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ABSTRACT 

This study aims to solve the scheduling problem of batch processing machines (BPMs) in semiconductor 

manufacturing by using a learning-based adaptive dispatching method (LBADM). First, an adaptive ant 

system algorithm (AAS) is proposed to solve the scheduling problem of BPMs according to their charac-

teristics. Then AAS generates a lot of solutions for the jobs with different distribution of arrival time and 

due date. These solutions are taken as learning samples. Second, we analyze influencing factors by sam-

ple learning method from those solutions. With the help of linear regression, the coefficients of influenc-

ing factors can be calculated to build a dynamic dispatching rule adaptive to running environments. Final-

ly, simulation results based on a Minifab model show that the proposed method is better than traditional 

ways (such as FIFO and EDD with maximum batchsize) with lower makespan and weighted tardiness. 

1 INTRODUCTION 

There is a batch processing style in semiconductor manufacturing, such as the diffusion machines and ox-

idation machines, which occupy 20-30% of the total number of machines. They can process more than 

one job together and the processing time is independent of the number of the jobs (Mathirajan et al. 

2006). A good scheduling method can use the ability of batch processing machines (BPMs) efficiently to 

achieve expected performance while satisfying the constraints of maximum batch size and batching style. 

In recent years, there have been many studies on BPMs scheduling problem in different manufactur-

ing processes according to Li et al. (2012). They can be classified into static scheduling and dynamic 

scheduling. 

In static scheduling, the swarm intelligence algorithm is an effective method to achieve better per-

formance. For example, Wagner and Affenzeller (2006) implemented a lot of simulations on an intelligent 

simulation platform called HeuristicLab to demonstrate on intelligent algorithm such as ant colony opti-

mization algorithm (Dorigo et al. 1996) can be used to solve the scheduling problems of parallel machines.  

Raghavan et al. (2006) used ACO to solve parallel batch processors problem with incompatible job fami-

lies. Li et al. (2009) have determined that ACO-based scheduling of BPMs performed well in minimizing 

the total weighted tardiness, and also used in feeding control, batch size forming, the maintenance of ma-

chines as well as the bottleneck machines scheduling process (Li 2012; Chang et al. 2012).  

The research on dynamic dispatching includes the composite priority dispatching strategy in feeding 

control (Wang et al. 2007), a hybrid ACO approach for a BPM (Guo et al. 2010), dynamic bottleneck dis-

patching (DBD, Zhang et al. 2009), the heuristic dispatching rules forecasting the movement of jobs to 

reduce waiting time (Solomon et al. 2002; Wang 2009), the ACO combining dynamic programming 

method to minimizing the makespan (Shao 2010), and ACO-based predictive analytics for case-oriented 

(Lakshmanan et al. 2011), dispatching rules
 
considering machines and emergency jobs (Li et al. 2011) as 
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well as adaptive learning in scheduling model (Noroozi et al. 2013) in the aspect of production line dis-

patching rules.  

The research on the scheduling of BPMs has made a big step. However, we found it was hard for 

static scheduling to respond to the dynamic operating environment though it had optimization ability. As 

for dynamic scheduling, it focused on local optimization rather than global optimization. To satisfy a 

near-optimal optimization requirement and being adaptive to real-time environment, this paper proposes 

an adaptive method for solving scheduling problems of BPMs combined with parameter learning. The 

remainder of this paper is organized as follows. In Section 2, we present the problem description and as-

sumptions. Then we outline the learning-based adaptive dispatching method in Section 3. In Section 4, we 

show computational experiments and results. Finally, we give conclusions and future research topics in 

Section 5. 

2 PROBLEM DESCRIPTION 

When scheduling BPMs, we should consider the difference among arrival time or due date of jobs, the 

family distribution of the jobs, the states of machines, current process of the jobs in a batch, and so on. 

Batches may be adjusted according to the actual situation.  

To facilitate the discussion, the assumptions involved in the BPMs scheduling problem include (Li et 

al. 2011): 
 

a. The machines in the parallel batch processing machines (PBPMs) are the same ones. 

b. The scheduling of the jobs from multiple families is decided. 

c. The processing time of a batch on one machine is independent of the number of the jobs in the 

batch. 

d. Once processing begins on a batch, no job can be removed from or added to the machine until it 

finishes. 

e. There are sequence-dependent random setup times for changeovers between jobs from different 

families, and no setup time between jobs from the same family. 

f. The targets to optimize are the total weighted tardiness (TWT) and makespan. Then the objec-

tive function of the batch processing scheduling problem can be denoted as 

( ( ))ij ij m mmin w T +w max C .                                                             (1) 

where Max(Cm) is the maximum makespan of PBPMs; Cm is the makespan of BPM m; Tij is the 

tardiness of job j from family i defined as the difference between its finish time and due date, 

and Tij will be zero if job j is not late;  wij is the weight of the tardiness of job j from family i, 

which is set as the reciprocal of the difference between its due date and arrival time; wm is the 

weight of the maximum makespan. 

3 LEARNING-BASED ADAPTIVE DISPATCHING METHOD 

3.1 Framework 

According to the characteristics of the scheduling of BPMs, we designed an learning-based adaptive dis-

patching method (LBADM), composed of three main parts, i.e., an adaptive ant system algorithm (AAS) 

to obtain optimal solutions for BPMs scheduling, a scheduling rule for real-time dispatching of BPMs, 

and the linear regression-based parameter setting method to let the scheduling rule be adaptive to various 

environments. Its framework is shown in Figure 1. 
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Figure 1: The Framework of LBADM. 

3.2 Adaptive Ant System Algorithm (AAS) 

The main workflow using AAS to obtain an optimal solution for BPMs scheduling includes two stages, 

i.e., the establishment of search space and finding an optimal solution with AAS.  

3.2.1 Establishment of Search Space 

Before we use AAS to find a solution, the first task is to build a search space for it. In this paper, the 

search space is composed of nodes which are combinations of the batches and the BPMs. 

For L jobs, there are CL
1
+ CL

2
+…+ CL

L
 (C is the combination operator) batching styles, subject to the 

constraint of maximum batch size. In the case of many jobs (especially with a number of dynamic arrival 

jobs), this kind of batching style will result in lower computation efficiency. In this paper, we form the 

batches using the time window concept, denoted as 

( , , ) { | ( )}ijB j t t ij A t t    .                                                              (2) 

That is, if job j from family i arrives (Aij) in the time limit of t , job j then can be placed into the 

batch. Then the arrival time of a batch can be described as follows: 

1 2max( , ,..., )B LA A A A .                                                                        (3) 

Equation (3) means the last arriving job of a batch is selected as the arrival time of the batch. 

3.2.2 Finding an Optimal Solution with AAS 

There are three modules for finding an optimal solution with AAS, i.e., initialization, search process of 

AAS and update of pheromone. The flowchart is shown in Figure 2. 

3.2.2.1 Initialization 

The scale of artificial ants is settable, such as the number and generation. Task list and tabu list is empty at the be-

ginning. The elements of phenomenon matrix are initialized as the same small positive value. 

3.2.2.2 Search process of AAS 

AAS dynamically adjusts its weighting values of pheromone in the selection process of the artificial ants. 

On the one hand, the probability of a randomly selection can be properly increased to avoid stagnation or 

local optimum, and on the other hand, it’s useful for following ants to find a better solution after parame-

ter adjustments, which will improve the ability of the algorithm to converge. 
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Figure 2: The Flowchart of the AAS. 

The workflow of finding a solution with AAS is shown in Figure 2. As to the next node to select, 

each node in the task list (
K

taskL ) has a certain probability to be selected except those in tabu list (
K

tabuL ), 

such as the nodes containing the same job from the same family on different machines. If one is selected, 

the others should be put into tabu list. Assuming the ant K moving from node i to j with the probability 

that is calculated from the following pseudo-code (Figure 3). 

In the pseudo-code, α and β are parameters representing the relative importance of the pheromone and 

heuristic factor of AAS. Parameter τij is the value of pheromone between node i and node j. The heuristic 

factor ηij represents the arrival time, processing time, set up time and remaining processing time of jobs, 

etc. se results the nodes making minimal tardiness and makespan will have a greater probability to be se-

lected. 

 

/*Program of Node Selection */ 

/* Collection of nodes can be accessed for ant K */ 

. (0,1);random Next  . (0,1);random Next   

[ , ] ;B B B Bi j A Pt Ts Ud      

   , ( ^ ) [ ( _ [ , ]) ^ ];v i j  = i, j   *  batch Num * 1.0 / i j       

[ , ];sum v i j    

[ , ] [ , ] / ;P i j v i j sum  

/* Collection of nodes in tabu list (such as the same job from the same family on the oth-

er machine) */ 

[ , ] 0.0;P i j   

Figure 3:  The pseudo code of node selection of AAS. 
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3.2.2.3 Update of Pheromone 

Each ant will randomly choose a next node according to the density of its pheromone. According to the 

local update strategy in adaptive adjustment, the update of pheromone will take place in the nodes select-

ed after completing search in one generation. The algorithm will record and compare the value of the ob-

jective function in each generation. The corresponding pseudo-code is as follows (Figure 4): 

 

/* Update Pheromone */ 

;value   ;Q Const  

( )ij ij m m

i j

Obj_Fun= w T +w max C ;  

   ( )*i, j  = 1- i, j  +Q / Obj_Fun;    

Figure 4:  The pseudo code of pheromone update strategy. 

where   means the pheromone evaporation between  t and t+1. At the initial time, (0)ij = c , in which 

c is a constant as well as Q. The constant Q will balance the order of magnitude. 

3.3 Build scheduling rule for BPMs 

Considering the characteristics of BPMs scheduling, we consider factors of a batch, including its waiting 

time before the machine, due date urgency degree, occupancy time on the machine and batch size, to 

build the scheduling rule for BPMs. The processing priority of batch B is defined as: 

* * * *B B B B BP a Wt b Ud c Ot d Bs                                                 (4) 

where 

PB- the processing priority of batch B; 

WtB- waiting time of batch B. When learning the parameters, it is calculated as B B BWt St A  , i.e., 

the time difference between its start time on the machine (StB) and arrival time before the machine 

(AB); 

UdB- urgency degree of batch B. When learning the parameters, it is calculated as 

( )B B
B

B

D A
Ud

St


 , i.e., the ratio of the difference between its due date DB and arrival time before the 

machine and its start time on the machine; 

OtB- occupancy time of batch B, B B M MOt Pt Lt Ut   , i.e., the sum of its raw processing time 

(PtB), load (LtM) and unload time (UtM) on the machine; 

BsB- the batch size of batch B; and 

a, b, c, d- the coefficients of those four information categories, i.e., a as the coefficient of waiting 

time of batch B (WtB), b as the coefficient of urgency degree (UdB), c as the coefficient of occupancy 

time (OtB), and d as the coefficient of the batch size (BsB). 

3.4 Parameter Learning Method 

The goal of parameters learning is to determine how the optimal results distribute in the solution set under 

the changes in parameters. These samples will be extracted from the distribution of optimal solution, and 

corresponding coefficients can be obtained through linear regression. The pseudo-code of the linear re-

gression is demonstrated in Figure 5: 
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/* linear regression */ 

/* tour[i] is the dispatching order decided by adaptive ACO */ 

[ ] [ ];Y i tour i  

/* these four parameters (WtB, UdB, OtB, BsB) are got from adaptive ACO */ 

[ ,0] ; [ ,1] ; [ ,2] ; [ ,3] ;B B B BX i Wt X i Ud X i Ot X i Bs     

/* get the coefficients according to * coY X   */ 

( * ) ^ ( 1)* *T T

co X X X Y    

[0]; [1]; [2]; [3];co co co coa b c d        

/* dispatching on parameter learning method */ 

/* these four parameters (WtB, UdB, OtB, BsB) are got from LBADM */ 

[ ,0] ; [ ,1] ; [ ,2] ; [ ,3] ;L BL L BL L BL L BLX i Wt X i Ud X i Ot X i Bs     

/* get the dispatching order */ 

*[ , , , ]T

L LY X a b c d  

Figure 5:  The pseudo code of parameters learning method. 

4 SIMULATION RESULTS 

We use Minifab,  a simplified model based on the actual production line from of a semiconductor produc-

tion line with three equipment groups and five machines (shown in Figure 6, Fowler 1994) to validate and 

verify the proposed learning-based adaptive dispatching rule.  
 

Ma,Mb

Step 4

Mc,Md
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Time
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Time

Load 

Time

Unload 

Time

Ion Implantation
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TimeDiffusion

Batching

Me

Lithography

 

Figure 6: The Model of Minifab. 

Minifab contains PBPMs and non-BPMs. The proper use of the intelligent algorithm in batch pro-

cessing scheduling can significantly improve the scheduling result. 

Figure 7 shows the convergence of adaptive ant colony algorithm. The simulation results show that 

the ant colony algorithm with adaptive parameter regulation can obtain objective expected. Under circum-
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stances with different numbers of jobs, arrival time distribution and hot jobs ratio, it is  helpful to prevent 

the algorithm falling into local optimum, and search a new path to produce good solutions. 
 

 

 

Figure 7: The results demonstration of AAS.  

 Dispatching results are shown in Figure 8, which shows the comparison among adaptive ant colony 

algorithm, as well as the combination of parameter learning with traditional scheduling rules (FIFO and 

EDD with maximum batchsize, they mean scheduling according to arrival time or due date under the 

batchsize of BPMs. And these method are used in semiconductor industry scheduling). It illustrates that, 

AAS can achieve better results. In the case of a large number of jobs, LBADM can fit the dispatching re-

sults obtained by AAS. 
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(a) LBADM comparing with scheduling rules in makespan 

 

 

(b) LBADM comparing with scheduling rules in tardiness 

Figure 8: The results comparison. 

 In addition,  the makespan can be improved by 50% and tardiness can be reduced to 30% of the tra-

ditional way through LBADM. The tardiness of LBADM is greater than that of AAS. The main reason is 

that  the weight of the tardiness is far less than that of makespan, which can make less effect. Thus it may 
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work better with higher weight of the tardiness. In summary, the dispatch can be fitted in the situation of 

overall objective function. What’s more, the time consumption of LBADM is far less than AAS, which is 

10% to 30% of the latter. 

Therefore, better decisions to meet production requirements can be obtained in future production 

scheduling by adjusting the value of weight in the objective function according to the actual situation in 

order to achieve optimization both in tardiness and makespan, and then considering adding more optimi-

zation objectives. Meanwhile, ACO needs to be improved for the further study of self-adaptivity. 

5 SUMMARY 

Batch scheduling problem in semiconductor production is an important part of semiconductor manufac-

turing enterprise management, but also the most difficult aspect, whose main task is to develop effective 

scheduling methods with limited production resources to achieve the target of economic performance op-

timal, and provide an effective way to improve the comprehensive economic benefits. 

This paper takes an intelligent algorithm on pheromone mechanism as basis and proposes an adap-

tive dispatching rules combining parameter learning, which is different from the traditional scheduling 

methods. This method can obtain accurate characteristics of the scheduling information, consider the sta-

tus information of the production line, and complete adaptive adjustment and parameter learning based on 

the production environment. This way can achieve better results than the traditional static dispatching 

methods as well as successfully used in semiconductor processing.  

In future research work, more complex factors (such as setup time, maintenance tasks and process 

constraints) need to be added to scheduling strategy proposed in this paper, and thus to learning more ef-

fective parameters to optimize the performance of the production line especially the scheduling problem 

of BPMs to obtain better results. 
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