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ABSTRACT

Qualification and batch size constraints are two important characteristics of many toolsets in semiconductor
manufacturing. In this paper, we consider the impact of batch size constraint on two flexibility measures
used for qualification management. We propose several solution approaches that consider batch sizes when
balancing the workload on machines in terms of number of products or process time. Using numerical
experiments conducted on real fab data, the solution approaches are compared and the solutions are analyzed.
Conclusions are drawn on the impact of batch size on qualification management.

1 INTRODUCTION

The semiconductor manufacturing industry is one of the most complex and dynamic industries in the world.
The wide range of constraints, together with expensive manufacturing costs, make an efficient planning of
the fabrication facilities (called “fabs”) very challenging. In the course of production, each wafer undergoes
operations at each workstation (named as “toolset”). A toolset is a collection of parallel machines (or
“tools”) performing similar operations. For instance, a collection of furnaces, with eventually different
specifications (throughput, batch size, hardware and software) constitute the “Thermal Treatment” toolset.
Each operation is associated with a recipe which is the machine instructions to obtain the desired process.
It may specify the temperature value for each ramp up and ramp down phases together with their duration
and gas pressure. In order to perform an operation on a machine, its recipe must be qualified beforehand
on the machine. Due to machine hardware and software restrictions, all operations cannot be performed
on all machines. In other words, all recipes cannot be qualified on every machine of the toolset. When a
recipe is not authorized to be qualified on a machine, it is called to be unqualifiable for that machine. On
the other hand, if it is authorized to process a recipe on a machine, but the recipe is not yet qualified on
the machine, it is called to be qualifiable. Finally, if a qualifiable recipe is already qualified on a machine,
it is called to be qualified. The ideal configuration would be that all recipes are qualified on all machines,
so that we can freely allocate the production volume of any recipe to any machine. However, in practice,
this is impossible due to several reasons. As already stated, because of process restrictions, some of the
recipe-to-machine qualifications are not authorized. Qualifying “qualifiable recipes” on machines is time
consuming and also costly, causing scheduled downtimes. Therefore, only a few number of qualifications
can be performed.

Qualifications have a direct impact on production capacity. If a recipe is not qualified on a machine,
it is not possible to allocate the production volume of this recipe to the machine in question. Therefore, a
poor qualification configuration causes loss of capacity. This effect is intensified for a bottleneck toolset.

The impact of qualification management in semiconductor industry has been pointed out in Johnzén
et al. (2007). Several models and approaches have been proposed to find the best qualifications. Aubry,
Espinouse, and Jacomino (2006) introduce a branch and bound method to solve a bi-objective optimization
model which maximizes the robustness level with a fixed number of extra qualifications. Aubry et al. (2008)

3707978-1-4799-2076-1/13/$31.00 ©2013 IEEE



Rowshannahad and Dauzère-Pérès

propose a mixed integer linear program to find the qualification configuration at minimum cost in order
to balance the workload on the toolset while meeting demand. Ignizio (2009) proposes an optimization
model using boolean variables to balance the toolset workload while suggesting new qualifications for a
photolithography toolset. Johnzén, Dauzère-Pérès, and Vialletelle (2011) define three flexibility measures to
propose the best possible qualification(s) to the decision maker. One measure aims at helping the production
to hedge against possible machine breakdowns. The two other measures aims at balancing the workload in
terms of number of products or in terms of production time. In the following, we describe in more detail
these flexibility measures.

Wafers of the same reference travel together in units called lots. Each lot consists of normally 25
wafers. Depending upon the machine, lots are grouped to form batches. The lots of a batch undergo the
same process. Batching reduces the initial setup cost. Therefore it is mostly appropriate for processes with
high setup costs, for instance long-run processes such as those in furnaces. Besides, batching assures a
uniform processing condition for all lots. In some cases, lots are ungrouped when a machine processes
less than 25 wafers at each production run. In all the cited qualification management approaches, the batch
size has not been considered. For the toolset studied in this paper, the batch size may vary between 4 to
10 lots at each production run (equivalent to 100 to 250 wafers per run)! The wide range of the batch size
motivates the study of its impact on qualification management and hence capacity planning. As the machine
specifications are different, the batch size of the same recipe may vary depending upon the machine. In
view of the fact that the throughput of each machine differs from recipe to recipe, an efficient qualification
management considering these constraints optimizes the capacity utilization of the toolset while reducing
the variability and the cycle time.

In this paper, we investigate the impact of the batch size on the recipe-to-machine allocation used
in qualification management and toolset capacity. In Section 2, two of the flexibility measures defined
originally in Johnzén, Dauzère-Pérès, and Vialletelle (2011) are briefly recalled. Then, in Section 3, several
solution approaches for these flexibility measures considering batch size constraint are proposed. In Section
4, numerical experiments on real fab data for a “Thermal Treatment” toolset are discussed. Finally, we
draw conclusions and mention some research perspectives in Section 5.

2 PROBLEM DEFINITION

In order to determine the best recipe-to-machine configuration, Johnzén, Dauzère-Pérès, and Vialletelle
(2011) proposed indicators depending on different criteria. In this paper, we discuss two of these indicators
(out of three) which try to balance the workload on the toolset. These indicators, named flexibility measures,
vary between zero and one (if expressed in percentage, between 0% and 100%). The flexibility measures
are used by the decision maker to perform the best qualification(s). The extra qualification which yields the
highest flexibility for the entire toolset recipe-to-machine configuration is a better alternative of qualification.
In order to calculate the flexibility gain for each qualifiable recipe, at first, flexibility is calculated for the
current recipe-to-machine configuration. Then, the flexibility of the entire toolset is calculated by virtually
qualifying each qualifiable recipe on each machine while the flexibility value is saved in a matrix. By
subtracting the flexibility after each qualification from the flexibility value of the current configuration, we
obtain the flexibility gain for each qualifiable recipe-to-machine alternative.

2.1 Flexibility Measures

In the following sections, WIP and Time flexibility measures, which indicate how well the workload can
be balanced on the toolset, are recalled. To balance the workload on the toolset, optimization problems
must be solved. The following notations are used in the paper.

Parameters
R Total number of recipes to be processed,

M Total number of machines in the toolset,
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WIPr Total production volume of recipe r,
T Pr,m Throughput rate of recipe r on machine m (number of wafers per hour),
BSr,m Batch size of recipe r on machine m (number of wafers per production run),
Qr,m Qualification state of recipe r on machine m,

=

{
1 if recipe r is already qualified on machine m,
0 otherwise.

γ Workload balancing exponent (γ ≥ 1).

Decision variables
WIPm The total production volume assigned to machine m,

WIPr,m The production quantity of recipe r assigned to machine m,
Cm The total amount of production time on machine m.

2.1.1 WIP Flexibility Measure

WIP flexibility, denoted as FWIP, tries to balance the workload on the toolset in terms of the production
volume or WIP. Here we recall the definition from Johnzén, Dauzère-Pérès, and Vialletelle (2011):

FWIP =

(
M

∑
m=1

WIPm/M)γ

M

∑
m=1

(WIPm)
γ/M

=

M× (
M

∑
m=1

R

∑
r=1

WIPr,m/M)γ

M

∑
m=1

R

∑
r=1

(WIPr,m)
γ

∈ (0,1] .

FWIP is a convex function with γ > 1. It reaches 1 when the nominator and the denominator are equal.
It means that when the total production volume (∑M

m=1WIPm = ∑
R
r=1 ∑

M
m=1WIPr,m = ∑

R
r=1WIPr) is equally

distributed over all machines (represented in nominator) or in other words, if the machines are equally
loaded (represented in denominator).

2.1.2 Time Flexibility Measure

Time flexibility, denoted as FTime, tries to balance the workload on the toolset in terms of production time.
The definition from Johnzén, Dauzère-Pérès, and Vialletelle (2011) is:

FTime =
Cideal

M

∑
m=1

(Cm)
γ

=
Cideal

M

∑
m=1

(
R

∑
r=1

WIPr,m

T Pr,m

)γ ∈ (0,1] .

The constant Cideal is the minimum value of ∑
M
m=1Cm (total amount of the production times of every

machine in the toolset) when all of the qualifiable recipe-to-machine couples are qualified. By maximizing
FTime, as Cideal is a constant, the denominator, which is the sum of production times (∑M

m=1Cm), is minimized.
FTime (a convex function with γ > 1) can at best reach 1 when the denominator (the sum of the production
times) equals Cideal , i.e. for the best qualification configuration. Cideal is defined as follows:

Cideal = min
M

∑
m=1

(Cm)
γ

with Qr,m = 1 ∀r ∈ {1, ...,R} ,∀m ∈ {1, ...,M} .
Balancing Exponent
The balancing exponent (γ) is an adjustment factor in FTime and FWIP. By increasing γ in FTime,

we decrease the total production time by allocating production volumes to slower machines. Hence by
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increasing γ in FTime, the total process time on the toolset increases while the maximum production time
on high-loaded machines decreases. It is worth to notice that by increasing γ , the nominal value of both
FTime and FWIP also decreases. γ has no impact on workload balancing in terms of WIP (FWIP).

2.2 Optimization Model

In this paper, we propose solution approaches for workload balancing for both the WIP and Time flexibility
measures. In addition, recipe-to-machine WIP allocations must be an integer multiple of the batch size of
that recipe-to-machine, except for at most one recipe-to-machine allocation for each recipe. The latter is
because it is not always possible to find batch sizes for recipe r so that their sum is exactly WIPr. Let us
denote by Yr,m a binary variable which is equal to 1 if the quantity of recipe r assigned to machine m is
not an integer multiple of the batch size and 0 otherwise. Let us also denote by WIPCr,m the allocation of
recipe r to machine m which can be continuous, i.e. not an integer multiple of the batch size.

In the model below, (1a) is the objective function which is either FWIP or FTime. Constraint (1b) ensures
that all of the production volume of each recipe is allocated. Constraint (1c) stipulates that recipe r is only
allocated to machines m that are qualified for r, i.e. such that Qr,m = 1. Constraint (1d) ensures that the
allocation WIPr,m of recipe r on machine m is an integer multiple of the batch size BSr,m of recipe r on
machine m. WIPr,m

BSr,m
(∈N+) is the number of production runs of recipe r on machine m. Constraint (1e) and

Constraint (1f) ensure that there is only one variable WIPCr,m which is strictly positive for each recipe r.

maxF (1a)

Subject to
M

∑
m=1

(WIPr,m +WIPCr,m) =WIPr ∀r (1b)

WIPr,m ≤ Qr,mWIPr ∀r,m (1c)
WIPr,m

BSr,m
∈ N+ ∀r,m (1d)

M

∑
m=1

Yr,m ≤ 1 ∀r (1e)

WIPCr,m ≤ Qr,mWIPrYr,m ∀r,m (1f)

Qr,m,Yr,m ∈ {0,1} ∀r,m
WIPr,WIPr,m,WIPCr,m ≥ 0 ∀r,m

Note that γ takes another importance in FTime when considering batch sizes. By varying γ , the WIP
allocation of recipes to machines may change. Since the batch size of each recipe on each machine may
be different, if the workload balancing is done under batch size constraint, significant changes in γ can
play an important role on recipe-to-machine qualification configuration.

2.3 Complexity Analysis

Due to lack of space, we cannot detail the analysis but it is possible to show that the problem with FWIP

or FTime as a criterion is NP-hard in the strong sense. This is because, even if all recipes are qualified on
all machines, i.e. Qr,m = 1 ∀r,m, then the problem can be simplified to the scheduling problem on parallel
machines P||Cmax, which is known to be NP-hard in the strong sense (Garey and Johnson 1979). The
transformation is done by noting that FWIP = 1 or FTime = 1 means that ∑

R
r=1WIPr,m is the same for each

machine m, i.e. ∑
R
r=1WIPr,m = ∑

R
r=1 WIPr,m

M . The decision problem “Is there a solution to the qualification
problem such that FWIP = 1 or FTime = 1” can be transformed to solving a related scheduling problem
P||Cmax and checking that Cmax =

∑
R
r=1 WIPr,m

M .
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3 SOLUTION APPROACHES

After briefly recalling the main ideas of the algorithm proposed in Johnzén, Dauzère-Pérès, and Vialletelle
(2011) for real-valued resolution for the WIP flexibility measure FWIP, we develop several solution approaches
that consider the batch size of each recipe on each machine. Concerning the Time flexibility measure FTime,
we do not recall the resolution method for real-valued variables proposed in Johnzén, Dauzère-Pérès, and
Vialletelle (2011) due to lack of space. We use one heuristic proposed for FWIP to obtain recipe-to-machine
WIP allocations that satisfy batch sizes from an initial optimal real-valued solution.

3.1 Workload Balancing in terms of WIP

In order to find the optimal workload balance on the toolset in terms of the production volume (WIP),
we consider two main approaches. The first approach is a modified version of the algorithm proposed in
Johnzén, Dauzère-Pérès, and Vialletelle (2011) which solves the problem while considering batch sizes.
Secondly, we propose a simple heuristic (which is later adapted to Time flexibility) which takes the optimal
real-valued solution as an initial solution and then, according to the batch size of each recipe-to-machine
couple, generates a solution considering batch size.

3.1.1 Real-Valued Resolution

For balancing the production volume on the toolset, we maximize (FWIP) while distributing the production
quantity of each recipe among the qualified machines for that recipe. The problem is formalized in (1)
without Constraint (1d). The real-valued resolution proposed in Johnzén, Dauzère-Pérès, and Vialletelle
(2011) is composed of two algorithms. The first algorithm constructs a real-valued initial solution and the
second algorithm progressively improves the initial solution to obtain either the optimal or a precise-enough
near-optimal real-valued solution.

The algorithm used to construct the real-valued initial solution equally distributes the WIP of each
recipe on their corresponding qualified machines. This yields a feasible and (almost always) non-optimal
solution. The second algorithm takes this initial solution as an input and improves it to find the optimal
solution. The full algorithm is described in Johnzén, Dauzère-Pérès, and Vialletelle (2011).

3.1.2 Full-Batch Resolution

To consider batch sizes, two main approaches are proposed. First, we optimize the workload balance
while considering batch sizes. Second, we introduce a simple but quite efficient heuristic which takes a
real-valued optimal solution and makes it feasible by considering batch sizes.

Full-Batch Workload Balancing from Beginning
Here, we modify the algorithm described in Johnzén, Dauzère-Pérès, and Vialletelle (2011) to consider

batch sizes. Several strategies are possible which are described along the section. We may consider batch
sizes from the beginning, i.e. while constructing the initial feasible solution or only when improving the
initial feasible solution, constructed considering or ignoring batch sizes.

Constructing Full-Batch Initial Solution For calculating a real-valued initial feasible solution, we
equally divide the WIP of each recipe among all of the qualified machines for that recipe. To consider
batch sizes, in each loop, we start allocating the WIP by making as many batches as possible, i.e. bWIPr,m

BSr,m
c.

The new WIP allocation is composed of one or more batches which represent one or more production runs
of recipe r on machine m.

One case that often happens is that the overall production volume of each recipe does not correspond to
an integer number of full batches, which is also difficult to consider from the beginning (when production
planning is done). This is because the batch size of each recipe depends on the machine and we do not know
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exactly in advance how much production volume of which recipe is allocated to which machine considering
that the machine statuses and qualification configuration change over time. In this case, even by attributing
WIPr,m considering the batch size of recipe r on machine m (BSr,m), the rest of the production volume for
each recipe r is not equal to a production run, i.e one full batch equivalent to BSr,m. The question is to
which of the qualified machines of recipe r, the remaining production volume must be assigned. We will
allocate this volume to the less loaded machine among all of the qualified machines of recipe r. However it
is better that, if possible, production volumes are determined from the beginning to form full batches. This
is because processing only one wafer or a full batch of for instance 250 wafers will take the same process
time. Besides, if we cannot make full batches, in some toolsets, including Thermal Treatment toolset, filler
wafers must be used to fill the vacant places in the boats. By making full batches, we eliminate the cost
of filler wafers and reduce the non productivity in the fab. Another case that must be considered is when
the production quantity of a recipe is smaller than the smallest batch size of any machine qualified for
this recipe. In this case, the production quantity of this recipe is produced only on the machine with the
smallest total workload (WIPm).

Step 0. Set recipe index r to 1 (r = 1).
Step 1. For each machine in the toolset, determine the production volume allocation of recipe r to

machines by equally distributing the production volume of recipe r (WIPr) among all of the
qualified machines for r. If for each of the qualified machines for recipe r, i.e. where Qr,m = 1,
the calculated WIPr,m is more than a full batch (WIPr,m≥ BSr,m) and forms an integer multiple of
the batch size (BSr,m), then attribute the WIP, else attribute only the integer part of the calculated
WIPr,m, i.e.bWIPr,m

BSr,m
c. However, if the calculated WIPr,m is less than a full batch (WIPr,m ≤ BSr,m),

then allocate WIPr,m to the less loaded machine among the machines qualified for recipe r.
Step 2. Set r = r+1, if r ≤ R, then go to step 1.

Full-Batch Optimization Algorithm The structure of the algorithm is the same as the one proposed
in Johnzén, Dauzère-Pérès, and Vialletelle (2011). The main difference is in the WIP allocations which
are done according to batch sizes.

The algorithm begins with an initial solution S0, generated by the initial WIP distribution algorithm
(considering or ignoring batch sizes). Before beginning the algorithm, we present the following definition.

Let us define by L M r, the set of loading machines for recipe r to be the set of qualified machine(s)
for r, with the smallest WIP quantity among all of the qualified machines for r, i.e.:

m∗ ∈L M r⇒WIPm∗ = min
∀m s.t. Qr,m=1

{WIPm}

Step 0. Start with initial solution S0. The recipe index r and the iteration k are set to 1 (r = 1 and
k = 1).

Step 1. Remove the WIP of recipe r allocated initially to machine m (WIPr,m) from machine m,
(WIPm = WIPm−WIPr,m). Then, the total WIP quantities on each machine m is sorted in a
decreasing order.

Step 2. Calculate the WIP allocation quantities (WIPr,m∗), if we had distributed equally the WIP of r
on the loading machine(s) m∗ in L M r until:

Step 2(a). The WIP quantity on one (or more) loading machine(s) m∗ in L M r, (i.e. WIPr,m∗) is
equal to the WIP quantity of a machine m′ qualified for recipe r and not in L M r:

WIPm∗ =WIPm′
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Then m′ is added to the set of loading machines, i.e. L M r ≡L M r ∪{m′}.
Now, if the calculated WIP allocation (WIPr,m∗) constitutes at least one full batch, allocate
WIPr,m∗ = b

WIPr,m∗
BSr,m∗

c, and go to Step 2. Else allocate WIPr,m∗ and go to step 2.
Due to that fact that the production quantity per recipe may have not been determined
(from beginning during production planning) to form full-batches, there is some production
quantity remainder which does not constitute a full batch. The remainder (WIPr−∑

m∗
WIPr,m∗

where WIPr,m∗ = b
WIPr,m∗
BSr,m∗

c) is added in the last loop to the least-loaded loading machine
in the loading machine set.

Step 2(b). If r ≤ R, then go to Step 1.
Step 3. If FWIP

k −FWIP
k−1 > 0, then k = k+1, r = 1 and go to step 1.

As the proposed algorithm (as well as the algorithms which follow) are based on progressive improvement
of an initial solution, it is not possible to implement the condition FWIP

k −FWIP
k−1 > 0 of Step 3 in a strict

manner. Therefore, the flexibility value of the previous solution Sk−1 is compared with the flexibility value
of the new solution Sk by defining an acceptable gap called ε . ε is a very small value, for example 1×10−20.
The algorithm iterates until precise-enough near-optimal solution is reached.

Batch-Feasibility Algorithm
When taking into account batch sizes, the problem becomes NP-hard in the strong sense for both

flexibility measures as discussed in Section 2.3. This is why we propose a heuristic which takes as input
the optimal real-valued workload balance, and makes it feasible by considering the batch size of each
recipe on each machine. The resolution approach is different from the previous algorithms in the sense
that we first choose the machine and then the recipe, whereas in the previous methods, a recipe is first
chosen from which WIP values are assigned to its qualified machines. The advantages of our approach
are that we already know the optimal solution of the real-valued problem and we have more flexibility in
the problem resolution. Furthermore, the real-valued solution serves as an upper bound of the full-batch
problem solution.

Step 0. The optimal solution generated by the real-valued WIP distribution algorithm is the initial
solution (S0).

Step 1. In the whole toolset, find the most loaded machine (m?). From the set of all qualified recipes for
this machine to which WIP values have been allocated (Qr,m? = 1 and WIPr,m? > 0), remove the
load from the WIP allocation which is nearest (or in a second version: “farthest”) to form a full
batch. The removed value is equal to {WIPr,m?

BSr,m?
}. Attribute this value to the less loaded machine

which has already a non-integer WIP allocation for the same recipe (i.e. {WIPr,m?

BSr,m?
}> 0). Note

that this last condition (i.e. non-integer WIP allocation) has been added to avoid cycling.
Step 2. Once all the WIP allocations are redistributed (if necessary), the stop criterion is checked. If

FWIP
k −FWIP

k−1 > 0, then k = k+1, r = 1 and go to step 1.

Two versions of the algorithm have been implemented. In the first version, at the beginning of Step
1, the preliminary workload on the toolset is ordered decreasingly and then all WIP attributions are done
using this order. In the second version, the ordering is redone each time a WIP allocation is performed.
The numerical results in this paper are based on the second version which yields better results on average.

3.2 Workload Balancing in terms of Process Time

In order to find the optimal workload balance for the Time flexibility measure (FTime) with real-valued
variables, an optimization problem must be solved. The method used is called Active set method which
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is a Line Search strategy for the minimization of unconstrained smooth functions (Johnzén 2009). An
investigation of the Active set method, even brief, is out of the scope of this paper, therefore we refer the
interested reader to textbooks and papers on the subject (e.g., (Nocedal and Wright 2006)).

As with the WIP flexibility, there are several approaches to determine a solution when batch sizes are
considered. In the approach presented here, we use the same heuristic (Batch-Feasibility Algorithm) as
described in Section 3.1.2 for WIP flexibility. Batch-Feasibility Algorithm takes the optimal real-valued
load balancing solution of the Time flexibility and make it feasible with respect to the batch size constraint
(1d).

Other approaches have also been investigated among which is to limit the step length in the Active Set
method in order not to violate the constraint (1d). However, as the active set method is not explained in
this paper, we present this approach together with the experimental results in another paper.

4 NUMERICAL EXPERIMENTS

25 industrial instances of SOITEC are used for analyzing our solution approaches. The WIP and Time
flexibility measures for the current recipe-to-machine qualification configuration and the qualification
configuration after the best qualification are presented in Tables 1 and 3. γ is set to 6 in all our experiments.
The choice of γ is based on historical experiments. The workload balancing obtained with γ = 6 represents
the best the actual toolset workload in the fab. As the optimal real-valued solutions for both WIP and Time
flexibility measures are available, they are used as upper bounds to evaluate the quality of our algorithms
with batch size constraints.

The WIP flexibility measure obtained with each approach and for each instance is presented in Table
1. It is composed of four blocks which show the flexibility measure for the current recipe-to-machine
configuration and the flexibility for the new configuration after the best qualification. Note that in all tables
blocks and columns are counted from left. The first block of results (second and third columns) shows the
optimal real-valued solutions for flexibility measures. The second block (fourth and fifth columns) shows
the flexibility measures taking batch sizes into account, with a (non-optimal) real-valued initial solution.
The third block (sixth and seventh columns), like the second block, shows the flexibility measures taking
batch sizes into account, with a (non-optimal) full-batch initial solution. The fourth and last block (eighth
and ninth columns) shows the flexibility measures taking batch sizes into account using the Batch Feasibility
Algorithm. Bold values correspond to the best values obtained among the three heuristics for each instance
and for either the current configuration or the new configuration.

Although in most cases, the WIP flexibility is very close with or without batch size constraints, the
difference is quite large in Instance 12 (from 79.24% down to 64.54% for the current configuration and
from 93.88% down to 75.30% for the configuration after the best qualification). This result could be due to
the fact that our solution approaches considering batch sizes does not necessarily find the optimal solution.
Looking at Table 1, it is also clear that the two full batch approaches (blocks 2 and 3) perform similarly
and strongly dominate the Batch Feasibility Approach.

An important question is whether the best qualification proposed when solving the problem with real
values is also relevant when solving the problem with batch size constraints. Table 2 compares the WIP
flexibility measure for the best qualification proposed by our batch solution approaches with the best
qualification when real values are considered but solved with our batch solution approaches.

Table 2 is composed of three blocks. The first block (second, third and fourth columns) corresponds
to the results using the Full-Batch Optimization Algorithm with a real-valued initial solution. The second
block (fifth, sixth and seventh columns) corresponds to the results using again the Full-Batch Optimization
Algorithm, but with an initial solution determined considering batch size constraints. The third and last
block (eighth, ninth and tenth columns) give the results using the heuristic Batch Flexibility Algorithm.
Each block contains three columns. The first column (called “Best”) contains the WIP flexibility measure
value for the recipe-to-machine configuration after the best (new) qualification using its corresponding block
solution approach (for instance, the first block solution approach is Full-Batch Optimization Algorithm
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Table 1: Comparing solution approaches for WIP flexibility measure.

Instance
number

Real-value Full-batch (initial:
real-value)

Full-batch (initial:
full-batch)

Batch-feasibility

Current Best Current Best Current Best Current Best

1 74.43% 87.69% 74.22% 86.53% 74.22% 86.53% 72.20% 85.46%
2 53.88% 67.55% 53.70% 67.22% 53.70% 67.22% 50.47% 65.86%
3 68.83% 78.13% 68.54% 77.61% 68.54% 77.61% 66.60% 76.37%
4 53.49% 70.88% 53.29% 70.66% 53.29% 70.66% 52.86% 69.81%
5 5.08% 33.01% 5.07% 31.46% 5.07% 31.46% 5.07% 5.09%
6 72.73% 98.33% 72.28% 96.96% 72.28% 96.96% 67.99% 93.69%
7 7.25% 14.78% 7.04% 14.23% 7.04% 14.23% 6.81% 14.16%
8 11.01% 20.98% 10.56% 20.41% 10.56% 20.41% 10.32% 19.55%
9 97.17% 97.17% 90.33% 91.72% 90.33% 91.72% 45.97% 64.39%
10 61.76% 62.18% 56.58% 60.88% 56.58% 60.88% 57.44% 59.87%
11 29.09% 33.83% 28.88% 32.87% 28.88% 32.87% 27.09% 31.63%
12 79.24% 93.88% 64.54% 75.30% 64.54% 75.30% 40.24% 75.11%
13 25.30% 53.03% 24.41% 49.36% 24.41% 49.36% 22.96% 45.80%
14 49.96% 49.96% 47.69% 49.01% 47.69% 49.01% 45.87% 47.28%
15 32.99% 36.86% 32.08% 33.05% 32.08% 33.05% 20.22% 33.61%
16 44.81% 69.53% 39.87% 63.63% 39.87% 63.63% 32.87% 46.71%
17 28.19% 47.20% 24.73% 44.62% 24.73% 44.62% 22.11% 29.28%
18 31.11% 38.50% 27.01% 37.32% 27.01% 37.32% 15.84% 26.75%
19 15.01% 24.72% 14.77% 23.75% 14.77% 23.75% 13.41% 16.56%
20 20.17% 37.41% 19.22% 35.13% 19.22% 35.13% 17.46% 32.51%
21 19.62% 19.78% 16.95% 18.76% 16.95% 18.76% 18.33% 19.14%
22 17.83% 21.86% 17.37% 21.34% 17.37% 21.34% 16.57% 21.35%
23 32.80% 33.16% 31.55% 32.23% 31.55% 32.23% 25.69% 28.69%
24 30.24% 32.63% 26.05% 31.22% 26.05% 31.22% 27.16% 30.05%
25 46.75% 68.86% 45.56% 67.67% 45.56% 67.67% 43.73% 66.40%

using real-valued initial solution). The second column (called “Best (RV)”) is the WIP flexibility measure
value for the recipe-to-machine configuration after the best (new) qualification proposed when using the
(optimal) real-valued resolution approach. The third and last column of each block shows whether the
next (new) qualification of the block’s approach is the same as the (new) qualification proposition using
the (optimal) real-valued resolution approach. It is interesting to note that there are various instances
for which the proposed qualifications differ and which lead to substantial differences of WIP flexibility
value, such as Instances 5 (31.46% and 0.70%), 9 (91.72% and 83.59%) and 12 (75.30% and 69.25%).
This illustrates that not considering batch sizes may induce less effective qualification decisions. It is
interesting to note that the Full-Batch Optimization Algorithm is quite efficient, considering the gap with
the results of the real-valued resolution. Besides the algorithm yields the same results regardless of the
initial solution (ignoring or considering the batch size constraint). As a conclusion, among the workload
balancing algorithms and when considering batch sizes for the WIP flexibility measure, the Full-Batch
Optimization Algorithm is the most efficient.

Table 3 has the same format as of Table 1 for the two first blocks and as of Table 2 for the third (the last)
block. It presents the results obtained with the only solution approach studied in this paper for workload
balancing with batch sizes for the Time flexibility measure, i.e. the Batch Feasibility Algorithm. According
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Table 2: Comparing best qualifications for WIP flexibility measure.

Instance Full batch (initial: real value) Full batch (initial: full batch) Batch feasibility

number Best Best (RV) Match Best Best (RV) Match Best Best (RV) Match

1 86.53% 86.53% * 86.53% 86.53% * 85.46% 85.46% *
2 67.22% 67.22% * 67.22% 67.22% * 65.86% 65.86% *
3 77.61% 77.61% * 77.61% 77.61% * 76.37% 74.56%
4 70.66% 70.66% * 70.66% 70.66% * 69.81% 69.81% *
5 31.46% 0.70% 31.46% 0.70% 5.09% 3.41%
6 96.96% 96.96% * 96.96% 96.96% * 93.69% 93.69% *
7 14.23% 14.07% 14.23% 14.07% 14.16% 14.09%
8 20.41% 20.41% * 20.41% 20.41% * 19.55% 19.55% *
9 91.72% 83.59% 91.72% 83.59% 64.39% 46.92%

10 60.88% 60.88% * 60.88% 60.88% * 59.87% 59.72%
11 32.87% 32.87% * 32.87% 32.87% * 31.63% 31.63% *
12 75.30% 69.25% 75.30% 69.25% 75.11% 66.39%
13 49.36% 49.36% * 49.36% 49.36% * 45.80% 45.80% *
14 49.01% 47.31% 49.01% 47.31% 47.28% 46.83%
15 33.05% 33.05% * 33.05% 33.05% * 33.61% 33.61% *
16 63.63% 63.63% * 63.63% 63.63% * 46.71% 46.71%
17 44.62% 44.62% * 44.62% 44.62% * 29.28% 29.28% *
18 37.32% 37.32% * 37.32% 37.32% * 26.75% 21.62% *
19 23.75% 23.75% * 23.75% 23.75% * 16.56% 13.80%
20 35.13% 35.13% * 35.13% 35.13% * 32.51% 29.29%
21 18.76% 18.13% 18.76% 18.13% 19.14% 18.42%
22 21.34% 21.34% * 21.34% 21.34% * 21.35% 21.07%
23 32.23% 32.23% * 32.23% 32.23% * 28.69% 26.79%
24 31.22% 31.22% * 31.22% 31.22% * 30.05% 24.75%
25 67.67% 67.54% 67.67% 67.54% 66.40% 64.56%

*: Proposed qualifications are identical.

to the first two blocks of Table 3 (second, third, fourth and fifth columns), in many more instances than
for the WIP flexibility measure, the differences can be quite large between the Time flexibility measures
obtained with real values and with batch sizes, such as in Instance 11 (from 99.22% down to 43.64% for the
current configuration and from 99.55% down to 49.50% for the configuration after the best qualification).
Referring to the third and last block of Table 3 (columns six and seven), again in more instances than for the
WIP flexibility measure, the differences can be quite large between the Time flexibility measure of the best
qualification with batch sizes and the Time flexibility measure obtained by running the Batch Feasibility
Algorithm for the best qualification with real values, such as in Instance 13 (44.68% and 15.85%). It must
be noted that the large gaps could also be explained by the fact that our Batch Feasibility Algorithm is not
always very efficient. Other more efficient approaches are being investigated.

5 CONCLUSION AND FUTURE RESEARCH

Batching is one of the main constraints in the semiconductor manufacturing industry. In this paper, we have
proposed different workload balancing algorithms (in terms of both production quantities and production
time) considering batch sizes. The workload allocations are used in qualification management. Using real
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Table 3: Comparing solution approaches|Comparing best qualifications for the Time flexibility measure.

Instance Real value Batch feasibility Batch feasibility

number Current Best Current Best Best (RV) Match

1 40.91% 72.68% 40.43% 66.89% 66.89% *
2 34.29% 49.75% 32.83% 45.60% 45.60% *
3 85.53% 93.43% 82.92% 88.27% 88.27% *
4 33.89% 38.44% 32.94% 36.84% 36.84% *
5 34.42% 63.71% 33.44% 61.90% 61.90% *
6 82.58% 94.82% 80.03% 92.72% 92.72% *
7 98.00% 99.99% 62.11% 81.03% 78.64%
8 29.34% 41.40% 13.37% 38.72% 25.56%
9 28.02% 49.44% 17.36% 34.27% 19.42%

10 67.82% 85.11% 20.89% 49.74% 49.74% *
11 99.22% 99.55% 43.64% 49.50% 49.19%
12 81.14% 96.45% 49.58% 57.28% 31.66%
13 48.91% 68.81% 45.06% 44.68% 15.85%
14 70.41% 97.50% 29.66% 47.30% 47.30% *
15 99.64% 99.96% 37.27% 58.74% 58.74% *
16 74.42% 88.54% 27.43% 27.72% 19.60%
17 61.70% 76.55% 13.68% 32.44% 25.99%
18 75.33% 92.15% 38.60% 52.36% 52.36% *
19 74.70% 83.46% 26.95% 51.60% 26.86%
20 69.94% 84.04% 54.98% 61.85% 47.13%
21 71.49% 85.33% 13.32% 41.37% 26.21%
22 95.20% 98.17% 45.70% 59.68% 42.71%
23 97.70% 99.13% 42.96% 78.09% 67.44%
24 96.03% 98.01% 58.23% 68.45% 43.24%
25 92.74% 95.00% 26.52% 55.44% 17.04%

*: Proposed qualifications are identical.

fab data, we have demonstrated that ignoring the batch size constraint may lead to inappropriate qualification
decisions which in turn leads to a non-optimal toolset capacity utilization.

Having the near-optimal recipe-to-machine WIP allocations considering the batch size, it may be
possible to use the workload balancing tables as an input for a scheduler or a dispatcher of lots.

Various perspectives are possible. The Batch-Feasibility Algorithm might be improved by taking the
flexibility measure value (objective function value) into account. This is achievable by adding another
condition while re-allocating the workload in step one. This means that we calculate the flexibility value
if we have had distributed the (removed) WIP for the machines of the same recipe having a non-integer
WIP value. And if there are several alternatives, the WIP allocation is chosen which yields the largest
flexibility measure.

Another more general perspective for qualification management is to propose flexibility measures which
consider the yield for each recipe on each machine and propose relevant qualifications taking this constraint
into account. Another aspect which may be considered directly or indirectly in flexibility measures, is
the recipe priority. This means that the model gives more priority to the recipe related to more important
products or “hot lots”. Auxiliary resources management (for example in lithography toolset) is also a
subject related to qualification management which can enrich future studies.
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