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ABSTRACT 

Short Term Simulation (STS) that provides daily forecasts of work center performance has been deployed 
in Infineon Technologies for operational decision makings. To ensure good forecast accuracy, the STS 
requires high modeling fidelity, requiring good basic data quality for model building. Forecast accuracy is 
maintained through an Automatic Model Verification (AMV) engine. The AMV monitors and verifies 
discrepancies between simulation and reality for modeling elements such as process dedication, uptime, 
process time/throughput, sampling rate, and batch/stream size. It reports the verification results with a 
multi-layered view, at different levels of abstraction, and the gaps between simulation and reality are 
highlighted. The user can quickly identify gaps and make correction to the errors. In this paper, we give 
an insight to the complete workflow on how AMV helps to detect data issues, the options to resolve such 
issues and the positive effect to the simulation forecast quality. 

1 INTRODUCTION 

The D-SIMCON Forecaster is a simulation-based software solution that enables proactive Work-In-
Progress (WIP) management in a semiconductor manufacturing facility by providing a 7-14 day short-
term simulation forecast of wafer arrivals, wafer departures and WIP, with daily granularity and down to 
work center and product group level (D-SIMLAB 2013). The solution has been deployed in Infineon 
Technologies (Dresden) for daily operational decision support (Scholl et al. 2010). To achieve good fore-
cast quality, a high-fidelity representation of manufacturing operations is essential. However, in the envi-
ronment of a complex wafer fabrication facility availability of good quality and up-to-date input data for 
the simulation model is always a challenge. As such, an Automatic Model Verification (AMV) module is 
integrated with the D-SIMCON Forecaster to ensure that data quality is maintained, “garbage-in-garbage-
out” situations are avoided, and data used in simulation actually represents reality well enough. The AMV 
module primarily verifies data used to drive modeling features affecting production capacity such as up-
time, process time, throughput, batch size and stream size, equipment dedication and dispatch rules. 
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2 OVERVIEW 

The short-term simulation model generated by the D-SIMCON Forecaster is an orchestration of many 
modeling features each of which is crucial for representing semiconductor manufacturing operations. Ob-
viously it should be driven by data and logic that represents reality. Any deviation from reality could lead 
to degrading forecast quality. It is therefore crucial that the correctness of critical modeling features is 
continuously monitored. The AMV module is therefore run daily to inspect the simulation model that was 
generated 7-14 days ago. The verification can only occur after the time has passed since the AMV com-
pares forecasted results and real historical values. 

Model verification is carried out by comparing the respective lot traces and equipment state traces in 
simulation and reality. Any discrepancy detected with regard to one of the above-mentioned modeling 
features is raised by the AMV module as an issue requiring user intervention to make adjustments. Those 
issues could be: 

• Mismatching tool count. 
• Mismatching process dedication to equipment. 
• Any deviation of total and daily uptime above a threshold percentage. The threshold percentage is 

determined based on the significance of an unavailable event towards the work center 
performance. The more significant the effect, the lower the threshold percentage. 

• Deviation of average process time or throughput above a threshold percentage for each 
combination of equipment, process, and product. 

• Discrepancy in both maximum and average batch size at each batch tool. 
• Stream size and sampling rates above a certain threshold percentage, respectively. 

3 VERFICIATION ELEMENTS 

In this section, we discuss the modeling elements that are being verified by the AMV. These elements 
were chosen as any significant deviation will have negative influence on the forecast results.  

3.1 Tool Count 

Production equipment in the fab is grouped into work centers, i.e. logical groups of tools with similar 
process capabilities. The number of tools assigned to a work center defines the capacity constraint for the 
processes. Any discrepancy in tool count, i.e. incorrect number of tools assigned to work centers, leads to 
an incorrect capacity representation. 

3.2 Tool Dedication 

Each tool in the fab is qualified to run certain processes. In reality not all dedications are made use of 
though. As the simulation is driven by the full dedication list this could result in a discrepancy in tool 
dedication and therefore process capacity allocation. 

3.3 Work Center Uptime 

Work center uptime is defined as the available productive time. Tool downs, Preventive Maintenance 
(PM), as well as engineering/prototyping reduce this availability. Tool downs are random events that can-
not be predicted. Their effect on work center performance depends on the workload and total capacity 
availability at the work center: The closer the workload is to the available capacity the more a tool down 
event will influence the work center performance. PM and engineering/prototyping activities are planned 
activities but in reality are typically executed with deviation from the plan due to factors such as mainte-
nance personnel availability. As the simulation model is driven by PM and engineering/prototyping plans 
deviations from plan can affect forecast quality. 
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3.4 Process Time 

Each lot goes through one or several steps within a tool with a defined process time for each step (exclud-
ing the time spent on queuing). Process time is typically maintained manually and thus incomplete. Some 
process time values are thus derived by extrapolating process time values from similar processes, and 
could be a source of discrepancy. Incorrect process time value being used will cause over or under capaci-
ty consumption by a process, and thus invalidate the cycle time representation in the simulation model. 

3.5 Throughput 

Each equipment produces wafers lots with a defined throughput (wafers per hour), constrained by the bot-
tleneck process within a tool. Similar to process time, throughput data could be incomplete and thus de-
rived by extrapolating throughput values from similar processes. Incorrect throughput value being used 
will cause an invalid capacity representation. 

3.6 Batch Size 

In a wafer fab, furnaces are typical batch tools as they process multiple lots concurrently, depending on 
the physical setup. In this setting, critical metrics to be verified are not only maximum batch size but also 
average batch size as batch tools are typically operated with an associated batching policy. The batching 
policy defines three operating rules: 

• The minimum lot size that must be formed before processing can start 
• The maximum time to wait for maximum lot size to be formed before processing can start, and 
• The maximum time to wait for minimum lot size to be formed before processing can start. 

These rules require parameter settings which could possibly cause discrepancies between simulation and 
reality. 

3.7 Stream Size 

Stream size is defined as the minimum number of lots to be processed at a particular equipment before a 
setup change, represented by a dispatch rule that holds back such a setup change until the equipment has 
processed a certain number of lots, unless a certain maximum time limit has expired. A difference in 
stream size between simulation and reality typically points to an issue with regard to the representation of 
the respective dispatch rule in the simulation model. As a result the average number of setup changes over 
time at the respective work center would be inconsistent, and the work center capacity would be different 
in simulation and reality. 

3.8 Sampling Rate 

In a wafer fabrication manufacturing process, a process route defines all the operation steps that a lot 
would go through. Some steps are executed by all lots, while some other steps are executed for a subset of 
lots only. In the simulation model, the latter case is modeled using sampling rates, i.e. probabilities that a 
lot will go through that operation step. It is computed from historical data of the previous weeks, and fed 
to the simulation as input data. 

4 RESULT REPRESENTATION 

The objective of the AMV module is to allow the user of the D-SIMCON Forecaster to quickly identify 
data discrepancies between simulation and reality that could lead to degradation of forecast quality. 
Moreover, it enables the user to focus on the most critical issues first before addressing less critical ones. 
As such the AMV presents the results of its analysis in a hierarchical manner with a 3-level data granular-
ity. 

3860



Gan, Lendermann, Preuss, Scholl, and Mosinski 
4.1 AMV - Level 1 

The AMV Level 1 gives an overview of the modeling feature data deviation for all work center in a two-
dimensional matrix, as illustrated in Figure 1. The user can quickly identify the work center that has the 
most significant problem for each modeling feature. The significance of the problem for each work cen-
ter-modeling feature combination is calculated using the formula as shown below: 

 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛!"#$%&'(&#,!"#$%&" =   
   (|𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑎𝑙𝑢𝑒!!"#   −   𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑎𝑙𝑢𝑒!!"#$|)!

!!!
𝑛

 
where i is the equipment belonging to the work center and n is the total number of equipment for the work 
center. 
 

 
Figure 1: AMV Level 1 – Overview. 

The significance of the issue is displayed using a traffic-light color scheme. The traffic-light color is 
determined by assessing the criticality (importance) of the work center towards the fab capacity (a bottle-
neck work center would have high criticality/importance) and significance of deviation for the said mod-
eling feature as illustrated in Figure 2. Green color means low deviation independent of the importance of 
the work center, or a less important work center with medium deviation significance. Yellow color indi-
cates a medium to high importance work center with low to medium deviation significance. A red color 
indicates a highly important work center with a high deviation significance. The threshold value for the 
color scheme of the work center importance is derived from its typical capacity utilization, while the 
threshold value for the color scheme of the deviation significance is derived from modeling feature re-
quirements. 

 

Figure 2: AMV Level 1 – Color Code Definition. 
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4.2 AMV - Level 2 

For each work center and modeling feature combination, the user can navigate to the AMV Level 2, i.e. the 
next level of detail, to investigate the source of the discrepancy. At this level, the AMV only displays dif-
ferences between simulation and reality. Figure 3 gives examples of tool dedication and batch size devia-
tion for a work center. For the tool dedication modeling feature, process EPA-1 was executed in the cho-
sen work center for reality, but no moves were observed in simulation. For the batch size modeling 
feature, the maximum batch sizes for EQUIPMENT-1 and EQUIPMENT-3 are not correctly represented 
in simulation as the value was 4 lots in reality but only 6 lots in simulation for the former, and the value 
was 6 lots in reality but 2 lots in simulation for the latter. At this level of detail, a user will be able to pin-
point the processes or equipment that are contributing towards the discrepancy. 

 

 

Figure 3: AMV Level 2 – Illustration of Data Discrepancy (Dedication / Batch Size). 

4.3 AMV - Level 3 

The lowest hierarchy level – AMV Level 3 – provides the user the complete data associated with the work 
center and modeling feature combination. Figure 4 shows a Level 3 tool dedication data presentation. The 
number of moves in simulation closely approximates the reality for all the eight processes (EPA-1 to 
EPA-8) processed by the equipment. By adopting this presentation it is very easy for the user to identify 
the problematic processes by just looking at the chart. 
 

 
Figure 4: AMV Level 3 – Illustration of Data Discrepancy (Dedication). 

A summary of the data presented at the different AMV hierarchy levels for all modeling features is listed 
in Table 1. 
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Table 1: Summary of AMV Verification Hierarchy. 

 

5 AMV WORKFLOW 

Figure 5 illustrates the workflow in using the AMV module to detect and resolve data issues. The user 
verifies a past forecast period scenario and detects an issue with a modeling feature of a work center at 
Level 1 of AMV, for example a process time discrepancy for a work center that contributed to the WIP 
level discrepancy as shown in the gap between blue and green line of Figure 6. The user then navigates to 
Level 2 to inspect the process time of equipment and process combinations for simulation and reality 
(Figure 7). At this level, the user is able to identify the specific equipment and processes that contribute 
towards the process time deviation. By navigating to Level 3, the user is able to look at the process time 
histogram for the specific equipment-process combination of simulation and reality. A corrected value 
can be derived from the histogram and be applied to the simulation model. The simulation model is exe-
cuted with the corrected value, and an improvement is observed as illustrated in the red line of Figure 6. 
Following the same process, the AMV module can be used to quickly identify any data issues associated 
with modeling features and ensure that high forecast accuracy is maintained. 
 

 
Figure 5: Using AMV to Identify Modeling Issues. 
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Figure 6: Improved WIP Trend through AMV-guided Model Enhancement. 

 
Figure 7: AMV Level 2 & 3 – Visualization of Process Time Discrepancy. 

6 SUMMARY AND OUTLOOK 

In this paper we have shown how the approach of automated model verification is an important element 
to continuously monitor and verify simulation model to ensure the correctness of the forecast results. It 
enables the user to find basic data problems in a systematic manner through comparison of simulation da-
ta with historical real data. By visualizing the data discrepancies observed in three levels of granularity 
the method provides an easy and efficient way of resolving critical issues so as to maintain the forecast 
accuracy. The detection and correction of data issues is also communicated to the relevant department to 
enhance the quality of basic data. 

Another application of AMV is to use it as an operational target evaluation tool. With a stable fore-
cast accuracy, the expected key performance indicators (KPIs) for work center can be used as the opera-
tional target for the work center’s operators. Any significant deviation between the expected and achieved 
KPIs value could mean that the operators did not adhere to the operational policies, such as dispatching 
decisions derive by a dispatching system. Using this approach, the operator can be educated on the im-
portance of adherence to operational policies that gives global instead of local optimality operational re-
sults. 
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