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ABSTRACT

This paper investigates two related questions: (1) How to derive a confidence interval for the output
of a combination of simulation inputs not yet simulated? (2) How to select the next combination to be
simulated when searching for the optimal combination? To answer these questions, the paper uses parametric
bootstrapped Kriging and “conditional simulation”, whereas classic Kriging estimates the variance of its
predictor by plugging-in the estimated GP parameters so this variance is biased. The main conclusion
is that classic Kriging seems quite robust; i.e., classic Kriging gives acceptable confidence intervals and
estimates of the optimal solution.

1 INTRODUCTION

In this paper we address the following two related questions that arise in simulation, especially when the
simulation is “computationally expensive”: (i) How to derive a confidence interval (CI) for the output of a
combination of simulation inputs that is not yet simulated? (ii) How to select the next combination that is
to be simulated, when searching for the optimal combination? Question 1 (Q1) arises in sensitivity analysis
or “what if” analysis. Question 2 (Q2) arises in “simulation optimization”, which aims at finding the input
combination—also called scenario or point—that gives the minimal simulation output (response); we limit
our optimization to unconstrained problems, like many authors do.

To answer these two questions, simulation analysts often use metamodels. A popular type of metamodel
is a Kriging or Gaussian process (GP) model. Classic Kriging (CK) estimates the variance of its predictor
by plugging-in the estimated parameters (say) ψ̂ of the assumed stationary GP; we assume a GP with
covariance matrix ΣM and parameter vector ψ consisting of the constant mean β0, the constant variance
τ2, and the correlation vector θ . Unfortunately, plugging-in ψ̂ makes the Kriging predictor nonlinear so
s2(x), the classic variance estimator of the Kriging predictor at point x, is biased. The literature has not
thoroughly investigated the consequences of this bias. We therefore (empirically) compare the CI of CK
and alternative CIs (see Q1).

Moreover, s2(x) is also used in efficient global optimization (EGO), which is a well-known sequential
method that balances local and global search; i.e., EGO combines exploitation and exploration. The classic
EGO article is Jones et al. (1998).

The main contribution of this paper is the use of conditional simulation (CS) to improve the estimation
of the Kriging predictor variance. We detail CS in § 2.

A preliminary version of our research was presented in Kleijnen and Mehdad (2013), comparing
the estimated variances of the Kriging predictors in CK, BK (bootstrapped Kriging), and CS and their
effects on EGO. Now we investigate the role of this variance in CIs (see again Q1); i.e., what are the
coverages and lengths of the CIs when using these three methods? Moreover, for these CIs we use either
the classic parametric method assuming the predictor is unbiased and normally distributed—even though
the predictor is nonlinear—and a distribution-free method using the percentile method that is classic in
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bootstrapping. Furthermore, we present details on additional examples; i.e., to the detailed one-dimensional
example in Kleijnen and Mehdad (2013) we add three well-known higher-dimensional examples; namely
Camel-back, Hartmann-3, and Hartmann-6.

We limit our research to deterministic simulation, which is popular in engineering, and will be the
basis for our future research on random discrete-event simulation.

2 CONDITIONAL SIMULATION

To answer Q1 and Q2 when using Kriging, we compare the following alternative methods with each other
and with CK: (i) BK originally proposed in Den Hertog et al. (2006) to examine s2(x) and in Kleijnen
et al. (2012) to examine EGO; (ii) CS which is popular in the French literature on Kriging.

We formulate the basic idea of CS in Chilès and Delfiner 1999, pp. 465-469 as follows. Let S(·)
be a non-conditional simulation (or bootstrap sample) of Y (·) independent of Y (·) and with the same
covariance as Y (·). When “ conditioning”, we pass from S(·) to a simulation YCS(·) that equals Y (·) in the
old points. Let Ŷ (x0) be the Kriging predictor of Y (x0) based on the old I/O data (X,w). Obviously, we
have Y (x0) = Ŷ (x0) + [Y (x0)− Ŷ (x0)] where the Kriging error Y (x0)− Ŷ (x0) is unknown because Y (x0)

is unknown. Analogously, we have S(x0) = Ŝ(x0) + [S(x0)− Ŝ(x0)], but now S(x0) is known and so is the
error term. Substituting the simulated error into the decomposition of Y (x0), we obtain YCS(x0) = Ŷ (x0) +
[S(x0)− Ŝ(x0)]. Because Kriging is an exact interpolator at an old point x, we have Ŷ (x) = Y (x) and Ŝ(x)
= S(x) so YCS(x) = Y (x).

We detail our CS algorithm as follows.

1. Compute ψ̂ from the old I/O data(X,w).

2. Given ψ̂ from step 1, use Nk

(
β̂01k, Σ̂M

)
to sample the k old points w∗b(X, ψ̂)= (w∗1;b(X, ψ̂), . . . ,w∗k;b(X, ψ̂))>.

3. Given the k old points w∗b(X, ψ̂) of step 2, use the conditional normal distribution to sample the
new output w∗b(x0, ψ̂).

4. Given w∗b(X, ψ̂) from Step 2 compute ψ̂
∗
b.

5. Given ψ̂
∗
b of step 4, calculate the new output Ŷ (x0, ψ̂

∗
b).

6. Combining Ŷ (x0, ψ̂
∗
b) of step 5, w∗b(x0, ψ̂) of step 2, and CK’s Ŷ (x0, ψ̂), compute the CS output

ŶCS(x0,b) = Ŷ (x0, ψ̂)+ [w∗b(x0, ψ̂)− Ŷ (x0, ψ̂
∗
b)].

7. Repeat steps 2 through 6 B times (so b = 1, . . . ,B), and compute σ̂ 2[ŶCS(x0)].

3 CONCLUSIONS

Our main conclusion is that CK seems quite robust; i.e., (i) BK and CS give CIs with coverages and lengths
that are not significantly better than CK gives; (ii) EGO with BK or CS may or may not perform better in
expensive simulation with small samples.
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