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ABSTRACT

We examine a two-stage lot scheduling problem with waiting time constraints and distinct due dates. Wafer
lots in diffusion or etch processes generally have due dates specified for each process stage. Some lots
even have more strict time constraints that their waiting times between two or multiple stages should not
exceed specified limits. We also wish to minimize the variation of the waiting times at the intermediate
buffer, which is detrimental to wafer quality variability. To solve such a scheduling problem, we develop
a mixed integer programming model for small problems. Also, we suggest an efficient solution procedure
for large problems by adopting the earliest due date policy and propose a timing control strategy.

1 INTRODUCTION

In the semiconductor industry, a wafer fabrication procedure is composed of 300-400 steps, and each
process step is performed in designated tools. All wafers pass each step, and their lead time is about two
months. In a fab, wafers can be processed one by one in a tool, or several lots, each of which contains 25
wafers, can also be operated together. Moreover, the sequence of machines in which each lot is processed
is different, and process requirements are also various with wafer types.

In a fab, it is very important to improve wafer quality and satisfy customer demands, and hence there
have been many efforts to increase the yield rate and strictly keep the due date. For the wafer quality, each
lot or even each wafer is strictly controlled at every process. The residency time constraint, which limits
the sojourn time of wafers in a tool, is a typical example of wafer control for improving the quality. There
have been many studies on scheduling automated manufacturing systems, such as a cluster tool, a hoist,
and a robotic cell with residency time constraints or delay controls (Lee 2008; Kim, Lee, Lee, and Park
2003; Lee and Park 2005; Rostami and Hamidzadeh 2002; Wu, Chu, Chu, and Zhou 2008).

The residency time constraints are also applied to some wafer lots waiting in a stocker or a buffer
especially after etching or diffusion is completed. This is because if the wafer surface is exposed to an
atmospheric condition for over a certain period of time, some impurities can be produced on the surface, and
hence the wafers can suffer serious quality problems. Then those wafers are eventually discarded. Thus,
the waiting time constraint is a deadline in a way which should be strictly followed. Besides satisfying
the time constraints, it is an essential factor to keep the waiting time deviation among lots constant for
fab operators these days. That is because the large variation of waiting times directly results in quality
fluctuation. Some particular process steps involving reactive chemical treatments such as oxidation are
much more sensitive to the deviation of the waiting times in a buffer.

Even though we stated above the restriction of waiting times with two consecutive processes, more
precisely, it can be placed in a set of process steps. In other words, the waiting time can be controlled
between a single pair of two steps or among multiple process steps as illustrated in Figure 1. Typical lot
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flows in a fab where multiple process machines and various lot types are related are also depicted in Figure
1. The shaded regions are used to represent the existence of waiting time control policy. For example, we
can see that the sojourn time between the completion time in the machine mi and the starting time of the
machine mk should be controlled not to exceed the waiting time constraint. In addition, some machines, such
as my, may need to process both lots with waiting time constraints and without these constraints, respectively.

Sections under waiting time control

Figure 1: Wafer flow patterns with waiting time constraints.

All wafer lots, in general, have distinct due dates for satisfying customer demands and also have a
specific due date at each process step based on the release date. When compared to waiting time constraints,
due dates are less strict, so that violations can be tolerated to some reasonable extent. The existence of initial
work-in-process in each stage makes the problem more complicated. In other words, the lot scheduling
problem in the real industry does not provide an initial state in which the intermediate buffers are empty
even though it is a common problem setting or an assumption in machine scheduling studies. Rather, there
exist lots already in the intermediate buffers in each process stage at the beginning of scheduling points.
To conclude, we investigate the problem involving due dates, waiting time constraints, and waiting time
variations together.

Scheduling problems with distinct due dates have been extensively studied in operation research area for
various problem structures (Baker and Scudder 1990, Du and Leung 1990). Machine scheduling problems
relating to deadlines or maximal time lags are also widely studied with various objective measures (Chen,
Potts, and Woeginger 1998). Although the waiting time constraints can be regarded as a special type of
maximal time lags, most studies regarding maximal time lags only concern production efficiency measures
such as the duration of projects (Herroelen, Reyck, and Demeulemeester 1998). There are only few studies
emphasizing the impact of the waiting time constraints. The branch-and-bound algorithm has been developed
for minimizing the makespan of two-machine flow shop problems with limited waiting time constraints
(Joo and Kim 2009, Yang and Chern 1995). Also, a heuristic algorithm and a mixed integer programming
(MIP) model have been proposed for the makespan objective in hybrid two-stage flow shop problems with
a batch processor at stage 1 (Su 2003). The flow shop scheduling problems with time constraints between
consecutive process steps are examined by developing decomposition approaches based on an MIP model
(Klemmt and Mönch 2012). It is known that the optimal schedule for a single machine problem minimizing
the waiting time variance has a V-shaped (i.e jobs are arranged so that the job with the smallest process time
is located in the middle of the sequence, and the remaining jobs are arranged so that those who precede
the shortest job have descending order and the others have ascending order of process times) structure
(Eilon and Chowdhury 1977). The relationship between the variance of completion times and the variance
of waiting times has been analyzed (Zhou and Cai 1996). It is known that the completion time variance
minimization problem is NP-hard even for a single machine problem (Kubiak 1993).

The above problem requirements have been well studied in the conventional machine scheduling area
or project scheduling communities. However, to the best of our knowledge, there has been no discussion
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for the problems with those requirements together; therefore, minimization of the waiting time variation
with problems having time constraints has not been studied yet. These two issues are prevalent in the real
industry these days. They are becoming even more significant as the quantity batch production increases in
a fab. Thus, our problem is strongly oriented to the latest real needs from the semiconductor manufacturing
industry. In this paper, we examine two-stage lot scheduling problems with waiting time constraints as
well as due dates where the objective is to minimize the variation of waiting times (F3|d̄ j|∑ |Wj−W̄ |).
The detailed structure of this two stage problem, described in the next section, is designated to sufficiently
represent the practical challenges in the real-world wafer fabrication processes. To solve such a scheduling
problem, we develop an MIP model for small problems and suggest an efficient approximate solution
procedure for large problems by examining the optimal solutions and experimental results.

2 PROBLEM DESCRIPTIONS

2.1 Production Requirements

The real-world problems in the semiconductor industry involve hundreds of process stages and various lot
types with distinct flow patterns. For such problems to be globally optimized, we are forced to decide the
starting time of every lot at all stages. Thus it seems to be impossible to obtain such a globally optimized lot
control due to both the problem size and the uncertainty in a fab environment. Therefore, the fab operators
tend to locally optimize the schedule of lots by using dispatching rules on each step. Typical rules used
in industry are based on priorities of the lots derived from their job characteristics such as due dates or
waiting time constraints.

Although this local optimization on a single or several steps might seem to be quite simple, it is not
the case in the real industry. As mentioned in the previous section, all lots have different due dates and
process times. Also, some lots can have infinite waiting times, whereas the others have limited waiting
times at the intermediate buffer. Furthermore, the fluctuation of waiting times should be reduced for all
lots. Therefore, it is extremely complicated to schedule those lots together even in a single machine. For
example, higher priorities on lots with tight waiting time constraints will increase the sojourn time of lots
without a limited waiting time which results in large fluctuation of waiting times that is critical to quality
deviations. In the next section, we define our problem setting which complies to the one that operators in
a fab faces.

2.2 Problem Settings

We decompose the fab level problem to a smaller sized one with the purpose of analysis and modeling
while maintaining the essential properties appearing in real world problems. The decomposed problem can
be defined as a lot scheduling problem of two consecutive process stages. All lots should be processed in
each step and have different due dates and waiting times. There are two different machines m1 and m2 at
the first stage and one machine m3 at the second stage where all machines are single lot processors. There
are two lot types classified by the existence of waiting time constraints between the first and the second
stage. The waiting time of a lot can be defined to be the elapsed time from completion at stage 1 to the
entering of the process in stage 2. Depending on the lot type, each lot visits one of two machines at the
first stage. Regardless of the lot type, every lot should pass through the identical single machine for the
second stage. For example, the flow of lots having waiting time constraints are m2→ m3 and the flow of
lots without these constraints are m1→ m3 in Figure 2.

We assume the waiting time constraint is distinct for each lot. All lots, regardless of the flow pattern,
have a distinct due date which denotes the desirable limit for entering the process at the second stage. Also,
each machine has its own buffer and we assume there is no limit on the size of storage capacity because
each stocker or a buffer in real fab can basically contain dozens of lots. At the moment of scheduling, there
can exist lots in the buffer of stage 2 whose process in the first stage is already completed. This is one of
the critical factors that makes our problem difficult because, for those lots in stage 2, we can only control

3632



Yu, Kim, Jung, and Lee

: Sections under waiting time control

: Lots having waiting time constraints

: Lots without waiting time constraints

Stage1 Stage2

Waiting times

Figure 2: Two stage lot scheduling problem with waiting time constraints.

the timing of entering the process in the second stage. For our simplified problem, we assume there is no
due date or time constraint for restricting the entering time of the process in stage 1.

3 OPTIMIZATION MODEL

3.1 Formal Description of the Problem

We describe our problem mentioned above formally. We will assume there are three machines {m1,m2,m3}
and each of them is a single lot processor. There are N lots {J1,J2, ...,JN} to be scheduled and each
of N lots has two process stages. We will denote the total set of N lots as J. The first stage should
be done by m1 or m2 depending on whether a lot has a waiting time constraint, and the second stage
should be done by m3. We assume there is a constraint on the duration of waiting occurring between the
completion at m2 and the starting at m3. Let Jmk be a subset of J including lots waiting for the entering of
machine mk. Also, define another subset Jstage j in which lots waiting in stage j are included. Therefore,
the lots in Jstage2 can be interpreted as the initial lots in the intermediate buffer whose process in the
first stage is already completed. Denote the set of lots which have limited waiting times as JL and a set
of lots allowed to have infinite waiting times as JI . To obtain the simplicity in formulations, we define
Rmk = {(i, j)|Both Ji and Jj need to be processed at machine mk} for any machine k.

All lots in J are given a set of parameters denoting their process requirements. For each lot Ji, the
process time at stage j is µ ji where Ji ∈ J and j = 1,2. Also, there are due dates and limited waiting times
that constrain the entering time of the process at stage 2 where both are distinct for each lot. Thus, let
di be a distinct due date for a lot Ji ∈ J. The allowable waiting time for each lot Ji can be denoted as δi
where the value is positive finite for all Ji ∈ JL and infinite for all Ji ∈ JI .

In addition to the parameters used for characterizing the lots to be scheduled, we adopt some constant
variables used to reflecting the production environment in the real industry. Let τ be a constant value
representing the transport time between stage 1 and stage 2 where the value is identical for every lot. We
assume the process in stage 2 is the bottleneck, so that m3 tends to be busy at any moment. Therefore,
we let ω be an initial workload which is the remaining process time of a lot already being processed by
the resource m3 at the beginning of the scheduling point. In other words, any of the lots waiting for the
process in m3 can enter the machine at least after ω amount of time.

3.2 Mixed Integer Programming Model

In this section, we formulate an MIP model to optimize the lot schedule by minimizing the waiting time
variation and meeting the due dates and waiting time constraints. For each lot Ji ∈ J, we introduce decision
variables xi for the starting time of the process in stage 1 and yi for the starting time at stage 2. There is an
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important property that variable xi takes a negative value when Ji is a lot already in stage 2. In addition,
we assume that the elapsed sojourn time of all lots in stage 2 are given as 0. Then, for lots that are already
in stage 2 at the beginning, we can have xi +µ1i = 0 so that the waiting time of these lots can be simply
yi. In addition as we assume the stage 2 is a bottleneck process, we can obtain the minimal makespan for
our problem as ω +∑Jj∈J µ2 j. Thus, by restricting m3 not to have idle times, we will find a solution that
is optimal to the waiting time variation while the minimum makespan is obtained. This assumption will
be adopted in the MIP model by the following constraint.

yi ≤ ω + ∑
Jj∈J, j 6=i

µ2 j ∀Ji ∈ J

The decision variable zk
i j ∈ {0,1} will be used for the precedence relationship between lot Ji and Jj at

machine mk, where (i, j) ∈ Rmk , i 6= j and k = 1,2,3. The variable zk
i j takes the binary value as below.

zk
i j =

{
1 if lot Ji precedes Jj at mk,
0 otherwise.

where k = 1,2,3

The variable wi will be defined for the waiting time of lot Ji and let w̄ be the average waiting time of
all lots. Thus the variation of waiting times can be described by

var(w) =
∑Ji∈J |w̄−wi|

|J|
.

Thus we define σi = |w̄−wi| and take ∑Ji∈J σi as the objective function. The conventional big M notation
is adopted to represent a sufficiently large value. The MIP model for our problem can be formulated as
below.
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3.2.1 Mixed Integer Programming Formulation

Minimize ∑
Ji∈J

σi (1)

Sub ject to

yi ≥ ω ∀Ji ∈ J (2)

yi ≤ ω + ∑
Jj∈J, j 6=i

µ2 j ∀Ji ∈ J (3)

xi +µ1i = 0 ∀Ji ∈ Jstage2 (4)

yi ≤ di ∀Ji ∈ J (5)

yi− (xi +µ1i)≤ δi ∀Ji ∈ JI (6)

xi +µ1i + τ ≤ yi ∀Ji /∈ Jstage2 (7)

w̄ = ∑
Ji∈J

(yi− xi−µ1i)/|J| ∀Ji ∈ J (8)

σi ≥ w̄− (yi− xi−µ1i) ∀Ji ∈ J (9)

σi ≥−w̄+(yi− xi−µ1i) ∀Ji ∈ J (10)

xi +µ1i ≤ x j +M ∗ (1− zk
i j) ∀(i, j) ∈ Rmk , k = 1,2 (11)

x j +µ1 j ≤ xi +M ∗ zk
i j ∀(i, j) ∈ Rmk , k = 1,2 (12)

yi +µ2i ≤ y j +M ∗ (1− zk
i j) ∀(i, j) ∈ Rmk , k = 3 (13)

y j +µ2 j ≤ yi +M ∗ zk
i j ∀(i, j) ∈ Rmk , k = 3 (14)

xi ≥ 0 ∀Ji /∈ Jstage2 (15)

yi ≥ 0 ∀Ji ∈ J (16)

The objective (1) is to minimize the variation of waiting times, where each σi variable corresponds to
the absolute value of the difference between the mean waiting time and the waiting time of lot Ji. The
initial workload of resource m3 is reflected in the constraint (2). Constraint (3) restricts machine m3 not
to become idle so that the makespan can be obtained as the right hand side of the inequality which is the
minimum makespan available in the problem. The equations in (4) enforce the lots that are already in the
intermediate buffer at stage 2 to have sojourn times as their yi values. Constraints (5) and (6) ensure that all
lots meet their due dates and waiting time constraints. The process requirements that all lots can enter their
process at stage 2 only after their process in stage 1, and their transportation are completed, are guaranteed
by (7). The equation sets (8)-(10) allow each σi to have a value of |w̄−wi|. Resource constraints (11)-(14)
are used to avoid conflicts on each single lot processor mk. The xi values for lots already in stage 2 can be
negative. The remaining variables for denoting entering times are imposed on non-negativity constraints
by (15) and (16).

3.2.2 Example 1 : Scheduling problem with 9 lots

We solve a problem with 9 lots by the suggested MIP model. The parameter settings are illustrated in
Table 1. We assumed the initial workload ω is given as 0.5 and there are three lots in stage 1 and six lots
in stage 2. Each Ji having infinite δi values in the Table 1 are the lots without a waiting time constraint.
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Table 1: Parameter settings and the optimal solution of example 1.
Input Output

Position

0.3 0.5 7 1 -0.3 0.5 0.5 Stage2

0.2 0.5 1 0 1 0.8 Stage1

0.15 1 1.5 -0.15 1.5 1.5 Stage2

0.4 1 7 2.5 -0.4 2.5 2.5 Stage2

0.3 1 6 4 3.875 5.5 1.325 Stage1

0.25 0.5 5 2 3.425 5 1.325 Stage1

0.2 0.5 5 1.975 3.5 1.325 Stage1

0.3 0.5 6 2.375 4 1.325 Stage1

0.4 0.5 7 2 2.775 4.5 1.325 Stage1

The optimal objective is given as ∑Ji∈J σi = 2.7, and the xi and yi values are as in the output column in
Table 1. The solution given by the MIP model is visualized by the Gantt-chart in Figure 3 where the four
bars represent waiting times in stage 1, process times at stage 1, waiting times at stage 2 and the process
times at stage 2 for each lot.

   2.78                                                   0.4     0.25  0.25  0.2   0.3

   0.2                         1.775                            0.2  0.2   0.5

   0.5            0.5             0.5                     1                                  1                    0.5             0.5            0.5            0.5                    0.5 

Process Idle

Figure 3: Gantt-chart for the optimal solution on example 1.

Computational experiments are accomplished by generating five cases where the due dates, process
times, waiting time constraints are all distinct. For each case the µ1i and µ2i take the values in [0,1] and δi
takes the value in [0,5]. The due date di takes the value in [ω , Total Workload] where the Total Workload
represents the sum of all process times µ2i in a given problem. The results in Table 2 show that the problem
can be solved up to 25 jobs depending on the problem structure. Also, when the number of total lots to
be scheduled are fixed, the computational time increases as the number of lots in stage 2 increases. The
experiments are conducted by ILOG CPLEX 12.5 in Intel Core i3-2120 3.30GHz with 8 GB DDR-3 RAM
environment. In the next section, by analyzing the optimal schedules, we suggest an approximate approach
that can be adopted for large problems.

Table 2: Experimental results on the MIP model.

Number of Lots
CPU Time (sec)

Total # of Lots

Case 1 3 3 3 9 2.7 0.96

Case 2

7 7 4 18 2 1.75

7 5 6 18 4.33 1.64

5 5 8 18 5.6 2.52

Case 3 5 6 9 20 9.25 2.98

Case 4

10 7 7 24 8.12 10.53

10 6 8 24 8.95 12.06

8 6 10 24 10.95 69.07

Case 5
9 6 10 25 10.94 78.39

8 6 11 25 15.98 >2000*
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4 APPROXIMATE SOLUTION PROCEDURE

As problems with more than 25 lots are unsolvable with the suggested MIP model, we propose an approximate
procedure for obtaining the schedule of the lots. The procedure solves an MIP model on the reduced set of
lots and the remaining lots are scheduled by additional steps based on the earliest due date (EDD) sequence
and an elaborate timing control policy. Some insightful results and properties are used for the solution
approach which were obtained by examining the optimal solutions from the MIP model of the entire job
set.

4.1 Properties on Waiting Time Variation

First we decompose the lots in J into two subsets J f ree and J f ixed . We apply the MIP model only on the
lots in J f ixed and then the lots in J f ree are scheduled by an EDD sequence and timing rules together. To
define the subset J f ixed , let the maximum mean waiting time of lots in stage 2 at the beginning be

w̄max =
1
n

n

∑
i=1

(n− i)µ2[i], (17)

where n = |Jstage2| and µ2[i] is the ith largest process time at stage 2. We adopted the longest process time
first rule for finding the value of w̄max in the equation (17). This equation is derived from the results on
the minimum mean completion time and the relational properties between the mean completion time and
the mean waiting time (Smith 1956, Bagchi 1989). Given this upper bound on the mean waiting time of
the lots in stage 2, we newly define the following subsets.

Given the value of w̄max, we can define the subset JL′ consisting of the lots in Jstage1 having smaller
waiting time constraints than w̄max as follows.

JL′ := {Ji|Ji /∈ Jstage2,Ji ∈ JL,δi < w̄max} (18)

Now the subset J f ixed is defined as J f ixed = Jstage2∪JL′ and the remaining lots comprise the subset J f ree.
Intuitively, the lots in J f ixed are interpreted as lots whose waiting time values wi are determined directly
by the sequence of lots in stage 2. In other words, the waiting time of lots in Jstage2 are determined by
their yi values and those in JL′ can have their waiting time values only within the range 0 ≤ wi ≤ δi if
their δi values are less than or equal to w̄max. Thus, these lots comprise the subset J f ixed . On the other
hand, the waiting time of lots in J f ree are freely controllable by deciding xi even though their yi values are
determined if the xi values of the lots does not make any resource conflicts at stage 1.

Now assume that we applied the MIP model to the lots in J f ixed and a schedule of lots in this subset is
given. Also, assume there is no other constraint and our objective is to minimize the waiting time variation.
Then, conceptually, the waiting time wi for lots Ji ∈ J f ixed , becomes a deterministic constant variable. In
addition, the waiting time of lots in J f ree can be treated as the decision variables and we can denote these
variables as W = {W1, ...,W|J f ree|}. Now we deal with the waiting time variation of the entire lots to be
scheduled as a function of W as in the following formula.

|σ |(W ) =
∑Ji∈J f ixed

|w̄−wi|+∑Ji∈J f ree
|w̄−Wi|

|J|
, where w̄ =

∑Ji∈J f ixed
wi +∑Ji∈J f ree

Wi

|J|
(19)

Then, the following statement can be made.

Theorem 1 The waiting time variation |σ |(W ) is minimized when Wi = w̄ f ixed ≡
∑Ji∈J f ixed

wi

|J f ixed | , ∀Ji ∈ J f ree.

The proof of this statement will not be discussed in this paper due to the space limitation. Thus, given
a minimum waiting time variation for lots in J f ixed with the mean waiting time w̄ f ixed , it is desirable for
the lots in J f ree whose waiting times can be controllable to have their waiting times close to w̄ f ixed . If the
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lots in J f ree can have their waiting time values exactly the same as w̄ f ixed , the waiting time variation of
the entire problem is minimized. In other words, the optimal waiting time variation is determined as the
minimal waiting time variation of lots in J f ixed .

As Theorem 1 assumes no due date constraint and resource constraints, we extend Theorem 1 to reflect
these requirements. The main idea of Theorem 1 is extended and formalized as the following when the
due dates and resource constraints are also regarded together. First, let |σ |(Wf ixed) be the lower bound of
the waiting time variation which is obtained by applying the MIP model on lots in J f ixed only. Let w̄ f ixed
be the average waiting time obtained for deriving the |σ |(Wf ixed) value. Also, let S(J) be a sequence of
lots in J where the sequence denotes the entering order of process at m3.
Theorem 2 Let S(J) be an arbitrary sequence of lots in J where the sequence does not affect the waiting
time of lots in J f ixed determined by finding the value of |σ |(Wf ixed). For any given sequence S(J), if the
following conditions are satisfied, the |σ |(W ∗) which is the optimal waiting time variation of the entire
problem is equivalent to |J f ixed |

|J f ixed |+|J f ree| |σ |(Wf ixed).

µ1[i]−µ1[ j] +min(δ[i], w̄ f ixed)−min(δ[ j], w̄ f ixed)+ ∑
i≤k< j

µ2[k] ≥ 0 ∀([i], [ j]) ∈ Rmk , i < j,k = 1,2 (20)

min
Ji∈J f ree

(µ2i +di)≥ max
Ji∈J f ixed

(µ2i +di) (21)

min
Ji∈J

(yi−di) = 0 (22)

In the formula above, J[i] is the ith lot in a given arbitrary sequence S(J). The condition (20) is satisfied
when the lots in J f ree can have their waiting time as w̄ f ixed for a given sequence S(J) without making
any resource conflict at stage 1. If the initial workload of lots waiting in each machine is well balanced,
with the assumption that the stage 2 is a bottleneck process, the condition (20) is easy to be satisfied. The
condition (21) guarantees that the due date constraints can be satisfied although the lots in J f ixed precede
all the lots in J f ree at stage 2. The condition (21) is also easily satisfiable for problems where the lots
already in stage 2 can be regarded as the lots that arrived earlier than those in stage 1. However, the
condition (22) is highly conservative if the given arbitrary sequence S(J) does not consider the due date
constraints for the lots in J f ree. However, for an arbitrary sequence S(J) where the sequence does not
affect the waiting time of lots scheduled from obtaining the lower bound of the waiting time variation,
the precedence relationship among the jobs in J f ree only affects the due date constraints if the condition
(20) is satisfied. In other words, the construction of S(J) can be made without considering the waiting
time variation and waiting time constraints. Then, for such a sequence S(J), the conservativeness of the
condition (21) can be weakened. To conclude, if any sequence S(J) satisfies the conditions (20)-(22), we
can obtain a full schedule of a problem by assigning a waiting time of each lot based on Theorem 1. A
method to construct such a sequence S(J) and an exact timing policy for applying Theorem 1 will be
discussed in the next section. Finally, we suggest an exact solution approach that can be applied when the
obtained lower bound is equivalent to the optimal objective of the original problem. The method provides
the full schedule of the problem by solving MIP model only on the lots in J f ixed .

4.2 Efficient Solution Approach

We suggest a stepwise procedure for obtaining a full schedule of the problem where the MIP model is only
applied to J f ixed . As the subset J f ixed is much smaller than the entire set of lots to be scheduled, even a
large problem can be solved efficiently. The approach provides a schedule with all time constraints satisfied
having a near optimal waiting time variation. The due date constraints, which are the least restrictive
constraints, are not guaranteed to be satisfied. However, when the conditions (20) and (21) are satisfied
for a given solution, the method provides an optimal objective value with all constraints satisfied. The
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necessary condition for the optimality of a schedule given by the suggested approach is derived from the
theorems given in Section 4.1.

• Step 1 : Using equations (17) and (18), define the set J f ixed for a given problem

• Step 2 : Solve the MIP model and obtain the values of xi,yi,wi and w̄ f ixed for the lots in J f ixed and
let J′ f ixed be defined as follows

J′ f ixed := {Ji|yi ≤ yk, ∀Jk ∈ J f ixed ∩Jstage2, Ji ∈ J f ixed} (23)

• Step 3 : Reserve the schedule of lots in J′ f ixed and let S′ be the sequence of entering the process
in stage 2 of lots not in J′ f ixed where the lots are ordered by the earliest due date first policy

• Step 4 : All xi and yi value for lots not in J[i], where J[i] is the ith lot in the sequence S′ , are updated
or newly obtained by the following equation

y[i] = ω + ∑
Ji∈J′ f ixed

µ2i +∑
j<i

µ2[ j] (24)

x[i] = max(x[i−1] +µ1[i−1],ω + ∑
Jj∈J′ f ixed

µ2 j +∑
j<i

µ2[ j]−µ1[i]−min(δ[i], w̄ f ixed)) (25)

From the procedure above, the full sequence S(J) and the entering time (xi,yi) for the entire problem
can be obtained. If the given sequence S(J) satisfy the condition (20) and the defined subsets J f ree and
J f ixed satisfy the condition (21), the optimality and feasibility of the schedule are guaranteed. While the
proof of the first necessary condition can be followed by introducing the Jackson’s lemma on the due date
feasibility (Jackson 1955), the detailed proof will not be given in this paper. The second necessary condition
follows from the feasibility on the resource constraints in stage 1. As the sequence on the lots in J f ree is
obtained based on the EDD policy, conditions (22) are satisfied if conditions (21) are satisfied. Even if
the condition (21) and (22) are violated, the only violation occurs in due date constraints which is a less
restrictive requirement compared to the reduction of waiting time variation and waiting time constraints.
The upper bound on the number of lots violating due date constraints for such a schedule can be obtained
as follows

NT max = |{Ji|Ji ∈ J f ree,di ≤ max
Jk∈J f ixed

dk}|.

The upper bound NT max tends to take a small value for problems having well balanced lot distribution in
each stage. Thus, when violations in due dates are allowed, the approach can be applied with efficient
computational time with a smaller objective value than the one obtained from applying the MIP model on
the entire set of lots. Table 3 shows the efficiency of the suggested solution approach based on set reduction
procedures (RMIP). In case 1, the RMIP procedure which applies the MIP model on a reduced set of lots
finds the optimal feasible solution with an efficient computation time. The due date constraints are not
satisfied for the problem in case 2 by the RMIP model. However, even though the due date constraints
are violated, the approximate procedure RMIP yields a better objective value. Thus, there exists a strong
trade-off between the improvement in the objective value and the violation of due date constraints when
the RMIP does not guarantee a solution with all due dates satisfied.

Works on obtaining a full schedule, which is always feasible to all constraints, for problems having
more than 25 lots are still in progress. As the problem requirements consist of due dates, waiting time
constraints, and waiting time variations, it is not trivial to obtain an efficient schedule by simple dispatching
rules. For example, while the optimal sequence for the waiting time variance measure in a single machine
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Table 3: Efficiency of the approximate solution approach

Number of Lots Mean
Tardiness

Feasibility 
of RMIP

CPU Time(sec)

MIP RMIP* MIP RMIP

Case 1 8 6 11 25 13 8.88 8.88 0 0 953.6 215.6

Case 2** 6 6 11 25 16 15.99 11.83 1.075 1.075 >2000 118.1

RMIP* : MIP solution on reduced set of lots
Case2** : Case where the due date constraints are violated when solved by RMIP

problem tends to have V-shaped structure, this structure does not provide optimality in the two stage
problems and also the feasibility on due dates and time constraints cannot be obtained without appropriate
timing decisions (Eilon and Chowdhury 1977).

5 CONCLUSION

We discussed a two-stage lot scheduling problem with waiting time constraints and distinct due dates. We
proposed an MIP model for minimizing the waiting time variations and satisfying the due date constraints
and waiting time constraints. The MIP model finds the schedule where the bottleneck resource does not
become idle so that the makespan measure and the throughput are guaranteed to be optimal. Computational
experiments showed that the suggested MIP model solves problems having up to 25 lots. Thus we suggested
an approximate solution procedure which solves the MIP model on the reduced set of lots. We also examined
some insightful properties appearing in the problem such as the necessary condition on the optimality of the
schedule obtained by the approximate solution method. The experimental results showed that the suggested
method provides a solution efficiently where the quality of the schedule is also desirable for practical uses.
Our ongoing work is to solve a problem with more than two stages and over three machines engaged. Also,
an efficient heuristic algorithm which guarantees all constraints satisfied while the waiting time variation
is obtained in the near optimal value should be further investigated.
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