
Proceedings of the 2013 Winter Simulation Conference
R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds

A NOVEL SIMULATION METHODOLOGY FOR MODELING CLUSTER TOOLS

Emrah Cimren
Robert Havey
DongJin Kim

Micron Technology Inc.

9600 Godwin Drive
Manassas, VA 20110, USA

ABSTRACT

Cluster tools are highly integrated machines that can perform multiple manufacturing processes. A series
of processing steps, transportation, and control are integrated into a single tool. We develop a novel simu-
lation methodology to determine production schedules for cluster tools. The proposed approach provides
route of products in the tool with given process times and scheduling rules. Framework and algorithms
used in the simulation are presented. Based on the methodology, we develop a simulation model for a
scanner cluster tool used in the photolithography process in semiconductor manufacturing. The impact of
different input factors on the tool throughput and cycle time is investigated.

1 INTRODUCTION

Cluster tools are highly integrated machines that can perform multiple manufacturing processes. A series
of processing steps, transportation, and control are integrated into a single tool (Singer 1995). Cluster
tools are widely used in modern manufacturing industry such as printed circuit board electroplating lines
and semiconductor manufacturing systems. In these industries, since product life cycle is very short, on
time delivery of products to customers is important. On time delivery performance can be improved by
reducing manufacturing cycle time by better planning and scheduling of cluster tools (Kim et al. 2012).
 A cluster tool consists of processing modules, buffer modules, and transfer modules (robots, carriers
etc.). Jobs are the products which are required to be processed on the tool. Each job visits processing
modules based on its predetermined route. Processing modules can perform identical, different or both
processes. Processing of a job is not allowed to interrupt at any point of time (no preemption). Set up may
be required before or after a job is processed. Buffer modules store jobs until the next step on the job’s
route becomes available. Transfer modules transfer job between processing modules and buffers.
 Since a series of processing steps are integrated into one machine, the structure of cluster tools is
complex and sophisticated (Lee 2008). Since small changes on an individual module may have significant
impact on the overall tool performance, modeling methodologies are required for modeling, analyzing,
and improving cluster tools performance. These models can be used to compare existing tool designs with
alternatives and evaluate different scheduling policies.
 Dummler (2004) presents approaches to model cluster tools; analytical models and discrete event
simulation models. Analytical models are closed formulae approaches, Petri Nets, and other models (i.e.
optimization and heuristics). Closed formulae approaches provide solutions to subset of cluster tool
scheduling problems (Perkinson and Gyurcsik 1996; Venkatesh et al. 1997; Wood 1996; Wu and Zhou
2010; Geismar et al. 2011). However, they have limitations concerning the complexity of tool types con-
sidered and the flexibility of the models in terms of changes in configuration, etc.

3866978-1-4799-2076-1/13/$31.00 ©2013 IEEE

Cimren, Havey, and Kim

 A cluster tool with buffers, a transfer robot, and process modules can be modeled as a robotic flow
shop where buffers and process modules are equivalent to input stations and machines, respectively. The
cluster tool sub-problem is to schedule a given jobs on machines to minimize cycle time. Crama and van
de Klundert (1997) show that the robotic flow shop problem, which is equivalent to the cluster tool sub-
problem, is strongly NP-Complete (Garey and Johnson 1979).
 Mathematical programming methods, including linear programming and mixed integer programming,
are used to model cluster tools (Bhushan and Karimi 2003; Karimi et al. 2004; Aguirre et al. 2010). They
provide more flexibility in modeling cluster tools than closed formula approaches. However, the range
and complexity of cluster tool types are still limited. Since the majority of the cluster tools scheduling
problems are NP-Complete, obtaining optimal solution of these models requires high computational ef-
forts. Therefore, these models do not provide flexibility in investigating different configuration changes.
 If a cluster tool has a complex structure, i.e. multiple robots, then it cannot be analyzed using closed
formulae approaches and mathematical programming methods. Petri Nets, which are a graphical and
mathematical modeling formalism for designing and analysis of discrete event systems (Kim et al. 2011),
are used to model complex cluster tools. Various versions of cluster tools, mostly in semiconductor manu-
facturing, are modeled using Petri Nets and extended versions of Petri Nets (e.g. Colored Petri Nets)
(Jeng and Zhau 1998; Jung and Lee 2008; Lee 2010). The existing Petri Net modeling software tools can-
not handle large scale real life models very well. Run time of the large scale models is quite high and this
limits flexibility of model use to analyze different what-if scenarios (Vojnar 1997). Applicability of the
model depends on the version of the modeling software that model is built in, and this restricts future
model updates (Wells 2002). Also, visualization of the model results is limited.
 Discrete event simulation models are widely used to model cluster tools. One of the common ap-
proaches of simulating cluster tools is to use a general purpose simulation environment which allows to
model a wide variety of technical systems and that are not focused on a specific field of application (e.g.
FlexSim, ToolSim). Such models provide the user with a tool set of generic components that allow com-
posing a model of a given technical system (Pierce and Drevna 1992, LeBaron and Pool 1994). The
models can be used to assess performance of individual tools; however, analysis capability is limited
based on tool type and layout. Also, these models cannot be used for performance analysis of a set of
cluster tools (Seppanen 1998). Dummler (1999) presents a hybrid method (CluSim) combining simulation
and a genetic algorithm heuristic method to develop a cluster tool schedule. In the method, first a set of
candidate schedules are determined using the genetic algorithm heuristic and simulation. Then, these
schedules are evaluated with simulation to finally determine the best schedule among the candidate list.
Although this method compares different schedules, limited number of scheduling rules is used. Schruben
(1999) presents a simulation model which is based on event-graph where model state, events that cause
the state of the model to change, and the causality relationships between these events are considered. Ped-
erson and Trout (2002) and Ding and Yi (2004) develop event-graph simulations for cluster tools in semi-
conductor manufacturing. Run time of event-graph based simulators can be very high when a complex
cluster tool is modeled.
 In this study, we develop a generic discrete event simulation framework for modeling various types of
cluster tools. The framework can be used to build simulation models to determine production schedules
for the tools. The method is based on an object-oriented approach which provides high flexibility to mod-
el different properties of the tools for different tool types.
 This paper is structured as follows. In Section 2, we first provide general definition of the cluster tool.
Then, we define simulation framework and algorithms. In Section 3, we develop a simulation model for a
scanner tool used in the photolithography process in semiconductor manufacturing based on the proposed
methodology. In Section 4, we discuss our results and indicate possible extensions to our approach.

2 METHODOLOGY

In this section, we first provide cluster tool definition and then explain simulation framework.

3867

Cimren, Havey, and Kim

2.1 Cluster Tool Definition

Cluster tools consist of resources including load ports, transporters, buffers, and process modules. Jobs
are loaded to the tool through load ports. Supporting jobs are the jobs which are required to be performed
to be able to process a job. For example, running a setup on a process module before processing a job is a
supporting job. Process modules are responsible for performing the actual material processing. Buffers
are the places where a job can wait until the next process module is available. Transporters carry jobs
within the cluster tool to the individual process modules and buffers. The cluster tool scheduling problem
is to determine a schedule for the cluster tool with minimum lot cycle time.
 We now provide notations to define the problem. Let N be the set of jobs and M be the set of cluster
tool modules including process modules, buffers, and transporters. Let N be a set of supporting jobs.
Since a buffer is a processing module with zero processing time, we call buffers as processing modules.
Let P be the set of processing modules and T be the set of transporters. Note that 𝑀 = 𝑃 ∪ 𝑇. Let 𝑇! be set
of transporters which can pick or deliver a job to the processing module 𝑖 ∈ 𝑃 where 𝑇 = {𝑇!|𝑖 ∈ 𝑃}. Let
𝑆! be the sequence of processing modules that are followed by job 𝑗 ∈ 𝑁. Let 𝑆!" be the 𝑟!! element of the
sequence 𝑆! where 𝑆! = {𝑆!!,… , 𝑆!"} for 𝑗 ∈ 𝑁. For example, 𝑆! is a processing route of job 1 where
𝑆! = 1,2: 3,4 , 𝑆!! = 1 , 𝑆!" = 2: 3 , and 𝑆!" = {4}. In the route, job 1 follows processing module 1,
any one of processing modules 2 and 3, and processing module 4. Let 𝐸! be the set of operations that can
be performed by module 𝑖 ∈ 𝑀. For example, an operation set of a process may include set up and pro-
cess; and an operation set of a transporter may include picking a job from process module i! and deliver-
ing the job to process module i! where i!, i! ∈ P. Let 𝑝!" and 𝑠!" be the processing and setup times of job
𝑗 ∈ 𝑁 on module 𝑖 ∈ 𝑀, respectively. Transportation time is defined as processing time. Let 𝑐! be the
capacity of module i ∈ M where 𝑐! = 1 for 𝑖 ∈ 𝑃. Process modules which can process more than one job
at a time can be modeled as parallel modules with single job capacity. For transporters which can hold
more than one job, 𝑐! ≥ 1 for 𝑖 ∈ 𝑇, we assume that one job can be delivered at a time. Let 𝑥!" be the start
time of job 𝑗 ∈ 𝑁 on module 𝑖 ∈ 𝑀 and 𝑦!" be the end time of job 𝑗 ∈ 𝑁 on module 𝑖 ∈ 𝑀 ∪ {0}. Note that
𝑥!" and 𝑦!" are calculated as a result of the analysis. Note that 𝑦!! be the arrival time of job 𝑗 ∈ 𝑁 to the
cluster tool.

2.2 Simulation Framework

Proposed framework consists of four main parts; simulation inputs, simulation algorithm, dynamic enti-
ties, and output (Figure 1).

Figure 1: Simulation framework

 Four different types of inputs are used in the simulation framework. A main job list (set N) includes
the jobs processed at the cluster tool. Parameters include processing and setup time, 𝑝!" and 𝑠!" of job

3868

Cimren, Havey, and Kim

𝑗 ∈ 𝑁 on module 𝑖 ∈ 𝑀. Tool modules is a module set 𝑀 which are the modules in the cluster tool. Mod-
ule events are all sets 𝐸! which are the set of operations that can be performed by module 𝑖 ∈ 𝑀.
 We now describe dynamic entities and then explain simulation algorithm. Dynamic job list keeps in-
formation about the current status of each job in the tool (including supporting jobs if required) such as
job name, current location of job in the tool, list of modules remained in its processing route, next event
required for the first element of route, and last event finish time. Dynamic jobs list is updated when simu-
lation runs with the new information. Let Ω be a set (called dynamic job list) where Ω = Ω! 𝑗 ∈ 𝑁}
and Ω! = {𝑗, 𝑖, 𝑆! ,𝐸!!! , 𝑦!"} for 𝑖 ∈ 𝑀 and 𝑗 ∈ 𝑁 ∪ 𝑁. Dynamic modules list keeps information about
the current status of each module such as module name, name of a job in the module, and last event finish
time. Let Φ be a set (dynamic modules list) where Φ = Φ! i ∈ M} and Φ! = {𝑖, 𝑗, 𝑦!"} for 𝑖 ∈ 𝑀 and 𝑗 ∈
𝑁. Dynamic schedule includes event information as job name, module name, event name, event start
time, event finish time. Let 𝐾 be the set of events occurred before. Let Γ be a set (dynamic schedule)
where Γ = {Γ!|𝑘 ∈ 𝐾} . For 𝑘 ∈ 𝐾, Γ! = {𝑖!, 𝑗!,𝐸!!!,! , 𝑥!!!! , 𝑦!!!!} where 𝑖! ∈ 𝑀, 𝑗! ∈ 𝑁, and 𝑆!!! ∈ 𝑆!! .
Finally, completed job list includes set of jobs which complete its processing route in the tool. Let Ψ be a
set (completed job list) where Ψ ⊆ N.
 Simulation algorithm is illustrated in Figure 2. In Step 1, first algorithm reads job and module sets,
parameters, and event sets. Then, it creates dynamic job list set, dynamic modules set, dynamic schedule
set, and completed job list set. Note that completed job list set is empty at the beginning. Step 2 recursive-
ly executes assignment process until there is no job left in the dynamic job list set. In this step, at each it-
eration, dynamic job list is sorted based on the selected criteria (e.g. earliest available job). The first job
on the dynamic job list is considered. Algorithm executes the first step in jobs available route list and up-
dates all sets using event start and end times and a new location of the job. If the job is assigned which
means either get transferred from one module to another through transporter or get processed on one of
the processing modules, then the job’s new location and event end time is updated in the dynamic job list
set. Also, job and time information in its new location is updated in the dynamic modules set.

Figure 2: Simulation algorithm

Dynamic schedule set captures job events start and end times and resource information which performs
this event. If the job is not assigned, which means either there is no resource available at that time if it is a

3869

Cimren, Havey, and Kim

transportation event or processing module is not available at that time if it is a process event, then algo-
rithm considers the next job on the list. Step 3 reports the final tool schedule.

Figure 3 illustrates the “transportation event assignment” algorithm which can be executed depend on
the current job event in Step 2 of the simulation algorithm. In transportation event assignment, the current
job ȷ is transported from the current location to a destination through a transporter. Algorithm determines
set of possible destinations which are the first element of the route set are. A destination is selected from
possible destinations which are empty based on a selection rule (i.e. first available destination). Set of
available transporters are identified from an intersection of the set of transporters which are serving to the
current location and the set of transporters which are serving to the destination location.

A transporter is selected among the available transporters based on a selection rule (i.e. first available
transporter). The latest jobs performed on the destination location and the transporter are identified. In
Step 2, if there exists an available destination and transporter, then the current job start time is the latest
available time of the current job, destination, and transporter. End time of the current job is the start time
of the job and the transfer time. In Step 3, for the current job, new destination, next event, and job availa-
ble time are updated in the dynamic job list. Job is removed from the dynamic module list of the current
location and added to the destination location. For the current and destination locations, and transporter,
the available time is set to event end time of the current job. The dynamic schedule set is updated with the
job, transporter module, event, event start, and event end information. The status of job is reported as “as-
signed” for the simulation algorithm.

Figure 3: Transportation event assignment algorithm

 Figure 4 illustrates the “process event assignment” algorithm. In the algorithm, the current job ȷ is
processed based on the first event on its route. Step 1 reads job and module sets, and identifies the current
location of job ȷ. In Step 2, start time of the processing event on the current location for the current event
is the available time for the job. Finish time of the processing event is equal to the start time of the event
with the process time added. The dynamic schedule set is updated with the job, process module, event,
event start, and event end information in Step 3. Route set is updated by removing the process event from
the job route. Dynamic job set for the current job is updated with the new sequence, first event in the se-
quence, and the event end time. The status of job is reported as “assigned” for the simulation algorithm.

The “scheduling event assignment” algorithm is used to model different scheduling rules. These rules
are mostly based on the structure and working logic of the tool which is modeled. For example, a schedul-
ing rule may be to run a process set up based on the process condition after job is removed from the pro-
cessing module. In this case, when job is removed from the process module, a new supporting job (a

3870

Cimren, Havey, and Kim

scheduling job) is added to the dynamic job list and this job is being executed in the scheduling algorithm
based on its order. In this case, the “scheduling event assignment” algorithm is similar to the process
event assignment algorithm where processing times are equal to set up times.

Figure 4: Process event assignment algorithm

3 MODELING PHOTOLITOGRAPHY SCANNER TOOL

In semiconductor manufacturing, chips are produced by a multi-step processing of silicon discs, called
“wafers”. A part type undergoes about one thousand complex processing steps, including photolithogra-
phy, etching, chemical and physical vapor deposition, cleaning, and thermal processing. Among these
processes, photolithography is one of the critical processes since it constitutes about 11% of total time.
 Based on the methodology presented above, we develop a simulation model for a scanner tool used in
the photolithography process in semiconductor manufacturing. We present a description of the photoli-
thography scanner tool in the next section. Section 3.2 provides simulation study of this cluster tool.

3.1 Description of the Cluster Tool

The scanner tool has three zones that perform three unique operations, the Reticle Zone, the Transfer
Zone and the Process Zone. Table 1 details each tool component and description for each zone, and Fig-
ure 5 shows a graphical representation of the scanner tool. The Reticle Zone moves reticles from RLP or
IRL to the IRIS and LE modules via the RHR. The Transfer Zone moves wafers from PA into the Pro-
cess Zone via the LR and ULR. The Process Zone is the area where wafers have an image printed on the
wafer by the Lens with a reticle.

Figure 5: Scanner tool

 Reticle Delivery and Reticle Delivery Rules: For a wafer to be processed, a reticle must be present
and available for use on the Scanner. A reticle can either be stored in the IRL or delivered to the tool via
a Reticle POD to a RLP. Before a reticle is available for use, it must be inspected by the IRIS module to

3871

Cimren, Havey, and Kim

ensure the reticle is free of defects. If the reticle is not free of defects, reticle will be rejected and lot re-
quiring reticle will not be started by cluster tool. If reticle is free of defects, lot requiring reticle is al-
lowed to start processing by cluster tool.

Table 1: Scanner Tool Components
Area Tool Component Tool Description

Reticle
Zone

Reticle Load Port (RLP) 1 Reticle Loadport 1 that holds a POD with up to 6 reticles
Reticle Load Port (RLP) 2 Reticle Loadport 2 that holds a POD with up to 6 reticles
Internal Reticle Library (IRL) Internal reticle storage location for up to 12 reticles
Internal Reticle Inspection (IRIS) Modules that inspects reticles from RLP 1, RLP 2 and IRL

Transfer
Zone

Pre-Aligner (PA) Entry point into Scanner
Load Robot (LR) – 1 Robot removes wafer from PA and places on Chuck
Unload Robot (ULR) – 6 Robot removes wafers from Chuck and Places on DU
Discharge Unit (DU) Exit point from Scanner back into Track

Process
Zone

Chuck 1 (CH1) – 2 One of two Chucks that wafer is placed on
Chuck 2 (CH2) – 4 One of two Chucks that wafer is placed on
Struck 1 (S1) Robot arm that moves wither CH1 or CH2 between LR, Aligner and ULR
Struck 2 (S2) Robot arm that moves wither Chuck 1 or Chuck 2 to Lens position
Aligner (AL) Module that aligns wafer on a chuck for processing by Lens
Lens (LE) – 5 Module that prints an image on wafer using Reticle and light
Reticle Slot (RS) Holds Reticle that Lens is currently using to print image on wafer
Turret (TUR) Holds Reticle that Lens will use next to print image on wafer

 The three reticle flows, IRIS inspection reticle flow path, reticle move to lens flow path, and removal
of reticle from IRL flow path, are the different types of reticle movement that can occur in the Reticle
Zone. In IRIS inspection reticle flow path, RHR removes reticle from RLP and moves reticle to IRIS
module. IRIS module inspects reticle for defects. After inspection, RHR removes reticle from IRIS
module and returns reticle to POD on RLP. In reticle move to lens flow path, RHR removes reticle from
RLP or from IRL and moves reticle to TUR. TUR accepts reticle and waits with reticle until RS requires
reticle. When RS needs next reticle, TUR and RS will swap reticles. Reticle now on TUR is picked up
by RHR and returned to POD on RLP or back to IRL. In removal of reticle from IRL flow path, RHR
removes reticle from IRL and places reticle into empty slot in POD on RLP. Reticle is then moved to an-
other Scanner’s RLP or placed into storage.
 Wafer Delivery and Wafer Delivery Rules: After the reticle is available on tool and inspected, the wa-
fers can start moving into the cluster tool for processing. All wafers follow the same flow path through
the scanner. First, LR removes wafer from PA and places wafer on Chuck held by S1. Then, S1 moves
chuck to AL Module for wafer alignment. After alignment and image printing by Lens is complete, S1
and S2 move together and swap chucks. S2 moves Chuck to Lens for printing image on wafer. S1 moves
Chuck to URL and URL removes wafer from Chuck and places wafer on DU. S1 now moves empty
Chuck to LR for next wafer.
 Single vs. Double Exposure: Most Masking Levels require a single exposure to print the features
(lines and holes) on the wafer. However, some processed, which have such narrow dimensions, requires
a double exposure to print the feature. Single exposure uses one reticle; however double exposure requir-
ing two reticles to print the image on the wafer. When printing a double exposure, a reticle swap occurs
while the wafer is under the Lens. During the double exposure process, reticles are in positions RS and
TUR on the Lens. A wafer will have an image printed from reticle 1 first, RS and TUR will swap reti-
cles, then reticle 2 will print an image on the wafer next. For the next wafer, reticle 2 will print image
first, RS and TUR will swap reticles, allowing reticle 1 to print image second. This reticle swap sequence
will repeat for the remaining wafers.
 Simulation model is implemented in “R” environment (R 2013). Simulation inputs are provided from
a MySQL database (MySQL 2013).

3872

Cimren, Havey, and Kim

3.2 Cluster Tool’s Performance Analysis

We consider two lots with five wafers each as an input to the cluster tool in the simulation runs. Thus,
𝑁 = 1,… ,10 . We assume that both lots are available at the beginning and required to be processed in
order. Module name and module number mapping is provided in Figure 5 (e.g. LR–2 means that module
number for LR is 2). Thus, 𝑀 = {1,2,… ,7}. Let 𝑐! be the chuck swap time between wafers 𝑘 − 1 and 𝑘.
Tool runs a set up process (called lot correction) before processing the first wafer in each lot which is in-
cluded in these wafers exposure times. All reticles are placed in IRL at the beginning and already scanned
by IRIS. Let 𝑝! be the reticle transfer time to TUR for all reticles. The LR robot puts an unprocessed wa-
fer onto the first available chuck. Table 1 illustrates the events associated with each module in the simula-
tion. We combine events in Gantt in calculations for the simplicity.

Using the simulation model, we analyze two main cases; back-to-back two lots with the same recipe
(Case 1), back-to-back lots with different recipes (Case 2). We run the simulation model for different sce-
narios for each case and report makespan which is the leave time of the second lot from the tool.

We consider two recipes, R1 and R2. The recipe R1 requires single exposure and R2 requires double
exposure where single exposure time for both R1 and R2 is the same. Total exposure time of R2 is twice
as big as the total exposure time of R1. Both recipes use the same align strategy where align time is the
half of the single exposure time. Chuck swap time, reticle swap time, and robot transfer times are smaller
than the exposure times.

Table 1: Event set
Module Event Name in Gantt Event Name in Calculations

LR Pick wafer from PA, Put wafer to CH, Move CH to LR Load
CH1, CH2 Swap CH Chuck swap
ALI Move CH to ALI, Align Align
LE Lot correction, Exposure Exposure
TUR, RS Swap reticles Reticle swap
ULR Move CH to ULR, Pick wafer from CH, Put wafer to DU Unload
RHR Move reticle to TUR, Move reticle to IRL from TUR Reticle load/unload

 Case 1, Back-to-Back Two Lots with the Same Recipe: In Case 1, we consider two lots running reci-
pe R1 using a reticle (called ret1). Figure 6 illustrates a schedule for Case 1. In the schedule, as soon as
ret1 is loaded to RS, LR pulls the first wafer from PA. Figure 6 shows that LE is the bottleneck resource
where each wafer is required to be processed. Thus, we can write the following theorem which provides
an optimal solution for Case 1 for 𝑛 wafers with the same recipe. Note that if a recipe requires a double
exposure, exposure time can be defined as summation of two exposures and a reticle swap time. Thus, the
following results hold for the double exposure recipes.

Figure 6: Case 1 schedule

Theorem 1 Let 𝐶!∗be the optimal makespan for Case1 for N={1,…,n}. Then, 𝐶!∗ is calculated as
 𝑥!" = 𝑝! + 𝑝!! + 𝑝!" + 𝑐!,

 𝑥!" = 𝑥!" +max 𝑝!", 𝑝!" + 𝑝!" + 𝑐!,
𝑥!! = 𝑥!,!!! +max 𝑝!,!!!, 𝑝!,!!! + 𝑝!,! + 𝑝!,! + 𝑐! for 𝑘 = 3,… , 𝑛, and
𝐶!∗ = 𝑥!! + 𝑝!! + 𝑐! + 𝑝!!.

3873

Cimren, Havey, and Kim

 Proof Follows from the fact that wafers are required to be processed in order. ∎

Proposition 1 Schedule given in Figure 6 is optimal.
 Proof Follows from Theorem 1. ∎
 Case 2, Back-to-Back Two Lots with Different Recipes: In Case 2, we consider two lot each consists
of five wafers running different recipes. Table 2 illustrates possible scenarios for this case. Exposure time
for R3 is the same as the exposure time for R1, and exposure time for R2 is greater than exposure time for
R1. Note that wafer from the second lot is not picked unless required reticles are placed in RS and TUR
(for the double exposure). We now investigate schedules for each scenario using the simulation model.

Table 2: Possible scenarios for Case 2
Scenario Lot 1 Recipe Lot 1 Reticles Lot 2 Recipe Lot 2 Reticles

Scenario 1 R1: Single exposure ret1 R2: Single exposure ret2
Scenario 2 R3: Double exposure ret3,ret4 R1: Single exposure ret1
Scenario 3 R1: Single exposure ret1 R3: Double exposure ret3,ret4

 Figure 7 illustrates a schedule for Scenario 1. In the schedule, first ret1 is loaded. Then, ret2 is loaded
during processing of wafers for the first lot. As soon as, last wafer from the first lot is processed, reticle is
swapped and second lot starts processing. In the schedule below, reticle swapping occurs during chuck
swapping. Thus, we can write the following theorem which provides an optimal solution for Scenario 1
for Case 2 for 𝑛 wafers.

Theorem 2 Let 𝐶!∗ be the optimal makespan for Scenario 1 for Case2 for N={1,…,n}. Also, let 𝑛! be
the last wafer for the 1!" lot and let ℎ!!be the reticle swapping time after wafer 𝑛!. If reticle load time is
less than the total process time of a lot, then Theorem 1 provides 𝐶!∗ where 𝑐!! = max {𝑐!! , ℎ!!}.
 Proof Follows from the fact that wafers are required to be processed in order and second reticle is al-
ready loaded to TUR before first lot finishes processing. ∎

Proposition 2 Schedule given in Figure 7 is optimal.
 Proof Follows from Theorem 2. ∎

Figure 7: Scenario 1 in Case 2 schedule

 Figure 8 illustrates a schedule for Scenario 2 in Case 2. Note that LR puts an unprocessed wafer onto
the first available chuck. In the schedule, since R3 is required for the first lot and uses two reticles, ret3
and ret4, both reticles are loaded before process starts. In the double exposure for the first lot, wafer is
exposed using both reticles sequentially. When one of the reticles is not needed by the first lot, it is im-
mediately removed from the lens. Second lot waits until ret1 is placed to RS. Since a wafer cannot be
pulled by LR from PA until a required reticle is at RS, there is an empty chuck swap after wafer 5 is pro-
cessed. The following theorem provides an optimal solution for this case.

Theorem 3 Let 𝐶!∗ be the optimal makespan for Scenario 2 in Case2 for N={1,…,n}. Let 𝑛! be the
last wafer for the 1!" lot and let ℎ!be the reticle swapping time after wafer 𝑘 ∈ 𝑁. Then, 𝐶!∗ is

𝑥!" = 𝑝! + 𝑝!! + 𝑝!" + 𝑐!,
 𝑥!" = 𝑥!" +max 2𝑝!" + ℎ!, 𝑝!" + 𝑝!" + 𝑐!,
𝑥!! = 𝑥!,!!! +max 2𝑝!,!!! + ℎ!!!, 𝑝!,!!! + 𝑝!,! + 𝑝!,! + 𝑐! for 𝑘 = 3,… , 𝑛!,

3874

Cimren, Havey, and Kim

𝑥!,!!!! = 𝑥!,!! + 𝑝!,!! + ℎ!! +max 𝑝!,!! , 𝑝! +max ℎ!! + 2𝑝!, 𝑐!! + 𝑝!,!!!! + 𝑝!,!!!! +
𝑐!!!!,

𝑥!! = 𝑥!,!!! +max 𝑝!,!!!, 𝑝!,!!! + 𝑝!,! + 𝑝!,! + 𝑐! for 𝑘 = 𝑛! + 2,… , 𝑛, and
𝐶!∗ = 𝑥!! + 𝑝!! + 𝑐! + 𝑝!!.

 Proof Follows from the fact that wafers are required to be processed in order and both reticles are re-
quired to be unload before the second lot starts processing. ∎

Figure 8: Scenario 2 in Case 2 schedule

Proposition 3 Schedule given in Figure 8 is optimal.
 Proof Follows from Theorem 3. ∎

 Suppose that wafers are ordered such a way that both chucks are used in order (i.e wafer 1 to CH1,
wafer 2 to CH2,…,wafer 5 to CH1, wafer 6 to CH2,…,wafer 10 to CH2). Figure 9 illustrates a schedule
for this case. Note that there is an empty chuck swap event between two lots. Thus, makespan for the
schedule in Figure 8 is smaller than for the schedule in Figure 9.

Figure 9: Scenario 2 in Case 2 with pre-assigned chuck order schedule

 Figure 10 illustrates a schedule for Scenario 3 in Case 2. In the schedule, since first lots uses only one
reticle, ret1 is loaded at the beginning. Since ret3 is required for processing the second lot, ret3 is loaded
as soon as ret1 is loaded. After wafer 5 is processed, ret1 is removed from the lens and ret4 is delivered to
TUR since ret3 is already in RS. Observer that tool waits until ret4 is loaded to TUR to be able to pull wa-
fer 6 in. The following theorem provides an optimal solution for this case.

Theorem 4 Let 𝐶!∗be the optimal makespan for Case1 for N={1,…,n}. Let 𝑛! be the last wafer for the
1!" lot and let ℎ! be the reticle swapping time after wafer 𝑘 ∈ 𝑁. If reticle load time is less than the total
process time of a lot, then 𝐶!∗ is

𝑥!" = 𝑝! + 𝑝!! + 𝑝!" + 𝑐!,
 𝑥!" = 𝑥!" +max 𝑝!", 𝑝!" + 𝑝!" + 𝑐!,
𝑥!! = 𝑥!,!!! +max 𝑝!,!!!, 𝑝!,!!! + 𝑝!,! + 𝑝!,! + 𝑐! for 𝑘 = 3,… , 𝑛!,
𝑥!,!!!! = 𝑥!,!! + 𝑝!,!! +max ℎ!! + 2𝑝!, 𝑐!! + 𝑝!,!!!! + 𝑝!,!!!! + 𝑐!!!!,
𝑥!! = 𝑥!,!!! +max 2𝑝!,!!! + ℎ!!!, 𝑝!,!!! + 𝑝!,! + 𝑝!,! + 𝑐! for 𝑘 = 𝑛! + 2,… , 𝑛,

3875

Cimren, Havey, and Kim

𝐶!∗ = 𝑥!! + 2𝑝!! + ℎ! + 𝑐! + 𝑝!!.

 Proof Follows from the fact that wafers are required to be processed in order and two reticles are re-
quired to load sequentially at the beginning. ∎

Proposition 4 Schedule given in Figure 10 is optimal.
 Proof Follows from Theorem 4. ∎

Figure 10: Scenario 3 in Case 2

4 CONCLUSION

A series of processing steps, transportation, and control are integrated in cluster tools. Cluster tools can
perform multiple manufacturing processes. Cluster tools are widely used in modern manufacturing indus-
try such as electroplating lines and semiconductor manufacturing systems.
 In this study, we present a discrete event simulation methodology to model cluster tools. The pro-
posed approach provides route of products in the tool with given process times and scheduling rules. We
provide a literature survey and present limitations of the existing cluster tool modeling methodologies
such as closed formulae approaches, Petri Nets, and optimization.

Based on the methodology presented, we develop a simulation model for a scanner tool used in the
photolithography process in semiconductor manufacturing. We first provide description of tool elements,
tool working logic, and tool rules. Then, we analyze performance of the cluster tool using the model. Two
main cases are investigated. Using the model results, we characterize the optimal solution for these cases.

As a future study, we are planning to increase flexibility of the simulation methodology by introduc-
ing new structures.

REFERENCES

Aguirre, A.M, C.A. Méndez, P.M. Castro. 2011. “A Novel Optimization Method to Automated Wet-Etch
Station Scheduling in Semiconductor Manufacturing Systems.” Computers & Chemical Engineering
35(12): 2960-2972.

Bhushan, S. and I.A. Karimi. 2003. “An MILP Approach to Automated Wet-Etch Scheduling.” Industri-
al and Engineering Chemistry Research 42(7): 1391–1399.

Crama, Y. J., v.d. Klundert. 1997. “Robotic Fowshop Scheduling is Strongly NP-Complete”. Research
Memoranda 010, Maastricht, Maastricht Research School of Economics of Technology and Organi-
zation: http://edata.ub.unimaas.nl/wwwedocs/loader/file.asp?id=457.

Ding, S. and J. Yi. 2004. “An Event Graph Based Simulation and Scheduling Analysis of Multi Cluster
Tools”. In Proc. 2004 Winter Simulation Conference: 1915–1924.

Dummler, M. 1999. “Using Simulation and Genetic Algorithms to Improve Cluster Tool Performance”.
In Proceedings of the 1999 Winter Simulation Conference: 875-879.

Dummler, M. 2004. “Modeling and Optimization of Cluster Tools in Semiconductor Manufacturing.” Ph.
D. Thesis, University of Wurzburg.

3876

Cimren, Havey, and Kim

Garey, M.R., D.S. Johnson. 1979. “Computers and Intractability: A Guide to the Theory of NP-

Completeness”. Freeman, San Francisco.
Geismar, N., M. Dawande, and C. Sriskandarajah. 2011. “Productivity Improvement From Using Ma-

chine Buffers in Dual-Gripper Cluster Tools.” IEEE Transactions on Automation Science and Engi-
neering: 8(1): 29.

Jeng, M.D, M. Zhou. 1998. “Editorial Introduction to the Special Section on Petri Nets in Semiconductor
Manufacturing”. IEEE Transactions on Semiconductor Manufacturing: 11(3), 330–332.

Jung, C., T.E. Lee. 2008. “Efficient Scheduling Method Based on an Assignment Model for Robotized
Cluster Tools”. IEEE International Conference on Automation Science and Engineering: 79–84.

Karimi, I. A., Y. Zerlinda, Y. L. Tan, and S. Bhushan. 2004. “An Improved Formulation for Scheduling
an Automated Wet-Etch Station.” Computers & Chemical Engineering 29(1): 217-224.

Kim, D.J, E. Cimren, R. Havey, and A. K. Zaidi, 2012. “Improving Cluster Tools Performance Using
Colored Petri Nets in Semiconductor Manufacturing.” Winter Simulation Conference : 1-205.

Lee, T. E. 2008. “A Review of Scheduling Theory and Methods for Semiconductor Manufacturing Clus-
ter Tools.” In Proceedings of the 2008 Winter Simulation Conference, ed S. J. Mason, R. R. Hill, L.
Mönch, O. Rose, T. Jefferson, J. W. Fowler: 2127-2135.

Lee, J., T.E. Lee. 2010. “An Open Scheduling Architecture for Cluster Tools”. In Proc. of 2010 IEEE
Conference on Automation Science and Engineering (CASE): 420–425.

LeBaron, T. H. and M. Pool. 1994. The Simulation of Cluster Tools: A New Semiconductor Manufactur-
ing Technology.” Winter Simulation Conference: 907–912.

MySQL. 2013. http://www.mysql.com/.
Pederson, D., and C. Trout. 2002. “Demonstrated Benefits of Cluster Tool Simulation”. In Proceedings

of the 2002 Conference on Modeling and Analysis of Semiconductor Manufacturing: 84–89.
Perkinson, T. L. and R. S. Gyurcsik. 1996. “Single-Wafer Cluster Tool Performance: An Analysis of the

Effects of Redundant Chambers and Revisitation Sequences on Throughput.” IEEE Transactions on
Semiconductor Manufacturing 9(3): 384–400.

Pierce, N. G. and M. J. Drevna. 1992. “Development of Generic Simulation Models to Evaluate Wafer
Fabrication Cluster Tools.” Winter Simulation Conference: 874–878.

R. 2013. “The R Project for Statistical Computing”: http://www.r-project.org/.
Schruben, L. W. (1999). “Deadlock Detection and Avoidance in Cluster Tools”. In Proceedings of the In-
ternational Conference on Semiconductor Manufacturing Operational Modeling and Simulation: 31–35.
Seppanen, M.S. 1998. “Modeling Cluster Tool Configurations in the Wafer Fabrication.” Arena Sphere.
Singer, P. 1995. “The Driving Forces in Cluster Tool Development.” Semiconductor Int.: 113–118.
Venkatesh, S., R. Davenport, P. Foxhoven, and J. Nulman. 1997. “A Steady-State Throughput Analysis

of Cluster Tools: Dual-Blade Versus Single-Blade Robots.” IEEE Transactions on Semiconductor
Manufacturing 10(4): 418–424.

Vojnar, T. 1997. “Various Kinds of Petri Nets in Simulation and Modelling.” In: Proceedings of 31st
Spring International Conference on Modelling and Simulation of Systems MOSIS'97: 227-232.

Wells L.. 2002. Performance Analysis Using Coloured Petri Nets. Ph.D. Dissertation.
Wood, S. C. 1996. “Simple performance models for integrated processing tools.” IEEE Transactions on

Semiconductor Manufacturing 9(3): 320–328.
Wu, N. and M. Zhou. 2010. “A Closed-Form Solution for Schedulability and Optimal Scheduling of Du-

al-Arm Cluster Tools With Wafer Residency Time Constraint Based on Steady Schedule Analysis.”
Automation Science and Engineering, IEEE Transactions 7(2): 303-315.

AUTHOR BIOGRAPHIES

EMRAH CIMREN is an industrial engineer in the Industrial Engineering Department at Micron Tech-
nology Inc., Virginia. He holds a B.S. degree in Industrial Engineering from Istanbul Technical Universi-
ty in Turkey, an M.S. degree in Industrial Engineering from Sabanci University in Turkey, and a Ph.D.

3877

Cimren, Havey, and Kim

degree in Industrial and Systems Engineering from The Ohio State University. He is a member of
INFORMS. His e-mail is ecimren@ micron.com.

ROBERT HAVEY is an industrial engineer in the Industrial Engineering Department at Micron Tech-
nology Inc., Virginia. He received B.S. in Industrial Engineering from Texas A&M University and has
done 11 years of semiconductor and Automated Material Handling System planning. His e-mail is rha-
vey@ micron.com.

DONGJIN KIM is an operations improvement manager in the Industrial Engineering Department at Mi-
cron Technology Inc., Virginia. He received M.S. in Engineering Management from Queensland Univer-
sity of Technology, Australia, an MBA from Georgetown University, and has performed 15 years of sim-
ulation and modeling experiences in semiconductor industry. He is a member of INFORMS and APICS.
His e-mail is djkim@micron.com.

3878

