est priority and product   the lowest. First the production policy allows product 1 to be produced as much 

as possible, then product 2 with the RMs left over and so forth. Let   
  be production quantity of product   

in period  . This policy means   
  ‘s are computed using the following recursive equation in which  [ ] 

is an indicator function that takes 1 if condition   is satisfied and zero otherwise: 

 

  
   [   

      ]   {          
         {(  

    ∑   
     

   
   )    ⁄ }}       . 

 

The finished goods inventory levels are updated at the end of each period after adding produced units 

to the stock and accounting for satisfied demand. The recursive equation is 

  
    

      
     {  

      
  }       where    {  

      
  } is the satisfied demand of product   in pe-

riod   from the ready-to-go units of the product at the end of prior period, if any. This apparently assumes 

a lost-sale scenario if available inventory is not enough to satisfy demand. Similarly, the level of each RM 

must be updated. This needs defining   
  as the number of units of RM   arrived to the stock at the end of 

period  . The order for these   
  units must have been placed at the end of period      where    is the ob-

served value of lead time of this RM for this particular order. Then   
    

      
  ∑   

     
 
         .  

We consider six sets of decision variables for the supply chain model: 

 Sales price of each product:                

 Manufacturing capacity of each production facility:                

 Storage capacity of each product in the outlet:                

 Production trigger of each product:                

 Storage capacity of each RM in the RM stock:                 

 Ordering trigger of each RM in the RM stock:                 

 

The objective function of the model maximizes the expected total profit per period of the steady-state 

system. The function is the difference between expected sales revenues of all products and the sum of ex-

pected costs. We consider a number of costs for the system as follows: 

 Purchasing raw materials 

 Holding raw materials 

 Ordering costs of raw materials 

 Overhead cost of maintaining storage capacities of raw materials 

 Overhead cost of maintaining manufacturing capacities of production facilities 

 Holding finished goods in the outlet 

 Overhead cost of maintaining storage capacities of finished goods in the outlet 

 

We need additional notations to define the objective function mathematically. Let    be the unit cost 

of purchasing raw material  . For simplicity, we assume these costs are independent of time and fixed (i.e. 

no discount, etc). Let    be ordering cost of RM   independent of time or order size. Let    be variable 

holding cost per period of a unit of RM   in the RM stock or as Work-In-Process (WIP) in the production 

3333



Kabirian, Sarfaraz, and Rajai 

 

facilities. Also let    be the variable holding cost of a unit of product   in the outlet per period. Often 

times, the holding costs are assumed to be a function of the money the company has invested in acquiring 

the inventory. We assume        where   is a discount rate per period. We also assume the variable 

holding cost of a product in the outlet to be a fraction of the value of the RMs used to produce a unit of 

the product. That is, we let    ∑       
 
   . Finally, let   ,   

 , and   
   be the overhead cost per unit per 

week to maintain a storage capacity of RM   in the RM stock, manufacturing capacity of product   in the 

production system, and a storage capacity of product   in the outlet respectively. These costs must be paid 

irrespective of the fluctuating utilization factor of these capacities over time. 

Let    be the total profit made in period  . Using a cash method of accounting, the total profit func-

tion is 

   ∑ {     {  
    

   }    
       

        
   }

 

   

 ∑ {    
           [  

     ](   (      
 )  )}

 

   
 

The sequence {      }        is an stochastic process. If the business turns out unprofitable, no prod-

uct should be produced, no cost is paid, and no revenue is generated; therefore the series is bounded be-

low by zero profit. Theory of Constraints implies that every system has some boundaries for growth. 

Even though we let optimization process find the best limits of capacities in the system which theoretical-

ly means the capacities of storages and production can grow unboundedly, no such supply chain can sell 

infinite units of the products in the market. Demand will not go to infinity even if the prices are set to ze-

ro. This means the expected profit is always bounded above. Since the expected profit sequence is 

abounded up and down, it may not diverge. So it must either converge or oscillate. We assume simply 

that oscillation is not the case for this sequence.  

The complete model of the supply chain is the following: 

 

   
             

 
   

 
         

         
   

      

Subject to: 

              

    
    

         
           

           

          
 
   

 
  are integers 

 

where    ,   ,   ,    are upper bounds defined to cap the decision variables. 

2.2 Solving the Model 

To the best of our knowledge, an analytical method does not exist in the literature to solve the optimiza-

tion model developed in the previous section. Different complexities exist in this model that makes find-

ing a closed-form solution to the model difficult. On one side in the RM stock, the queues of RMs are de-

pendent on each other. Once a product needs to be produced, the production system pulls out some raw 

materials from each queue simultaneously. On the upstream, there is another set of lines, one for each 

product in the outlet. We are interested in analyzing both sets of queues along with examining production 

system under generic assumptions about inventory policies and the two uncertain parameters, namely de-

mands and lead times.  

Fortunately, discrete-event simulation can always be employed in these situations. Fixing some val-

ues for the decision variables, one can develop a simulation model and run the system for hundreds or 
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thousands of periods and get an estimate of profit per week in the long run. Then, if an optimization algo-

rithm is linked to the simulation model to change the values of the decision variables and have the system 

with each set of decision variables simulated, an estimated (near) best optimum may be found. This is 

what the literature of simulation calls simulation-based optimization which is our approach to solve the 

supply chain model developed in the previous section. 

Since we assumed a periodic review of production and inventory management on discrete time, the 

discrete-event model could easily be developed in spreadsheet. We recommend using Microsoft Excel to 

develop such an spreadsheet because it is commonly-used for different data analyses in any organization 

which means not much training is required to build the model and also there is no need to pay for and 

learn to use a commercial simulation software. Another strong motivation to use Excel is that it already 

has a built-in optimization tool called Excel Solver. Even though the Solver is not as powerful or efficient 

as commercial optimization packages available for simulation optimization to handle big or very complex 

models, but it is still a handy and easy-to-use optimization method especially when simulation models 

could be developed in spreadsheets. In the next section, we show how a simulation model of a case study 

is developed  in Excel and we use Excel Solver to find (near) optimal solutions. 

3 CASE STUDY 

We use a case study in this section to show how the model could be solved and analyzed using Simula-

tion-based Optimization.  

3.1 Case Data 

Consider a manufacturer of 2 products from 3 RMs that uses weeks as periods of production and market-

ing planning. The data of RMs in this case are provided in Table 1. 

Table 1: Data of raw materials used in the case 

RM 

RM Requirements 

Purchase 
cost/unit 

   

Holding 
cost/unit/

week 
   

Ordering 
cost/order 

   

Storage 
cap 

cost/unit/
week 
   

Cap upper 
bound 
   

Product 

1    : 

Product 

2:     

    3 2 $1.00 $0.50 $500.00 $0.05 30,000 

    2 1 $2.00 $0.50 $500.00 $0.05 30,000 

    0 2 $1.00 $0.50 $500.00 $0.05 30,000 

 

For        , the lead time of RM   is assumed to be a random variable that takes 1,2, and 3 weeks 

with probabilities 0.5, 0.4, and 0.1 respectively. 

Linear demand is a popular assumption in modeling the relationship of price and demand in econom-

ics. We assume the average demand of each product is a linear function of price; specifically     
   

            and     
              . Since a negative average demand is meaningless, we let 

the price upper bounds       and      . We assume   
  follows a normal distribution with mean 

 (  
 ) and standard deviation  (  

 )  . Since the products are discrete, we round the demand observa-

tions to the nearest integer and use 0 for any negative random value. 

Some more data about the two products used in the case studied here are summarized in Table 2. 

3.2 Simulation and Optimization Methodologies 

We developed a discrete-event simulation model in Microsoft Excel 2010. The spreadsheet was linked to 

Excel Solver. The Solver has three solution algorithms: Simplex for linear programs, a gradient-based 
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nonlinear program, and an evolutionary algorithm. The user can select which algorithms he/she wants to 

use. For our case, we used the Evolutionary Algorithm with the following parameters: a Convergence of 

0.000001, Mutation of 0.075, Population Size of 1000, and a Maximum Time Without Improvement of 

300 seconds. We ran the simulation for 1100 weeks, through away the first 100 weeks to warm-up simu-

lation and averaged the total profit over the last 1000 weeks. Our tests with more than 1000 weeks of net 

data revealed that our results are robust. Table 3 shows part of the final simulation spreadsheet obtained 

after it took Solver a little over an hour to stop. 

Table 2: Data of the two products  

Product 

Holding 
Cost/week 

   

Manufacturing Cap 
Cost/unit/week 

  
  

Storage cap 
cost/unit/week 

  
   

Manufacturing 
Cap Upper 

Bound 
   

Storage Cap 
Upper Bound 

   

    $3.00 $1.00 $0.05 2,000 90,000 

    $3.00 $1.00 $0.05 2,000 90,000 

Table 3: Partial spreadsheet of Discrete-event simulation of the supply chain for the optimal decision var-

iables 

Week 
Production 
Quantities RM Order Placed Ending Inventory of RMs Demand 

Ending Stock 
of Products 

    
    

                
    

    
    

    
    

    
  

0 0 0 0 0 0 1,000 1,000 1,000 880 1,802 200 250 

1 333 0 21,681 12,675 13,663 1 334 1,000 523 1,291 333 0 

2 0 0 0 0 0 1 13,009 14,663 707 2,033 0 0 

3 0 0 0 0 0 21,682 13,009 14,663 857 1,889 0 0 

4 713 1,799 5,737 0 0 15,945 9,784 11,065 814 2,138 713 1,799 

5 713 1,799 5,737 6,450 7,196 15,945 6,559 7,467 795 1,457 713 2,141 

101 713 1,799 11,050 0 0 10,632 9,784 4,293 626 1,926 1,073 2,855 

102 713 1,799 5,737 6,450 7,196 15,945 6,559 7,467 719 1,825 1,067 2,829 

103 713 1,799 0 0 0 10,208 3,334 3,869 940 1,895 840 2,733 

104 713 1,799 0 6,450 7,196 4,471 6,559 7,467 937 1,215 713 3,317 

105 713 1,165 15,943 0 0 5,739 3,968 5,137 1,030 2,479 713 2,003 

1,091 713 1,799 0 6,450 0 10,208 6,559 11,065 813 1,883 713 2,175 

1,092 713 1,799 11,474 0 7,196 10,208 3,334 7,467 881 2,008 713 1,966 

1,093 713 1,799 0 6,450 0 4,471 6,559 3,869 791 1,362 713 2,403 

1,094 713 1,165 0 0 5,928 2 3,968 8,735 725 1,418 713 2,150 

1,095 0 0 10,206 0 0 11,476 10,418 14,663 734 1,832 0 318 

1,096 713 1,799 5,737 5,816 0 15,945 7,193 11,065 1,091 1,109 713 1,799 

1,097 713 1,799 5,737 0 7,196 15,945 9,784 7,467 687 1,901 739 1,799 

1,098 713 1,799 0 6,450 0 10,208 6,559 11,065 555 1,192 897 2,406 

1,099 713 1,799 11,474 0 7,196 10,208 3,334 7,467 844 1,416 766 2,789 

1,100 713 1,799 5,737 0 0 15,945 109 3,869 774 1,922 713 2,666 
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3.3 Results 

The optimal solution found by Solver are provided in Tables 4, 5,6, and 7. 

Table 4: Optimal values of products-related decision variables 

Product 

Production Trig-
ger (Smaller bin) 

   

Holding Capacity  
(bigger bin) 

   

Manufacturing 
capacity/week 

    
Sales Price 

   

    3,095 3,097 713 $ 22.29 

    6,692 10,883 1,799 $ 28.54 

 

Table 5: Optimal values of raw materials-related decision variables 

RM 

Ordering Trigger 
(Smaller bin) 

    

Holding Capacity  
(bigger bin) 

    

    17,421 21,682 

    9,218 13,009 

    9,699 14,663 

 

Table 6: Sample average of optimal costs per week 

RMs Pur-
chase Costs 

Variable 
Holding 
Costs of 

RMs 

Variable 
Holding 
Costs of 
Products 

Ordering 
Costs of 

RMs 

Storage-
Capacity 
Costs of 

RMs 

Production-
Capacity 

Costs 

Storage-
Capacity 
Costs of 
products 

 $ 4,138.70   $ 2,880.35   $ 7,328.66   $ 767.50   $ 2,467.68   $ 2,512.39   $ 698.99  

 

Table 7: Sample average of optimal revenues and total profit per week 

Sales Revenue of all products Total Profit 

$  59,845.70 $  19,051.43 

  

 If only our model were to maximize expected revenue and ignore production and inventory con-

straints, the optimal prices should have been 3,000/(2*100)=$15.00 for product 1 and 

6,000/(2*150)=$20.00 for product 2. These numbers are found by maximizing the quadratic functions 

      
                   and       

                  . The near optimal values found for 

profit-maximization model of the supply chain provided in Table 4 are significantly higher. This is be-

cause higher prices lead to smaller weekly demands and lower costs.  

Another interesting observation that is partly revealed in Table 3 is that in most weeks simulated, op-

timization produces at the maximum capacity of production. More precisely, the average utilization factor 

of production capacities were 95.2% for product 1 and 87.0% for product 2. This might be because we 

chose a hefty $1.00 overhead cost per unit per week for production capacity. The high near optimal Pro-

duction Capacity Cost of $2,512.39 (compared to other cost items) shown in Table 6 puts more support to 

our hypothesis. 
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The average raw materials, work-in-process and finished goods in the system are shown in Table 8 

below. 

Table 8: Average units of RM, Work-In Process, and Finished Goods in the Chain 

Average Units of Raw Material stored 
in RM stock and as Work-In Process 

Average Units of Finished Goods 
Stored in the Outlet per Week 

                    

11,159 6,812 7,785 782 2,150 

 

 We expected to see smaller queue lengths than what is shown in Table 7. Of course one way to short-

en  these waiting lines is to increase holding costs to move towards Just-In-Time. However, this may 

come at the expense of less than optimal profit that could be gained without forcing extra holding costs. 

4 CONCLUSION 

In this paper, we modeled a supply chain including a manufacturer of multiple products from multiple 

raw materials that tries to optimize inventory and production policies as well as managing revenue. We 

showcased how the model could be applied and solved using simulation-based optimization. Our results 

suggest that simulation-based optimization is a powerful method of finding a near optimum design of a 

stochastic system and is a good alternative when analytical methods fail. 

A number of research directions are open. The methodology used here could be applied in other sce-

narios including stochastic production times, backlogging of unsatisfied orders, or discount on volume of 

purchase for the raw materials. Another direction is to model the system in a way that dynamic program-

ming could be applied on or as a multi-phase queue. 
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