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ABSTRACT 

Cluster tools are highly integrated machines that can perform multiple manufacturing processes. A series 
of processing steps, transportation, and control are integrated into a single tool. We develop a novel simu-
lation methodology to determine production schedules for cluster tools. The proposed approach provides 
route of products in the tool with given process times and scheduling rules. Framework and algorithms 
used in the simulation are presented.  Based on the methodology, we develop a simulation model for a 
scanner cluster tool used in the photolithography process in semiconductor manufacturing. The impact of 
different input factors on the tool throughput and cycle time is investigated. 

1 INTRODUCTION 

Cluster tools are highly integrated machines that can perform multiple manufacturing processes. A series 
of processing steps, transportation, and control are integrated into a single tool (Singer 1995). Cluster 
tools are widely used in modern manufacturing industry such as printed circuit board electroplating lines 
and semiconductor manufacturing systems. In these industries, since product life cycle is very short, on 
time delivery of products to customers is important. On time delivery performance can be improved by 
reducing manufacturing cycle time by better planning and scheduling of cluster tools (Kim et al. 2012).  
 A cluster tool consists of processing modules, buffer modules, and transfer modules (robots, carriers 
etc.). Jobs are the products which are required to be processed on the tool. Each job visits processing 
modules based on its predetermined route. Processing modules can perform identical, different or both 
processes. Processing of a job is not allowed to interrupt at any point of time (no preemption). Set up may 
be required before or after a job is processed. Buffer modules store jobs until the next step on the job’s 
route becomes available. Transfer modules transfer job between processing modules and buffers.  
 Since a series of processing steps are integrated into one machine, the structure of cluster tools is 
complex and sophisticated (Lee 2008). Since small changes on an individual module may have significant 
impact on the overall tool performance, modeling methodologies are required for modeling, analyzing, 
and improving cluster tools performance. These models can be used to compare existing tool designs with 
alternatives and evaluate different scheduling policies.  
 Dummler (2004) presents approaches to model cluster tools; analytical models and discrete event 
simulation models. Analytical models are closed formulae approaches, Petri Nets, and other models (i.e. 
optimization and heuristics). Closed formulae approaches provide solutions to subset of cluster tool 
scheduling problems (Perkinson and Gyurcsik 1996; Venkatesh et al. 1997; Wood 1996; Wu and Zhou 
2010; Geismar et al. 2011). However, they have limitations concerning the complexity of tool types con-
sidered and the flexibility of the models in terms of changes in configuration, etc.  
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 A cluster tool with buffers, a transfer robot, and process modules can be modeled as a robotic flow 
shop where buffers and process modules are equivalent to input stations and machines, respectively. The 
cluster tool sub-problem is to schedule a given jobs on machines to minimize cycle time. Crama and van 
de Klundert (1997) show that the robotic flow shop problem, which is equivalent to the cluster tool sub-
problem, is strongly NP-Complete (Garey and Johnson 1979).  
 Mathematical programming methods, including linear programming and mixed integer programming, 
are used to model cluster tools (Bhushan and Karimi 2003; Karimi et al. 2004; Aguirre et al. 2010). They 
provide more flexibility in modeling cluster tools than closed formula approaches. However, the range 
and complexity of cluster tool types are still limited. Since the majority of the cluster tools scheduling 
problems are NP-Complete, obtaining optimal solution of these models requires high computational ef-
forts. Therefore, these models do not provide flexibility in investigating different configuration changes.  
 If a cluster tool has a complex structure, i.e. multiple robots, then it cannot be analyzed using closed 
formulae approaches and mathematical programming methods.  Petri Nets, which are a graphical and 
mathematical modeling formalism for designing and analysis of discrete event systems (Kim et al. 2011), 
are used to model complex cluster tools. Various versions of cluster tools, mostly in semiconductor manu-
facturing, are modeled using Petri Nets and extended versions of Petri Nets (e.g. Colored Petri Nets)  
(Jeng and Zhau 1998; Jung and Lee 2008; Lee 2010). The existing Petri Net modeling software tools can-
not handle large scale real life models very well. Run time of the large scale models is quite high and this 
limits flexibility of model use to analyze different what-if scenarios (Vojnar 1997). Applicability of the 
model depends on the version of the modeling software that model is built in, and this restricts future 
model updates (Wells 2002).  Also, visualization of the model results is limited.  
 Discrete event simulation models are widely used to model cluster tools. One of the common ap-
proaches of simulating cluster tools is to use a general purpose simulation environment which allows to 
model a wide variety of technical systems and that are not focused on a specific field of application (e.g. 
FlexSim, ToolSim). Such models provide the user with a tool set of generic components that allow com-
posing a model of a given technical system (Pierce and Drevna 1992, LeBaron and Pool 1994).  The 
models can be used to assess performance of individual tools; however, analysis capability is limited 
based on tool type and layout. Also, these models cannot be used for performance analysis of a set of 
cluster tools (Seppanen 1998). Dummler (1999) presents a hybrid method (CluSim) combining simulation 
and a genetic algorithm heuristic method to develop a cluster tool schedule. In the method, first a set of 
candidate schedules are determined using the genetic algorithm heuristic and simulation. Then, these 
schedules are evaluated with simulation to finally determine the best schedule among the candidate list. 
Although this method compares different schedules, limited number of scheduling rules is used. Schruben 
(1999) presents a simulation model which is based on event-graph where model state, events that cause 
the state of the model to change, and the causality relationships between these events are considered. Ped-
erson and Trout (2002) and Ding and Yi (2004) develop event-graph simulations for cluster tools in semi-
conductor manufacturing. Run time of event-graph based simulators can be very high when a complex 
cluster tool is modeled.  
 In this study, we develop a generic discrete event simulation framework for modeling various types of 
cluster tools. The framework can be used to build simulation models to determine production schedules 
for the tools. The method is based on an object-oriented approach which provides high flexibility to mod-
el different properties of the tools for different tool types.  
 This paper is structured as follows. In Section 2, we first provide general definition of the cluster tool. 
Then, we define simulation framework and algorithms. In Section 3, we develop a simulation model for a 
scanner tool used in the photolithography process in semiconductor manufacturing based on the proposed 
methodology. In Section 4, we discuss our results and indicate possible extensions to our approach.   

2  METHODOLOGY 

In this section, we first provide cluster tool definition and then explain simulation framework.  
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2.1 Cluster Tool Definition 

Cluster tools consist of resources including load ports, transporters, buffers, and process modules. Jobs 
are loaded to the tool through load ports. Supporting jobs are the jobs which are required to be performed 
to be able to process a job. For example, running a setup on a process module before processing a job is a 
supporting job. Process modules are responsible for performing the actual material processing. Buffers 
are the places where a job can wait until the next process module is available. Transporters carry jobs 
within the cluster tool to the individual process modules and buffers. The cluster tool scheduling problem 
is to determine a schedule for the cluster tool with minimum lot cycle time. 
 We now provide notations to define the problem. Let N be the set of jobs and M be the set of cluster 
tool modules including process modules, buffers, and transporters. Let  N be a set of supporting jobs. 
Since a buffer is a processing module with zero processing time, we call buffers as processing modules. 
Let P be the set of processing modules and T be the set of transporters. Note that  𝑀 = 𝑃 ∪ 𝑇. Let 𝑇! be set 
of transporters which can pick or deliver a job to the processing module 𝑖 ∈ 𝑃 where  𝑇 = {𝑇!|𝑖 ∈ 𝑃}. Let 
𝑆!   be the sequence of processing modules that are followed by job 𝑗 ∈ 𝑁. Let 𝑆!"   be the 𝑟!! element of the 
sequence 𝑆!  where 𝑆! = {𝑆!!,… , 𝑆!"} for 𝑗 ∈ 𝑁. For example, 𝑆!  is a processing route of job 1 where 
𝑆! = 1,2: 3,4 , 𝑆!! = 1 , 𝑆!" = 2: 3 ,  and 𝑆!" = {4}. In the route, job 1 follows processing module 1, 
any one of processing modules 2 and 3, and processing module 4. Let 𝐸!   be the set of operations that can 
be performed by module 𝑖 ∈ 𝑀. For example, an operation set of a process may include set up and pro-
cess; and an operation set of a transporter may include picking a job from process module i!   and deliver-
ing the job to process module i!  where i!, i!  ∈ P.  Let 𝑝!" and 𝑠!" be the processing and setup times of job 
𝑗 ∈ 𝑁 on module 𝑖 ∈ 𝑀, respectively. Transportation time is defined as processing time.  Let 𝑐!    be the 
capacity of module i ∈ M  where 𝑐! = 1 for 𝑖 ∈ 𝑃. Process modules which can process more than one job 
at a time can be modeled as parallel modules with single job capacity. For transporters which can hold 
more than one job, 𝑐! ≥ 1  for 𝑖 ∈ 𝑇, we assume that one job can be delivered at a time. Let 𝑥!" be the start 
time of job 𝑗 ∈ 𝑁  on module 𝑖 ∈ 𝑀 and 𝑦!"   be the end time of job 𝑗 ∈ 𝑁  on module 𝑖 ∈ 𝑀 ∪ {0}. Note that 
𝑥!" and 𝑦!" are calculated as a result of the analysis. Note that 𝑦!! be the arrival time of job 𝑗 ∈ 𝑁 to the 
cluster tool.   

2.2 Simulation Framework 

Proposed framework consists of four main parts; simulation inputs, simulation algorithm, dynamic enti-
ties, and output (Figure 1).  

 
Figure 1: Simulation framework 

 Four different types of inputs are used in the simulation framework.  A main job list (set N) includes 
the jobs processed at the cluster tool.  Parameters include processing and setup time, 𝑝!" and 𝑠!" of job 
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𝑗 ∈ 𝑁 on module  𝑖 ∈ 𝑀. Tool modules is a module set 𝑀 which are the modules in the cluster tool. Mod-
ule events are all sets 𝐸!   which are the set of operations that can be performed by module 𝑖 ∈ 𝑀.   
 We now describe dynamic entities and then explain simulation algorithm. Dynamic job list keeps in-
formation about the current status of each job in the tool (including supporting jobs if required) such as 
job name, current location of job in the tool, list of modules remained in its processing route, next event 
required for the first element of route, and last event finish time. Dynamic jobs list is updated when simu-
lation runs with the new information.  Let Ω  be a set (called dynamic job list) where Ω = Ω! 𝑗 ∈ 𝑁} 
and Ω! = {𝑗, 𝑖, 𝑆! ,𝐸!!! , 𝑦!"} for 𝑖 ∈ 𝑀 and 𝑗 ∈ 𝑁 ∪ 𝑁.  Dynamic modules list keeps information about 
the current status of each module such as module name, name of a job in the module, and last event finish 
time. Let Φ be a set (dynamic modules list) where Φ = Φ! i ∈ M} and Φ! = {𝑖, 𝑗, 𝑦!"} for 𝑖 ∈ 𝑀  and  𝑗 ∈
𝑁. Dynamic schedule includes event information as job name, module name, event name, event start 
time, event finish time. Let 𝐾 be the set of events occurred before. Let Γ be a set (dynamic schedule) 
where Γ = {Γ!|𝑘 ∈ 𝐾} . For 𝑘 ∈ 𝐾,  Γ! = {𝑖!, 𝑗!,𝐸!!!,! , 𝑥!!!! , 𝑦!!!!}  where 𝑖! ∈ 𝑀, 𝑗! ∈ 𝑁,  and   𝑆!!! ∈ 𝑆!! . 
Finally, completed job list includes set of jobs which complete its processing route in the tool. Let Ψ be a 
set (completed job list) where Ψ ⊆ N.  
 Simulation algorithm is illustrated in Figure 2. In Step 1, first algorithm reads job and module sets, 
parameters, and event sets. Then, it creates dynamic job list set, dynamic modules set, dynamic schedule 
set, and completed job list set. Note that completed job list set is empty at the beginning. Step 2 recursive-
ly executes assignment process until there is no job left in the dynamic job list set. In this step, at each it-
eration, dynamic job list is sorted based on the selected criteria (e.g. earliest available job). The first job 
on the dynamic job list is considered. Algorithm executes the first step in jobs available route list and up-
dates all sets using event start and end times and a new location of the job. If the job is assigned which 
means either get transferred from one module to another through transporter or get processed on one of 
the processing modules, then the job’s new location and event end time is updated in the dynamic job list 
set. Also, job and time information in its new location is updated in the dynamic modules set.  

 
Figure 2: Simulation algorithm 

Dynamic schedule set captures job events start and end times and resource information which performs 
this event. If the job is not assigned, which means either there is no resource available at that time if it is a 

3869



Cimren, Havey, and Kim 
 
transportation event or processing module is not available at that time if it is a process event, then algo-
rithm considers the next job on the list. Step 3 reports the final tool schedule. 

Figure 3 illustrates the “transportation event assignment” algorithm which can be executed depend on 
the current job event in Step 2 of the simulation algorithm. In transportation event assignment, the current 
job  ȷ is transported from the current location to a destination through a transporter. Algorithm determines 
set of possible destinations which are the first element of the route set are. A destination is selected from 
possible destinations which are empty based on a selection rule (i.e. first available destination).  Set of 
available transporters are identified from an intersection of the set of transporters which are serving to the 
current location and the set of transporters which are serving to the destination location. 

A transporter is selected among the available transporters based on a selection rule (i.e. first available 
transporter). The latest jobs performed on the destination location and the transporter are identified.  In 
Step 2, if there exists an available destination and transporter, then the current job start time is the latest 
available time of the current job, destination, and transporter. End time of the current job is the start time 
of the job and the transfer time. In Step 3, for the current job, new destination, next event, and job availa-
ble time are updated in the dynamic job list. Job is removed from the dynamic module list of the current 
location and added to the destination location. For the current and destination locations, and transporter, 
the available time is set to event end time of the current job. The dynamic schedule set is updated with the 
job, transporter module, event, event start, and event end information. The status of job is reported as “as-
signed” for the simulation algorithm. 

 
Figure 3: Transportation event assignment algorithm  

 Figure 4 illustrates the “process event assignment” algorithm. In the algorithm, the current job ȷ is 
processed based on the first event on its route. Step 1 reads job and module sets, and identifies the current 
location of job ȷ. In Step 2, start time of the processing event on the current location for the current event 
is the available time for the job. Finish time of the processing event is equal to the start time of the event 
with the process time added. The dynamic schedule set is updated with the job, process module, event, 
event start, and event end information in Step 3. Route set is updated by removing the process event from 
the job route. Dynamic job set for the current job is updated with the new sequence, first event in the se-
quence, and the event end time. The status of job is reported as “assigned” for the simulation algorithm. 

The “scheduling event assignment” algorithm is used to model different scheduling rules. These rules 
are mostly based on the structure and working logic of the tool which is modeled. For example, a schedul-
ing rule may be to run a process set up based on the process condition after job is removed from the pro-
cessing module. In this case, when job is removed from the process module, a new supporting job (a 
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scheduling job) is added to the dynamic job list and this job is being executed in the scheduling algorithm 
based on its order. In this case, the “scheduling event assignment” algorithm is similar to the process 
event assignment algorithm where processing times are equal to set up times.    

 
Figure 4: Process event assignment algorithm 

3 MODELING PHOTOLITOGRAPHY SCANNER TOOL 

In semiconductor manufacturing, chips are produced by a multi-step processing of silicon discs, called 
“wafers”. A part type undergoes about one thousand complex processing steps, including photolithogra-
phy, etching, chemical and physical vapor deposition, cleaning, and thermal processing. Among these 
processes, photolithography is one of the critical processes since it constitutes about 11% of total time.  
 Based on the methodology presented above, we develop a simulation model for a scanner tool used in 
the photolithography process in semiconductor manufacturing. We present a description of the photoli-
thography scanner tool in the next section. Section 3.2 provides simulation study of this cluster tool.   

3.1 Description of the Cluster Tool 

The scanner tool has three zones that perform three unique operations, the Reticle Zone, the Transfer 
Zone and the Process Zone.  Table 1 details each tool component and description for each zone, and Fig-
ure 5 shows a graphical representation of the scanner tool. The Reticle Zone moves reticles from RLP or 
IRL to the IRIS and LE modules via the RHR.  The Transfer Zone moves wafers from PA into the Pro-
cess Zone via the LR and ULR.  The Process Zone is the area where wafers have an image printed on the 
wafer by the Lens with a reticle.   

 
Figure 5: Scanner tool 

 Reticle Delivery and Reticle Delivery Rules: For a wafer to be processed, a reticle must be present 
and available for use on the Scanner.  A reticle can either be stored in the IRL or delivered to the tool via 
a Reticle POD to a RLP.  Before a reticle is available for use, it must be inspected by the IRIS module to 
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ensure the reticle is free of defects.  If the reticle is not free of defects, reticle will be rejected and lot re-
quiring reticle will not be started by cluster tool.  If reticle is free of defects, lot requiring reticle is al-
lowed to start processing by cluster tool.   

Table 1:  Scanner Tool Components 
Area Tool Component Tool Description 

Reticle 
Zone 

Reticle Load Port (RLP) 1 Reticle Loadport 1 that holds a POD with up to 6 reticles 
Reticle Load Port (RLP) 2  Reticle Loadport 2 that holds a POD with up to 6 reticles 
Internal Reticle Library (IRL) Internal reticle storage location for up to 12 reticles 
Internal Reticle Inspection (IRIS) Modules that inspects reticles from RLP 1, RLP 2 and IRL 

Transfer 
Zone 

Pre-Aligner (PA) Entry point into Scanner 
Load Robot (LR) – 1 Robot removes wafer from PA and places on Chuck 
Unload Robot (ULR) – 6 Robot removes wafers from Chuck and Places on DU 
Discharge Unit (DU) Exit point from Scanner back into Track 

Process 
Zone 

Chuck 1 (CH1) – 2 One of two Chucks that wafer is placed on  
Chuck 2 (CH2) – 4 One of two Chucks that wafer is placed on  
Struck 1 (S1) Robot arm that moves wither CH1 or CH2 between LR, Aligner and ULR 
Struck 2 (S2) Robot arm that moves wither Chuck 1 or Chuck 2 to Lens position 
Aligner (AL) Module that aligns wafer on a chuck for processing by Lens 
Lens (LE) – 5 Module that prints an image on wafer using Reticle and light 
Reticle Slot (RS) Holds Reticle that Lens is currently using to print image on wafer 
Turret (TUR) Holds Reticle that Lens will use next to print image on wafer 

 The three reticle flows, IRIS inspection reticle flow path, reticle move to lens flow path, and removal 
of reticle from IRL flow path, are the different types of reticle movement that can occur in the Reticle 
Zone.  In IRIS inspection reticle flow path, RHR removes reticle from RLP and moves reticle to IRIS 
module.  IRIS module inspects reticle for defects.  After inspection, RHR removes reticle from IRIS 
module and returns reticle to POD on RLP.  In reticle move to lens flow path, RHR removes reticle from 
RLP or from IRL and moves reticle to TUR.  TUR accepts reticle and waits with reticle until RS requires 
reticle.  When RS needs next reticle, TUR and RS will swap reticles.  Reticle now on TUR is picked up 
by RHR and returned to POD on RLP or back to IRL.  In removal of reticle from IRL flow path, RHR 
removes reticle from IRL and places reticle into empty slot in POD on RLP.  Reticle is then moved to an-
other Scanner’s RLP or placed into storage. 
 Wafer Delivery and Wafer Delivery Rules: After the reticle is available on tool and inspected, the wa-
fers can start moving into the cluster tool for processing.  All wafers follow the same flow path through 
the scanner.  First,  LR removes wafer from PA and places wafer on Chuck held by S1.  Then, S1 moves 
chuck to AL Module for wafer alignment.  After alignment and image printing by Lens is complete, S1 
and S2 move together and swap chucks.  S2 moves Chuck to Lens for printing image on wafer.  S1 moves 
Chuck to URL and URL removes wafer from Chuck and places wafer on DU.  S1 now moves empty 
Chuck to LR for next wafer. 
 Single vs. Double Exposure: Most Masking Levels require a single exposure to print the features 
(lines and holes) on the wafer.  However, some processed,  which have such narrow dimensions, requires 
a double exposure to print the feature.  Single exposure uses one reticle; however double exposure requir-
ing two reticles to print the image on the wafer.  When printing a double exposure, a reticle swap occurs 
while the wafer is under the Lens.  During the double exposure process, reticles are in positions RS and 
TUR on the Lens.  A wafer will have an image printed from reticle 1 first, RS and TUR will swap reti-
cles, then reticle 2 will print an image on the wafer next.  For the next wafer, reticle 2 will print image 
first, RS and TUR will swap reticles, allowing reticle 1 to print image second.  This reticle swap sequence 
will repeat for the remaining wafers.   
 Simulation model is implemented in “R” environment (R 2013). Simulation inputs are provided from 
a MySQL database (MySQL 2013).   
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3.2 Cluster Tool’s Performance Analysis  

We consider two lots with five wafers each as an input to the cluster tool in the simulation runs. Thus, 
𝑁 = 1,… ,10 .    We assume that both lots are available at the beginning and required to be processed in 
order.  Module name and module number mapping is provided in Figure 5 (e.g. LR–2 means that module 
number for LR is 2). Thus, 𝑀 = {1,2,… ,7}. Let 𝑐! be the chuck swap time between wafers 𝑘 − 1 and 𝑘. 
Tool runs a set up process (called lot correction) before processing the first wafer in each lot which is in-
cluded in these wafers exposure times. All reticles are placed in IRL at the beginning and already scanned 
by IRIS. Let 𝑝! be the reticle transfer time to TUR for all reticles. The LR robot puts an unprocessed wa-
fer onto the first available chuck. Table 1 illustrates the events associated with each module in the simula-
tion. We combine events in Gantt in calculations for the simplicity.   

Using the simulation model, we analyze two main cases; back-to-back two lots with the same recipe 
(Case 1), back-to-back lots with different recipes (Case 2). We run the simulation model for different sce-
narios for each case and report makespan which is the leave time of the second lot from the tool. 

We consider two recipes, R1 and R2.  The recipe R1 requires single exposure and R2 requires double 
exposure where single exposure time for both R1 and R2 is the same. Total exposure time of R2 is twice 
as big as the total exposure time of R1. Both recipes use the same align strategy where align time is the 
half of the single exposure time. Chuck swap time, reticle swap time, and robot transfer times are smaller 
than the exposure times.  

Table 1:  Event set 
Module Event Name in Gantt Event Name in Calculations 

LR Pick wafer from PA, Put wafer to CH, Move CH to LR Load 
CH1, CH2 Swap CH Chuck swap 
ALI Move CH to ALI, Align Align 
LE Lot correction, Exposure Exposure 
TUR, RS Swap reticles Reticle swap 
ULR Move CH to ULR, Pick wafer from CH, Put wafer to DU Unload 
RHR Move reticle to TUR, Move reticle to IRL from TUR Reticle load/unload 

 Case 1, Back-to-Back Two Lots with the Same Recipe: In Case 1, we consider two lots running reci-
pe R1 using a reticle (called ret1). Figure 6 illustrates a schedule for Case 1. In the schedule, as soon as 
ret1 is loaded to RS, LR pulls the first wafer from PA. Figure 6 shows that LE is the bottleneck resource 
where each wafer is required to be processed.  Thus, we can write the following theorem which provides 
an optimal solution for Case 1 for 𝑛 wafers with the same recipe. Note that if a recipe requires a double 
exposure, exposure time can be defined as summation of two exposures and a reticle swap time. Thus, the 
following results hold for the double exposure recipes. 

 
Figure 6: Case 1 schedule  

Theorem 1 Let 𝐶!∗be the optimal makespan for Case1 for N={1,…,n}. Then, 𝐶!∗ is calculated as   
  𝑥!" = 𝑝! + 𝑝!! + 𝑝!" + 𝑐!, 

 𝑥!" = 𝑥!" +max 𝑝!", 𝑝!" + 𝑝!" + 𝑐!,  
𝑥!! = 𝑥!,!!! +max 𝑝!,!!!, 𝑝!,!!! + 𝑝!,! + 𝑝!,! + 𝑐! for 𝑘 = 3,… , 𝑛, and  
𝐶!∗ = 𝑥!! + 𝑝!! + 𝑐! + 𝑝!!. 
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 Proof  Follows from the fact that wafers are required to be processed in order. ∎ 

Proposition 1 Schedule given in Figure 6 is optimal. 
 Proof  Follows from Theorem 1. ∎ 
 Case 2, Back-to-Back Two Lots with Different Recipes: In Case 2, we consider two lot each consists 
of five wafers running different recipes. Table 2 illustrates possible scenarios for this case. Exposure time 
for R3 is the same as the exposure time for R1, and exposure time for R2 is greater than exposure time for 
R1. Note that wafer from the second lot is not picked unless required reticles are placed in RS and TUR 
(for the double exposure). We now investigate schedules for each scenario using the simulation model. 

Table 2:  Possible scenarios for Case 2 
Scenario Lot 1 Recipe Lot 1 Reticles Lot 2 Recipe Lot 2 Reticles 

Scenario 1 R1: Single exposure ret1 R2: Single exposure ret2 
Scenario 2 R3: Double exposure ret3,ret4 R1: Single exposure ret1 
Scenario 3 R1: Single exposure ret1 R3: Double exposure ret3,ret4 

 Figure 7 illustrates a schedule for Scenario 1. In the schedule, first ret1 is loaded. Then, ret2 is loaded 
during processing of wafers for the first lot. As soon as, last wafer from the first lot is processed, reticle is 
swapped and second lot starts processing. In the schedule below, reticle swapping occurs during chuck 
swapping. Thus, we can write the following theorem which provides an optimal solution for Scenario 1 
for Case 2 for 𝑛 wafers. 

Theorem 2 Let 𝐶!∗  be the optimal makespan for Scenario 1 for Case2 for N={1,…,n}. Also, let  𝑛! be 
the last wafer for the 1!" lot and let ℎ!!be the reticle swapping time after wafer  𝑛!. If reticle load time is 
less than the total process time of a lot, then Theorem 1 provides 𝐶!∗  where 𝑐!! = max  {𝑐!! , ℎ!!}.  
 Proof  Follows from the fact that wafers are required to be processed in order and second reticle is al-
ready loaded to TUR before first lot finishes processing. ∎ 

Proposition 2 Schedule given in Figure 7 is optimal. 
 Proof  Follows from Theorem 2. ∎ 

 
Figure 7: Scenario 1 in Case 2 schedule 

 Figure 8 illustrates a schedule for Scenario 2 in Case 2. Note that LR puts an unprocessed wafer onto 
the first available chuck. In the schedule, since R3 is required for the first lot and uses two reticles, ret3 
and ret4,  both reticles are loaded before process starts. In the double exposure for the first lot, wafer is 
exposed using both reticles sequentially. When one of the reticles is not needed by the first lot, it is im-
mediately removed from the lens. Second lot waits until ret1 is placed to RS. Since a wafer cannot be 
pulled by LR from PA until a required reticle is at RS, there is an empty chuck swap after wafer 5 is pro-
cessed. The following theorem provides an optimal solution for this case. 

Theorem 3 Let 𝐶!∗ be the optimal makespan for Scenario 2 in Case2 for N={1,…,n}. Let  𝑛! be the 
last wafer for the 1!" lot and let ℎ!be the reticle swapping time after wafer  𝑘 ∈ 𝑁. Then, 𝐶!∗ is  

𝑥!" = 𝑝! + 𝑝!! + 𝑝!" + 𝑐!, 
 𝑥!" = 𝑥!" +max 2𝑝!" + ℎ!, 𝑝!" + 𝑝!" + 𝑐!,  
𝑥!! = 𝑥!,!!! +max 2𝑝!,!!! + ℎ!!!, 𝑝!,!!! + 𝑝!,! + 𝑝!,! + 𝑐! for 𝑘 = 3,… , 𝑛!, 
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𝑥!,!!!! = 𝑥!,!! + 𝑝!,!! + ℎ!! +max 𝑝!,!! , 𝑝! +max ℎ!! + 2𝑝!, 𝑐!!     + 𝑝!,!!!! + 𝑝!,!!!! +
𝑐!!!!,  

𝑥!! = 𝑥!,!!! +max 𝑝!,!!!, 𝑝!,!!! + 𝑝!,! + 𝑝!,! + 𝑐! for 𝑘 = 𝑛! + 2,… , 𝑛, and 
𝐶!∗ = 𝑥!! + 𝑝!! + 𝑐! + 𝑝!!. 

 Proof  Follows from the fact that wafers are required to be processed in order and both reticles are re-
quired to be unload before the second lot starts processing. ∎ 

 
Figure 8: Scenario 2 in Case 2 schedule 

Proposition 3 Schedule given in Figure 8 is optimal. 
 Proof  Follows from Theorem 3. ∎ 

 Suppose that wafers are ordered such a way that both chucks are used in order (i.e wafer 1 to CH1, 
wafer 2 to CH2,…,wafer 5 to CH1, wafer 6 to CH2,…,wafer 10 to CH2). Figure 9 illustrates a schedule 
for this case. Note that there is an empty chuck swap event between two lots. Thus, makespan for the 
schedule in Figure 8 is smaller than for the schedule in Figure 9.  

 
Figure 9: Scenario 2 in Case 2 with pre-assigned chuck order schedule 

 Figure 10 illustrates a schedule for Scenario 3 in Case 2. In the schedule, since first lots uses only one 
reticle, ret1 is loaded at the beginning. Since ret3 is required for processing the second lot, ret3 is loaded 
as soon as ret1 is loaded. After wafer 5 is processed, ret1 is removed from the lens and ret4 is delivered to 
TUR since ret3 is already in RS. Observer that tool waits until ret4 is loaded to TUR to be able to pull wa-
fer 6 in. The following theorem provides an optimal solution for this case. 

Theorem 4 Let 𝐶!∗be the optimal makespan for Case1 for N={1,…,n}. Let  𝑛! be the last wafer for the 
1!" lot and let ℎ!   be the reticle swapping time after wafer  𝑘 ∈ 𝑁. If reticle load time is less than the total 
process time of a lot, then 𝐶!∗ is  

𝑥!" = 𝑝! + 𝑝!! + 𝑝!" + 𝑐!, 
 𝑥!" = 𝑥!" +max 𝑝!", 𝑝!" + 𝑝!" + 𝑐!,  
𝑥!! = 𝑥!,!!! +max 𝑝!,!!!, 𝑝!,!!! + 𝑝!,! + 𝑝!,! + 𝑐! for 𝑘 = 3,… , 𝑛!, 
𝑥!,!!!! = 𝑥!,!! + 𝑝!,!! +max ℎ!! + 2𝑝!, 𝑐!!     + 𝑝!,!!!! + 𝑝!,!!!! + 𝑐!!!!, 
𝑥!! = 𝑥!,!!! +max 2𝑝!,!!! + ℎ!!!, 𝑝!,!!! + 𝑝!,! + 𝑝!,! + 𝑐! for 𝑘 = 𝑛! + 2,… , 𝑛,  
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𝐶!∗ = 𝑥!! + 2𝑝!! + ℎ! + 𝑐! + 𝑝!!. 

 Proof  Follows from the fact that wafers are required to be processed in order and two reticles are re-
quired to load sequentially at the beginning.  ∎ 

Proposition 4 Schedule given in Figure 10 is optimal. 
 Proof  Follows from Theorem 4. ∎ 
 

 
Figure 10: Scenario 3 in Case 2  

4 CONCLUSION 

A series of processing steps, transportation, and control are integrated in cluster tools. Cluster tools can 
perform multiple manufacturing processes.  Cluster tools are widely used in modern manufacturing indus-
try such as electroplating lines and semiconductor manufacturing systems. 
 In this study, we present a discrete event simulation methodology to model cluster tools. The pro-
posed approach provides route of products in the tool with given process times and scheduling rules. We 
provide a literature survey and present limitations of the existing cluster tool modeling methodologies 
such as closed formulae approaches, Petri Nets, and optimization.  

Based on the methodology presented, we develop a simulation model for a scanner tool used in the 
photolithography process in semiconductor manufacturing. We first provide description of tool elements, 
tool working logic, and tool rules. Then, we analyze performance of the cluster tool using the model. Two 
main cases are investigated. Using the model results, we characterize  the optimal solution for these cases.  

As a future study, we are planning to increase flexibility of the simulation methodology by introduc-
ing new structures.  
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