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ABSTRACT 

A key parameter of the linear programming (LP) models widely used for production planning in industry 
and academia are the lead times, the estimated delay between material becoming available to a resource 
and the completion of its processing at that resource. Lead times are commonly treated as exogenous, 
workload-independent parameters and assumed to be integer multiples of the planning period. Although 
formulations with non-integer lead times have been proposed in the past, we are not aware of any studies 
that systematically evaluate the benefits of using non-integer lead times in LP models. In this paper we 
implement LP models to plan the releases of wafers into a large-scale wafer fabrication facility and com-
pare the performance of LP models with and without non-integer lead times by simulating the execution 
of the resulting release plans. We find that the models with non-integer lead times yield substantially im-
proved performance, and are quite straightforward to implement. 
 

1 INTRODUCTION 

Linear programming (LP) models have been widely used since the late 1950s to address the problem of 
production planning. Production planning involves allocating the capacity of production resources to 
competing products, or operations of products, over time in order to optimize some measure of factory 
performance. The key decisions are the amount of raw material to release into the production system over 
time such that the output of the system can be used to meet demand in the most advantageous manner. 
Extensive descriptions of models of this type are given by Johnson and Montgomery (1974), Hackman   
(Hackman 2008), Missbauer and Uzsoy (2010) and Voss and Woodruff (2003), among others. 

A key issue in production planning models of this type arises from the fact that the flow of material 
through capacity-constrained production facilities involves substantial delays that are mostly due to 
queueing for congested resources. In semiconductor wafer fabrication, the application motivating this 
study, the average cycle time of the overall process can be of the order of several weeks, requiring that 
models take these delays explicitly into account. The estimates of cycle times used in production planning 
models will be referred to as lead times. 

Queueing models of manufacturing systems (Buzacott and Shanthikumar 1993; Hopp and Spearman 
2008)  have shown that the average cycle time, the time between a unit of work arriving at a resource and 
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its completing its processing there, increases nonlinearly with resource utilization. Thus the cycle time at 
a given production resource at any point in time is a complex function of the capabilities of the equip-
ment, such as processing batch size, processing time and setup time, as well as the stochastic processes 
governing the arrival and service times at the resources and the decision rules used to allocate resources 
among competing jobs in the queue. The amount of time elapsing between a unit of work being released 
into the production system and its arriving at a specific resource is thus a random variable whose distribu-
tion depends on the history of all work releases into the system until that point in time as well as many 
other sources of uncertainty in the production process. The lead times used in production planning models 
are thus estimates of some appropriately selected statistic of this distribution. The fundamental underlying 
difficulty is that the lead time is determined by, and not an input into, the planning process, since the 
amount of work released into the system over time determines resource utilization and hence cycle times.  

Although ongoing research is addressing the problem of planning with workload-dependent lead 
times (Pahl et al. 2005; Asmundsson et al. 2006; Pahl et al. 2007; Asmundsson et al. 2009; Missbauer and 
Uzsoy 2010), many planning systems in current operation, including the widely used Material Require-
ments Planning (MRP) procedure (Orlicky 1975; Baker 1993), require deterministic lead time estimates 
as parameters. However, the estimation of lead times for use in production planning models is often not 
straightforward. Simple thought experiments, borne out by observation of industrial systems and simula-
tion models, should convince the reader that choice of lead times can affect the cost of operating the pro-
duction system. Underestimating lead times will result in releasing work too late, resulting in underuti-
lized resources and late delivery to customers. Overestimating lead times, on the other hand, will cause 
high WIP levels with the associated inventory costs as well as limiting the firm's ability to react to de-
mand changes in a timely manner. Long lead times for production systems may also require higher safety 
stock levels in the supply chain, resulting in additional costs.  

In this paper we address an aspect of this problem in the specific context of LP models for production 
planning. We consider a finite time horizon divided into discrete periods of equal length. The objective of 
the model is to determine the amount of each product to release into the production system in each period 
so as to maximize the profit achieved by the system. Multiple resource types with limited capacity are 
considered. Two different types of lead time estimates are considered: a conventional treatment requiring 
lead times to be an integer multiple of the underlying planning period, and an enhanced formulation using 
the approach of Hackman and Leachman (1989) to incorporate non-integer lead times. We evaluate the 
performance of the two models under a range of operating conditions by simulating the execution of the 
release schedules determined by the models.  

In the following section we give a brief review of previous related work. Section 3 presents the LP 
models used, and Section 4 the wafer fabrication system used as a testbed as well as the simulation envi-
ronment used to implement our experiments. Results are presented in Section 5, and a discussion of con-
clusions and directions for future research concludes the paper. 

  

2 PREVIOUS RELATED WORK 

Production planning has been addressed using the tools of operations research since the early work of 
Holt et al. (1960), Modigliani and Hohn (1955) and Manne (1957), among others. The use of LP models 
for these problems assumes a finite planning horizon divided into discrete time periods. Decision varia-
bles are associated with each time period, usually representing the amount of work released into each re-
source in each period. These decision variables can then be used to compute the values of a number of 
state variables, such as work in process and finished goods inventory levels, which can be used to esti-
mate the costs incurred by the production plan. Two types of constraints are required for each planning 
period. The first set ensures material balance, i.e., the conservation of material flow, across periods. The 
second group enforces aggregate capacity constraints on the maximum amount of work that can be pro-
cessed at each resource, or set of resources, in a period. Detailed discussions of these models are given by 
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Johnson and Montgomery (1974), Missbauer and Uzsoy (2010), and Voss and Woodruff (2003), among 
others. Two basic approaches to the treatment of lead times dominate the literature on optimization mod-
els for production planning. The first of these, the most prevalent, treats lead times as an exogenous, 
workload-independent parameter to be estimated. These models generally assume that the lead time is an 
integer multiple of the underlying planning period. However, Hackman and Leachman (1989) show that 
the extension to non-integer lead times is straightforward under the assumption that activity levels such as 
production rates and material flows remain constant over each planning period. The second approach con-
sists of multi-model approaches combining linear programming and simulation in an iterative scheme. A 
typical approach is that of Hung and Leachman (1996), which uses an LP model with non-integer lead 
times. Initial estimates of lead times are used to develop an initial release plan. The execution of this re-
lease schedule is then simulated using a detailed model of the production facility being planned, and the 
realized cycle times observed. These realized cycle times are then used to develop updated lead time es-
timates which are used in the LP model to develop a revised release schedule. The process continues until 
convergence is achieved according to some criterion. A range of models of this type have been proposed 
in the literature (Byrne and Bakir 1999; Hung and Hou 2001; Kim and Kim 2001; Byrne and Hossain 
2005; Bang and Kim 2010; Irdem et al. 2010; Kacar et al. 2012). These approaches are outside the scope 
of this study, but depend on the use of LP formulations of the type discussed in this paper. 

3 LINEAR PROGRAMMING MODELS 

In this section we present the LP models that will be compared in the simulation experiments. We will 
first define the common notation, and then present the two LP models. The linear programming models 
we use are based on the Step-Separated formulation of Leachman and Carmon (1992), with the difference 
that our models do not allow alternative resources for operations, i.e., each operation in a product routing 
has exactly one predecessor and one successor, except for the first and last operations in the routing. This 
formulation assumes that the primary objective of the planning model is to determine the quantity of each 
product to be released into the fab in each period, rather than specific production quantities of each opera-
tion. Hence material that is processed at one operation is assumed to become available to the next opera-
tion on the product's routing immediately upon the completion of its processing at the current operation, 
and strategic inventory is not held anywhere in the line except after the final operation. We shall first pre-
sent the formulation assuming integer lead times. We then highlight the deficiencies of this formulation in 
the presence of non-integer lead times, and present the modified formulation of Hackman and Leachman  
(1989) that addresses these issues. 

 

3.1   Notation 
We define an operation l to be the processing of a product g at a specific workcenter k which forms the 
basis for the following notation: 

 
Sets: 
O(g): set of all operations of product g. 
O(k): set of all operations performed on machines of workcenter k. 
T(g): set of all time points internal to a planning period where the input rate to the finished inventory of 

product g may change due to a non-integer lead time. 
 

Indices: 
t      :   period index. 
g  :   product index. 
k  :   workcenter index. 
l  :   operation index. 
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Decision Variables: 
Ygtl      : quantity of product g completing the l’th operation in period t. 
Ygt    : output quantity of product g in period t from the last operation in its routing. 
Xgt    : quantity of product g released into the first station in the line in period t. 
Wgt   : WIP of product g at the end of period t. 
Igt   : units of product g in finished goods inventory at the end of period t. 
Bgt    : units of product g backlogged at the end of period t. 

 
Parameters: 
hgt   : unit inventory holding cost for product g in period t. 
bgt   : unit backlogging cost for product g in period t.  
ωgt   : unit WIP cost for product g in period t. 
Dgt    : demand for product g during period t. 
𝐶!    : maximum capacity of workcenter k in units of products.   

      : processing time of operation l of product g. 
FFg     : estimated flow factor of product g. 
L(g,l)   : estimated time elapsing from the release of the raw material of product g to the completion of the 

l’th operation of product g. 
 

3.2 Integer Lead Time Model 
The formulation, which is similar to that of Leachman and Carmon (1992) as follows: 
 
Objective function: 

min  ω gtWgt + hgt Igt + bgtBgt⎡⎣ ⎤⎦
t=1

T

∑
g∈G
∑                      (1)  

 
Subject to: 
WIP Balance: 
Wgt =Wg,t−1 + Xgt −Ygt  , for all g∈G,t = 1,...,T               (2)  

   
Finished Inventory Balance: 
Ygt + Ig,t−1 − Igt + Bgt − Bg,t−1 = Dgt  , for all t = 1,...,T ,g∈G             (3) 
 
Fixed Lead Time Definition: 
Ygtl = Xg,t−L (g,l )  , for all t = 1,...,T ,l ∈O(g),g∈G              (4)  
 
Capacity Constraints:  

α l
l∈O(k )
∑ Ygtl ≤ Ck , for all t = 1,...,T ,k = 1,...,K                 (5) 

 
Variable Nonnegativity: 

   
Wgt ,Ygtl ,Xgt , Igt ,Bgt ≥ 0 for all t = 1,...,T ,g∈G,l ∈O(g)            (6) 
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We include WIP variables and constraints (2) in contrast to the conventional fixed lead time LPs proposed 
in the literature in order to compute the WIP cost in the objective function. Constraint set (3) represents 
material balance at the inventory of finished products at the end of the production line. Constraints (4) de-
fine the relation between the time a lot of product g is released into the fab and its completing processing 
at operation l of product g. This constraint is included for clarity of exposition; in practice an appropriate 
substitution would be used to eliminate the Ygtl  variables. As soon as a lot is processed at a given opera-
tion, it becomes available to the next operation on its routing. Constraint (5) ensures that the total time re-
quired to process all operations processed at each workcenter in a given period t does not exceed the time 
available at that workcenter; note that the model assumes capacity is consumed by an operation in the pe-
riod that the operation is processed. We now discuss the issues that arise when non-integer lead times are 
present, and the modifications to the formulation required to address these. 

3.3 Non-integer Lead Time Model 
The reader will note that in the formulation above, the relationship between the releases Xgt  of a product g 
in period t and the amount of capacity consumed by a given operation at some future period is of the na-
ture of a simple time delay. All  Xgt units of material of product g released into the fab in period t will 
consume capacity at operation l ∈O(g)  in period t+L(g,l). Thus all material processed at a particular op-
eration in a period t will correspond to the amount of the product concerned that is released in a single pe-
riod. However, when non-integer lead times are involved, the amount of material Ygtl  processed at an op-
eration in period t can be made up of material released during more than one period. Figure 1illustrates 
the basic issue involved, using a generic operation j of product 1 with L(1,j)=1.5 periods. The amount of 
product released in each period t is denoted on the upper timeline by X1t, and the amount of material to be 
processed at the operation j in period t as Y1jt on the lower timeline. Examining period 5 for purposes of 
illustration, it is clear that the material processed at the operation in period 5 will be composed of some 
material released in the latter part of period 3, and some from the first part of period 4. Assuming that re-
leases in a planning period are uniformly distributed over the planning period, we see that   
Ygtl =ϕglXg,t− L (g,l )⎡⎢ ⎤⎥

+ (1−ϕgl )Xg,t− L (g,l )⎢⎣ ⎥⎦
                (7) 

whereϕgl = L(g,l)− L(g,l)⎢⎣ ⎥⎦   represents the fractional portion of the lead time L(g,l). We note that this is 
a special case of the more general treatments of non-integer lead times given by Hackman and Leachman 
(Hackman and Leachman 1989) and Hackman (2008), who consider a continuous time model as opposed 
to the discrete time model considered here, but assume, as we do, that lead times remain constant over the 
planning horizon. Hung and Leachman (1996) consider the more general situation where lead times may 
vary over time, and propose a slightly different approach based on associating lead times with the begin-
ning and ending points of planning periods which we do not consider here. 
 The use of non-integer lead times raises another issue in the context of the material balance con-
straints (3). LP models assume that all activity rates such as production, releases or demand are constant 
during each planning period. Hence the rate of inflow (production) into and outflow (demand) from any 
inventory location cannot change except at the boundaries of periods, and it is sufficient to enforce mate-
rial balance at these points alone, as in constraints (3) above. However, when non-integer lead times are 
present, input rates into an inventory may change during a planning period, as is the case in period 5 
shown in Figure 1. Hackman and Leachman (1989) point out two possible solutions to this issue.  
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Figure 1: Accounting for output or loading in a period with non-integer lead times 

 
The first is to reduce the length of each planning period to obtain integer lead times, or by writing addi-
tional material balance constraints at the points in time where input and output rates into the inventory lo-
cation may change. These points can easily be identified based on the observation, implicit in the relation-
ship (7) above, that for any point in time t where a rate will change, t-L(g,l) must be an integer.  We will 
denote the set of time points at which such constraints must be written for product g as T(g), and compute 
WIP and finished inventory levels as well as backlogs at all these points. Based on these insights, the 
formulation for non-integer lead times can now be given as follows: 

 
Objective function: 

   
min  ω gtWgt + hgt Igt + bgtBgt⎡⎣ ⎤⎦

t∈T (g)
∑

g∈G
∑                                  (8) 

 
Subject to: 
 
WIP Balance: 
Wgt =Wg,t−1 + Xgt −Ygt  , for all g∈G,t = 1,...,T                      (9)  

 
Inventory Balance: 
Ygt + Ig,t−1 − Bg,t−1 − Igt + Bgt = Dgt  , for all t = 1,...,T ,g∈G                                 (10)  
 
Input Rate Change Epoch Constraints: 
ϕglXg,t− L (g,l )⎡⎢ ⎤⎥

+ Ig,t−1 − Igτ − Bg,t−1 + Bgτ =ϕglDgt , for t = 1,...,T ,τ ∈T (g),g∈G,l ∈O(g)                     (11) 

 
Non-integer Lead Time Constraints:  
Ygtl =ϕglXg,t− L (g,l⎡⎢ ⎤⎥

+ (1−ϕgl )Xg,t− L (g,l )⎢⎣ ⎥⎦
 , for all t = 1,...,T ,g∈G,l ∈O(g)                          (12) 

 
Capacity Constraints:    

α gl
g∈G ,k∈K
∑ Ygtl ≤ Ck  , for all t = 1,...,T ,k ∈K                           (13) 

       
Variable Nonnegativity:   
Wgt ,Xgt ,Ygtl , Igt ,Bgt ≥ 0 for all t = 1,...,T ,g∈G,l ∈O(g)                  (14) 
  

X11 X12 X13 X14 X15 X16 X17

Y11j Y12j Y13j Y14j Y15j Y16j Y17j

ɸ

ɸ

1-ɸ

1-ɸ
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The constraint set (11) captures the inventory position at the points of rate change within the period. It on-
ly includes the last operation of each product since the interest is on finished goods instead of intermedi-
ate inventories of operations in the factory. Those inventory positions at the points of rate change are in-
cluded in the objective function and same cost values of inventory and backlog are used.   The constraint 
(5) represents the capacity loading of machines in a period loaded by releases from several periods due to 
the non-integer lead time. Note that the lead time estimates are constant across the periods; therefore the 
constraints consist of two parts which sum the fraction of releases with the consideration of the rounded 
lead time values. 
 

4 SIMULATION ENVIRONMENT 

4.1 Simulation Model 

We consider the full MIMAC I model (Fowler and Robinson 1995) which is publicly available from the 
University of Hanover. It contains over 200 machines organized into 84 workcenters. Workcenters with 
batching machines and sequence-dependent setup times are included. The model contains two process 
flows with 210 and 245 process steps, respectively. The product flows are highly re-entrant. All pro-
cessing times are deterministic, and depend either on the number of wafers in a lot or are determined for 
each lot. The model assumes instantaneous material transfer between consecutive process steps on a given 
route. Operators are not included in our model, and rework is not considered. The First-In First-Out 
(FIFO) rule is used to dispatch lots in front of the workcenters. A minimum number of lots is required to 
form batches at each batch processing workcenter to mimic minimum batch size policies. Only lots at the 
same processing step (operation) can be batched together. 

We adjusted the number of steppers to ensure that this workcenter serves as a planned bottleneck if a 
product mix of 1:1 is assumed. Lots to be released in a given week are distributed uniformly over this 
time period. Each lot contains 48 wafers. The variability in the system is caused by exponentially distrib-
uted machine breakdowns. Although there is some evidence from the literature that Weibull distributions 
are more suitable for modeling breakdowns in wafer fabs, we decided to use the original breakdown data 
from the reference model. In order to extract the non-integer lead times for each operation l, we use the 
following equation:  

 
L(g,l) =α glFFg + L(g,l −1) , l ∈O(g),g∈G .                    (15) 

Recall that   is the processing time of product g at operation l in minutes and O(g) the set of operations 
that the product goes through in order. The lead time for each operation is calculated from the time that 
the product is released into the plant, yielding the cumulative calculation in (15). FFg denotes the flow 
factor for product g, defined as the ratio of the average flow time of the product through the fab to the 
sum of all operation processing times on its routing. As the lead time of each operation depends on that of 
the previous operation in its routing this expression is recursive in nature. For the first operation of each 
product g it reduces to L(g,1) =α g1FFg . 

 

4.1 Design of Experiments 
We expect the performance of the production planning models to depend on the level of resource utiliza-
tion and the degree of processing variability at each workcenter. Therefore we generate normally distrib-
uted demand for each product in each period to obtain mean bottleneck utilization levels of 70% and 90%. 
The utilization levels are achieved by varying the demand of the two products while maintaining the same 
mean demand for both products. We consider a planning horizon of 15 one-week periods where weekly 
releases are to be determined for each product. We also study the effect of demand variability by consid-
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ering values of 0.1 and 0.25 for the coefficient of variation (CV) of demand for each product. Five inde-
pendent demand realizations are generated for each combination of utilization and variability levels, 
which we shall refer to as a demand scenario. Thus we consider four demand scenarios. 

We determine an initial WIP distribution of the lots to reduce the initialization effects for each demand 
realization of a given demand scenario. Five independent simulation runs are conducted for one year (52 
weeks), and a snapshot of the location of lots in the system after 37 weeks is taken. One of these five dif-
ferent initial WIP distributions is selected randomly for each simulation replication. The demand for the 
remaining 15 weeks is used as the demand in this simulation experiment. 

To examine the effects of variability, we consider long and short failure durations. We take the expo-
nentially distributed Mean Time to Failure (MTTF) and Mean Time to Repair (MTTR) values in the orig-
inal MIMAC model to represent the short failure case. The long failure case is obtained by doubling the 
MTTR and the MTTF values yielding the same average availability as in the short failure scenario.  

Simulation of the wafer fab serving as the testbed in this study revealed that the cycle times for most 
operations were less than one planning period, and the average cycle time for the overall line was of the 
order of three periods. Hence the integer lead time model requires a method of obtaining integer lead 
times from the non-integer values observed in the simulation. This was achieved using two different ap-
proaches. The unit revenue value is 180, while the unit WIP, backlog, and inventory costs are 35, 50, and 
15, respectively.     

4.1.1 Simple Rounding Down (SRD) 

In the SRD scheme we obtain integer lead times by rounding these estimates Lt(g,l) down. The SRD pro-
cedure assumes that as long as product g is released Lt(g,l) periods before it reaches its l’th operation, the 
processing of that operation l will be completed within that period. Suppose that the lead time Lt(g,l) of 
product g at operation l is 2.5 periods. The SRD procedure will round it down to 2 periods, implying that 
the output of operation l is determined by releases into the plant 2 periods earlier. The obvious disad-
vantage of this procedure is that we may severely underestimate the lead times of some operations. In or-
der to address this problem, we introduce an integer programming model where some lead times are 
rounded down and some are rounded up.  

4.1.2 Integer Programming Rounding (IPR) 

Consider an observed lead time of 2.9 periods. The SRD procedure will round it down to 2 periods, yield-
ing an error of 0.9 periods. On the other hand, if we were to round it up to 3 periods the error is reduced to 
0.1 periods which is more reasonable. The following integer program suggested by Turkseven (2005) 
rounds some lead times up and others down instead of simply rounding all values down. We define the 
decision variables L(g,l) to be the integer  lead time of product g at operation l. Recall that L(g,l) is the 
non-integer lead time estimate calculated using the flow factor estimate explained in the previous ap-
proach.  The integer program is as follows: 
min  L(g,l)

g∈G ,l∈O(g)
∑                         (16) 

Subject to: 
L(g,l) ≤

l∈O(g)
∑ L(g,l)

l∈O(g)
∑  , g∈G                  (17) 

L(g,l)− L(g,l) ≤1,g∈G,l ∈O(g)                                                                                                   (18)  

L(g,l)− L(g,l) ≤1,g∈G,l ∈O(g)                                                                                                   (19)  

L(g,l −1) ≤ L(g,l),g∈G,l ∈O(g)                                                                                                   (20) 
𝐿 !,! ∈ 𝑍!                       (21) 
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The objective function (16) minimizes the sum of the new integer lead time estimates  subject to the 
constraint (17) that their cumulative sum has to be at least equal to the value of the cumulative sum of the 
non-integer lead times. The constraints (18) and (19) ensure that lead times will be either rounded up or 
down. The constraint (20) ensures that the lead time estimate of an operation has to be at least equal to 
that of the previous operation on its routing. Recall that lead times are calculated from the time of the re-
lease of material into the plant. Lead time estimates are integer values as shown in (21). Constraint (17) 
will ensure that we do not simply round down the values. After we obtain our lead time estimates  
from the IP model above, we will set L(g,l) =  in the fixed lead time LP model presented above.  

In our computational experiments we examine how these different approaches to estimating integer 
lead times affect the performance of the LP-FL model. We solve each of the three planning models for 
each demand replication and perform 20 independent simulation runs to estimate the realized perfor-
mance measures. The design of experiments is summarized in Table 1. 

 
Table 1: Summary of Experimental Design 

Factor Level Count 
Mean demand High, Low 2 
CV of demand High, Low 2 

Failure duration Long, Short 2 
Planning Models SDR, IPR, FLP 3 

Replications per demand sce-
nario 

 5 

Simulation replications per 
demand realization 

 20 

Total simulation runs  2400 
 

5 RESULTS OF EXPERIMENTS 

The results of the experiment are summarized in Figure 2. It is apparent that the use of non-integer lead 
times significantly enhances the performance of the production plans obtained from the LPs across all ex-
perimental conditions. The consistently superior performance of the FLP model suggest that it is better 
able to represent the dynamics of capacity consumption over time in this complex reentrant production 
system that the SRD and IPR models with integer lead times. In Table 2 we compare the ratio of the aver-
age realized profit from the SRD and IPR models to those from the FLP model for each experimental 
condition. We obtain increases in expected profit of up to 30% in some cases, suggesting that the use of 
the non-integer lead times yields significant benefits over the use of integer lead times. 
 Examination of the cost distributions on the right hand side of Figure 2 provides insight into the caus-
es of the differences in performance. The SRD model consistently incurs high backorder costs and holds 
almost no finished inventory. This implies that it systematically underestimates the lead times, causing 
material to be released too late to meet demand in a timely manner. Given the nature of the rounding pro-
cedure used in SRD, this is not surprising. The performance of the IPR model is more varied. In general, 
it incurs lower backlogs than SRD, and higher finished inventory costs. When compared to the FLP mod-
el, IPR generally yields both higher backlogs and higher finished inventory costs, suggesting that its abil-
ity to match output to demand over time is not as good as that of the FLP model. This is probably due to 
differences in the lead times for individual operations, some of which will be rounded up and others 
rounded down by the IPR procedure. The lead times for individual operations do not affect the flow of 
material into the finished inventory at the end of the line, but do determine the way in which the capacity 
constraints at the machines will affect the planned releases.  
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In order to assess the statistical significance of the results, we compared the results of the different 

planning models for each demand realization using the Friedman test (Conover 1980). While we do not 
present details of this analysis for the sake of brevity, in all experimental conditions the FLP model out-
performed the SRD and IPR models at a significance level of 0.95. 
 

 
 

Figure 2: Comparison of Average Realized Profit and Cost Components from Planning Models 
 
 

Table 2: Ratios of Expected Realized Profit Relative to FLP Model 

 
 

6 CONCLUSIONS AND FUTURE DIRECTIONS 

The experiments presented in this paper demonstrate that under the right conditions the incorporation of 
non-integer lead times can significantly enhance the performance of linear programming models for pro-
duction planning. The FLP model yields significant improvements in expected realized profit over both of 
the alternative models using integer lead times. The use of non-integer lead times requires additional con-
straints and variables, but the larger formulation is still computationally tractable. 

A number of limitations of our study need to be noted at this point. First of all, the experimental envi-
ronment we have implemented is very favorable to the use of non-integer lead times. The demand distri-
bution faced by the production facility is stationary over time, allowing accurate estimates of lead times 
for each workcenter based on historic data (in our case, obtained from a long simulation run prior to the 
start of the planning problem). Under these conditions, the average utilization of the resources can be ex-
pected to be quite stable from period to period, allowing time-stationary lead time estimates to be quite 
accurate. In the event of demand, and hence resource utilization, varying significantly from one time peri-
od to the next, the question of how to estimate the non-integer lead times begins to be challenging. An 
obvious approach is to use a simulation model for this purpose prior to running the planning models, but 
this requires knowledge of the release schedules that will be developed by the planning model after it is 
run. The incorporation of the FLP model into the iterative simulation-LP approach of Hung and Leach-
man (1996) would seem to offer another avenue of attack, which must be examined in future work. Final-
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ly, a comparison of the FLP model with the clearing function approaches that have proven superior to LP 
models with integer lead times is another interesting direction for future work.  
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