
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

COMPUTATIONAL PROBABILITY APPLICATIONS

Lawrence M. Leemis

The College of William & Mary
Department of Mathematics

Williamsburg, VA 23187, U.S.A.

ABSTRACT

There is a boundary separating analytic methodology and simulation methodology. If a problem involves the
flipping of coins or the rolling of dice, for example, analytic methods are generally employed. If a problem
involves a complex series of queues with a nonstationary arrival stream, discrete-event simulation methods
are generally employed. This tutorial considers problems that are near the boundary between analytic
methods and simulation methods. We use the Maple-based APPL (A Probability Programming Language)
to perform operations on random variables to address these problems. The problems considered are the
infinite bootstrap, the probability distribution of the Kolmogorov–Smirnov test statistic, the distribution of
the time to complete a stochastic activity network, finding a lower bound on system reliability, Benford’s law,
finding the probability distribution and variance–covariance matrix of sojourn times in a queueing model,
probability distribution relationships, testing random numbers, bivariate transformations, and autoregressive
moving average time series models.

1 INTRODUCTION

Certain problems in probability and stochastic processes, for example, probability models that can be
boiled down to drawing balls from an urn, are best handled by analytic methods. Once a problem becomes
slightly more complex, analytic methods are typically abandoned in favor of Monte Carlo or discrete-event
simulation. This tutorial surveys the use of a computer algebra system to solve mathematically intractable
stochastic modeling problems.

More specifically, this tutorial introduces APPL (A Probability Programming Language), which is a
Maple-based probability language that has been used to solve difficult stochastic modeling problems. This
language is inherently different than the dozens of statistical packages that are currently on the market.
These packages manipulate data values whereas APPL manipulates random variables. The work presented
in this tutorial is joint work with the author and his colleagues Kerry Connell, John Drew, Matt Duggan,
Diane Evans, Andy Glen, Billy Kaczynski, Jeff Mallozzi, Raghu Pasupathy, Bruce Schmeiser, Jackie Taber,
Erik Vargo, Keith Webb, and Jeff Yang. APPL is available from the author at no charge for non-commercial
use.

This tutorial introduces APPL in the next section using two short examples. This is followed by sections
that illustrate the use of APPL in solving problems in a diverse set of research areas. The application areas
are bootstrapping, the Kolmogorov–Smirnov test statistic, stochastic activity networks, lower bounds on
system reliability, Benford’s law, queueing, probability distribution relationships, testing random numbers,
bivariate transformations, and time series models.

2 APPL: A PROBABILITY PROGRAMMING LANGUAGE

APPL consists of a suite of Maple procedures that give exact solutions to probability problems. Sample
procedures include:

51978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Leemis

• Transform to find the transformation of a random variable;
• Convolution to find the distribution of the sum of mutually independent random variables;
• Mean to find the expected value of a random variable;
• OrderStat to find the distribution of an order statistic;
• Minimum to find the distribution of a minimum of mutually independent random variables;
• PDF, CDF, IDF to find the PDF, CDF, IDF (inverse distribution function);
• ExponentialRV, and other popular parametric distributions.

The following two elementary examples illustrate the syntax associated with APPL.

Example 1 (sums of independent and identically distributed random variables). Let X1,X2, . . . ,X10 be
independent and identically distributed U(0,1) random variables. Find

P

(
4 <

10

∑
i=1

Xi < 6

)
.

The historical approaches to solve problems like this are the central limit theorem or Monte Carlo
simulation. The central limit theorem gives the approximate value of the desired probability because the
population distribution is not normally distributed. The small sample size means that the error associated
with the estimate might be substantial. Since the population mean and variance of the U(0,1) distribution
are 1/2 and 1/12, respectively, the estimated probability is

P

(
4 <

10

∑
i=1

Xi < 6

)
= P

(
4−5√
10/12

<
∑

10
i=1 Xi−5√

10/12
<

6−5√
10/12

)
= P(−1.0954 < Z < 1.0954) = 0.7267.

This particular application of the central limit theorem results in only one digit of accuracy. The tenths
digit, 7, is correct, but the hundredths digit, 3, is incorrect.

The second historical approach to a problem of this type is Monte Carlo simulation. This requires
custom programming and the estimate for the probability is given as a point and interval estimator. In
theory, as many digits as desired can be obtained, but in practice, each additional digit of accuracy requires
100× replications. The R code given below replicates the experiment of interest 1,000,000 times,
nrep = 1000000
count = 0
for (i in 1:nrep) {
x = sum(runif(10))
if (x > 4 & x < 6) count = count + 1

}
print(count / nrep)

After a call to set.seed(3) to initialize the random number stream, five runs of the Monte Carlo
simulation yield the following results:

0.722060 0.722310 0.722529 0.721761 0.722818.

This is a huge improvement over the central limit theorem. We now have certainty in the first two digits
of the solution, and near certainty in the third digit of the solution.

But neither the central limit theorem nor Monte Carlo simulation are ideal. They only give estimates
of the probability of interest, and their error cannot be bounded with certainty.

APPL provides a mechanism for calculating the exact probability of interest. The APPL statements
below solve the problem, returning the solution as an exact fraction. The first statement sets n to 10. The
second statement sets X to a U(0,1) random variable by using the UniformRV procedure. The third

52

Leemis

statement calls the ConvolutionIID procedure to find the probability distribution of the sum of ten
mutually independent and identically distributed U(0,1) random variables. Finally, the fourth statement
calculates the cumulative distribution function of the sum evaluated at 6 minus the cumulative distribution
function of the sum evaluated at 4, which gives the result.
n := 10;
X := UniformRV(0, 1);
Y := ConvolutionIID(X, n);
CDF(Y, 6) - CDF(Y, 4);

These statements return the exact probability as

P

(
4 <

10

∑
i=1

Xi < 6

)
=

655177
907200

,

or, to four digits of precision, 0.7222.

Example 2 (distribution of the product of two independent random variables). Let X ∼ triangular(1,2,4) and
Y ∼ triangular(1,2,3) be independent random variables, where the three parameters denote the minimum,
mode, and maximum of the triangular distribution. Find the probability distribution of V = XY .

The solution choices in this case are limited. It can be worked out by hand or can be computed with
APPL. The reader is spared the details of computing the probability distribution of V by hand. The APPL
code for finding the probability of V is given below. The first two statements define the random variables
X and Y with the TriangularRV procedure, and the third statement calls the Product procedure to
compute the probability distribution of V.
X := TriangularRV(1, 2, 4);
Y := TriangularRV(1, 2, 3);
V := Product(X, Y);

The probability density function of V that is returned by APPL is

fV (v) =

−4
3 v+ 2

3 lnv+ 2v
3 lnv+ 4

3 1 < v≤ 2

−8+ 14
3 ln2+ 7v

3 ln2+ 10
3 v−4lnv− 5v

3 lnv 2 < v≤ 3

−4+ 14
3 ln2+ 7v

3 ln2+2v−2lnv− v lnv−2ln3− 2v
3 ln3 3 < v≤ 4

44
3 −14ln2− 7v

3 ln2− 8
3 v−2ln3+ 22

3 lnv− 2v
3 ln3+ 4v

3 lnv 4 < v≤ 6
8
3 −8ln2− 4v

3 ln2− 2
3 v+ 4

3 lnv+ v
3 lnv+4ln3+ v

3 ln3 6 < v≤ 8

−8+8ln2+ 2v
3 ln2+ 2

3 v+4ln3−4lnv+ v
3 ln3− v

3 lnv 8 < v < 12.

Further details concerning APPL and further examples can be found in Glen, Evans, and Leemis (2001)
and Drew, et al. (2008).

3 BOOTSTRAPPING

Bootstrapping is a well-established statistical technique that involves sampling data values with replacement,
which is often known as resampling. Efron and Tibshirani (1993) give the data set shown in Table 1. The
question that they pose is whether there is a statistically significant difference between the medians of the
rat survival times (in days) of the two populations. The strategy is to estimate the standard error of the
difference between the population medians.

The bootstrapping approach begins by generating B bootstrap samples, each of which consists of n = 7
samples drawn with replacement from the survival times in the treatment group: 16, 23, 38, 94, 99, 141,

53

Leemis

Table 1: Rat survival times (days).

Group Data n Median
Treatment 16, 23, 38, 94, 99, 141, 197 7 94
Control 10, 27, 30, 40, 46, 51, 52, 104, 146 9 46

and 197. The sample median of each bootstrap sample is calculated and stored. Next, calculate sample
standard deviation of the B sample medians, which is an estimate of the standard error of the sample median
for B = 50 bootstrap samples drawn from the treatment group. The S-Plus code below shows how this can
be accomplished.
set.seed(1)
tr = c(16, 23, 38, 94, 99, 141, 197)
medn = function(x) {quantile(x, 0.50)}
bootstrap(tr, medn, B = 50)

This code returns the estimated standard error of the median of the treatment group as 41.18. Table 2 shows
the bootstrap estimates of the standard error of the median calculated in this fashion for several values of
B for both the treatment and control groups.

Table 2: Bootstrap estimates of the standard error of the median.

B = 50 B = 100 B = 250 B = 1000 B =+∞

Treatment 41.18 37.63 36.88 38.98 37.83
Control 20.30 12.68 9.538 13.82 13.08

The estimates of the standard error for the control group range from 9.538 to 20.30, for example,
depending on the value of B. But since B is an arbitrary parameter specified by the modeler, one would
like to use only the B = +∞ column of Table 2. The entry in the B = +∞ column from Table 2 for the
treatment group are calculated via the following APPL statements.
treatment := [16, 23, 38, 94, 99, 141, 197];
X := BootstrapRV(treatment);
Y := OrderStat(X, 7, 4);
sqrt(Variance(Y));

The list named treatment is set to the seven survival times in the first statement. The APPL procedure
BootstrapRV sets the random variable X to a discrete random variable with the seven support values in the
list treatment with equal probabilities. The APPL procedure OrderStat determines the probability
mass function of the sample median (the fourth ordered value) of a random sample of seven values drawn
with replacement from the distribution of X The resulting probability mass function of Y , the sample
bootstrap median for the treatment group, is

f (y) =

8359/823543 y = 16
80809/823543 y = 23
196519/823543 y = 38
252169/823543 y = 94
196519/823543 y = 99
80809/823543 y = 141
8359/823543 y = 197.

The associated standard error (the standard deviation of Y) for the treatment group in the “infinite bootstrap”
is

2
823543

√
242712738519382∼= 37.8347,

54

Leemis

which is the upper-right entry in Table 2. Likewise, the standard error for the control group is

1
387420489

√
25662937134123797402∼= 13.0759,

which is the lower-right entry in Table 2. The seemingly large difference between the two sample medians,
94−46 = 48 days, is only

48√
37.832 +13.082

∼= 1.19

standard-deviation units away from zero, so we conclude that there is not a statistically significant difference
between the median survival times of the two groups. The point here is that APPL frees us from drawing
a finite number of bootstrap samples, and bootstrapping can be applied in this setting without having B as
a part of the bootstrap process.

4 KOLMOGOROV–SMIRNOV TEST STATISTIC

The one-sample Kolmogorov–Smirnov goodness-of-fit test is used to compare an empirical distribution to
a hypothesized or fitted probability distribution. The defining formula for the test statistic is

Dn = sup
x
|F(x)−Fn(x)| ,

where Fn(x) is the empirical cumulative distribution function associated with the n data values x1,x2, . . . ,xn
and F(x) is the hypothesized or fitted cumulative distribution function. Since F(x) is a monotone increasing
function of x, the supremum must occur at a data value, so the computational formula is

Dn = max
i=1,2,...,n

{
F
(
x(i)
)
− i−1

n
,

i
n
−F

(
x(i)
)}

,

where x(1),x(2), . . . ,x(n) are the associated order statistics. In the all-parameters-known case associated
with a known or hypothesized parent population distribution, Birnbaum (1952) gave an expression for the
cumulative distribution function of Dn as

P
(

Dn <
1

2n
+ v
)
= n!

∫ 1
2n+v

1
2n−v

∫ 3
2n+v

3
2n−v

. . .
∫ 2n−1

2n +v

2n−1
2n −v

g(u1,u2, . . . ,un)dun . . . du2 du1

for 0≤ v≤ 2n−1
2n , where

g(u1,u2, . . . ,un) = 1

for 0≤ u1≤ u2≤ ·· · ≤ un. For example, when n= 1, D1∼U(1/2,1). For n= 2, the cumulative distribution
function of D2 is

FD2(y) = P(D2 ≤ y) =

0 y≤ 1

4

8
(
y− 1

4

)2 1
4 < y < 1

2

1−2(1− y)2 1
2 < y < 1

1 y≥ 1.

These simple cases are easily worked out by hand, but the calculations become much more tedious as n
increases. Using an algorithm developed in Drew, Glen, and Leemis (2000), a procedure named KSRV with
a single argument n was implemented in APPL. A call to KSRV(6), for example, returns the cumulative

55

Leemis

distribution function

FD6(y) =

0 y < 1
12

46080y6−23040y5 +4800y4− 1600
3 y3 + 100

3 y2− 10
9 y+ 5

324
1
12 ≤ y < 1

6

2880y6−4800y5 +2360y4− 1280
3 y3 + 235

9 y2 + 10
27 y− 5

81
1
6 ≤ y < 1

4

320y6 +320y5− 2600
3 y4 + 4240

9 y3− 785
9 y2 + 145

27 y− 35
1296

1
4 ≤ y < 1

3

−280y6 +560y5− 1115
3 y4 + 515

9 y3 + 1525
54 y2− 565

81 y+ 5
16

1
3 ≤ y < 5

12

104y6−240y5 +295y4− 1985
9 y3 + 775

9 y2− 7645
648 y+ 5

16
5
12 ≤ y < 1

2

−20y6 +32y5− 185
9 y3 + 175

36 y2 + 3371
648 y−1 1

2 ≤ y < 2
3

10y6−38y5 + 160
3 y4− 265

9 y3− 115
108 y2 + 4651

648 y−1 2
3 ≤ y < 5

6

−2y6 +12y5−30y4 +40y3−30y2 +12y−1 5
6 ≤ y < 1

1 y≥ 1.

Subject to CPU and memory limitations, KSRV works for all values of n. Next, consider the more practical
“parameters estimated from data” case for finding the probability distribution of the Kolmogorov–Smirnov
test statistic. Following a derivation from Evans, Drew, and Leemis (2008) for the exponential distribution
with n = 2 data values fitted by maximum likelihood, the APPL code required to compute the probability
distribution of D2 is

Y := UniformRV(0, 1 / 2);
A := 1 - exp(-2 * y);
B := exp(-2 * y) - 1 / 2;
C := 1 / 2 - exp(-2 * (1 - y));
ys := solve(B = C, y)[1];
yss := solve(A = C, y)[1];
g := [[unapply(B,y), unapply(C,y), unapply(A,y)], [0,ys,yss,1 / 2]];
D2 := Transform(Y, g);

which results in the probability density function of D2:

fD2(y) =

1
1− y

+
1

1/2+ y
+

2y
(1/2+ y)(1/2− y)

3
4
− 1

4

√
1+

16
e2 < y <

1
2

√
1− 4

e2

1
1− y

+
1

1/2+ y
1
2

√
1− 4

e2 < y <
1
2

1
1− y

1
2
< y < 1− 1

e
.

The pattern that is evident in fD2(y) prompted us to derive the probability density function of D3, but,
unfortunately, no such pattern persisted. The exact probability distribution of the one-sample Kolmogorov–
Smirnov test statistic in the all-parameters-known case under the null hypothesis remains an open question.

5 STOCHASTIC ACTIVITY NETWORKS

A stochastic activity networks arises in a project management setting in which activity durations are
modeled by positive random variables with known probability distributions. Oftentimes the goal is to
find the probability distribution of the random time to complete the network. Two popular techniques for
evaluating a stochastic activity network are PERT and Monte Carlo simulation. APPL can be used to
calculate the exact distribution of the time to complete a stochastic activity network.

Series–parallel networks constitute a class of stochastic activity networks that are easy to analyze because
a sequence of maximum and convolution operations (which can be executed with the APPL Maximum and

56

Leemis

Convolution procedures) can be used to decompose the network into a single arc. Leemis et al. (2006)
consider the more difficult case of a non-series–parallel network. The probability distribution of the time
to complete these networks requires an algorithm that applies conditional probability to arcs that are on
multiple paths through the network. One of the simplest such networks is the bridge network shown in
Figure 1. When the arc durations Yi j are mutually independent U(0,1) random variables, for example, the

1 4

3

2

Figure 1: Bridge network.

cumulative distribution function of the time to complete the stochastic activity network, T4, is

FT4(t) =

0 t ≤ 0
11
120

t5 0 < t ≤ 1

− 1
120

t5− 1
6

t4 +
2
3

t3− 1
3

t2− 1
6

t +
1

10
1 < t ≤ 2

1
6

t3− 3
2

t2 +
9
2

t− 23
6

2 < t ≤ 3

1 t > 3

Consider the stochastic activity network shown in Figure 2. Assuming that each of the activity durations
is an independent exponential(1) random variable, the cumulative distribution function of the completion
time for the network is

FT6(t) = 1+
107

4
e−2t − 71

4
e−4t −8e−2tt2− 45

2
e−2tt− 1

6
e−2tt3− 1

6
e−tt3−2e−tt2−2e−4tt2

− 71
2

e−3tt +
1
8

e−2tt4− 1
8

e−3tt4−9e−3tt2 +
2
3

e−3tt3−12e−4tt− 85
4

e−3t +
45
4

e−t

1

2

4

5

63

Figure 2: Stochastic activity network.

57

Leemis

for t > 0. The mean network completion time is

E[T6] =
∫

∞

0

(
1−FT6(t)

)
dt =

4213
864

∼= 4.8762.

Although the two illustrations given here have identical distributions for activity durations for simplicity,
this is not a requirement for the algorithm.

6 LOWER BOUND ON SYSTEM RELIABILITY

Failure data for a three-component series system is given in Table 3. Use bootstrapping to determine a
95% lower confidence bound on the system reliability for a series system of three independent components
using the binary failure data (yi,ni), where

• yi is the number of components of type i that pass the test,
• ni is the number of components of type i on test,

for i = 1,2,3.

Table 3: Failure data for a three-component series system.

Component number i = 1 i = 2 i = 3
Number passing (yi) 21 27 82
Number on test (ni) 23 28 84

Assuming that components fail independently, the point estimate for the system reliability is the product
of the point estimates for the component reliabilities:

21
23
· 27

28
· 82

84
=

1107
1288

∼= 0.8595.

The next step is to determine a lower confidence bound on the system reliability. We choose bootstrapping
as an approach. For the first component, a bootstrap sample of size n1 = 23 is taken with replacements
from the 21 good components and 2 bad components, yielding a bootstrap fraction of bad components.
Likewise for the second and third components. These three fractions are multiplied, giving a bootstrap
system reliability, which will be centered around 1107/1288∼= 0.8595. The APPL code below calculates
the exact distribution of this product in the random variable T.
X1 := BinomialRV(23, 21 / 23);
X1 := Transform(X1, [[x -> x / 23], [0, 23]]);
X2 := BinomialRV(28, 27 / 28);
X2 := Transform(X2, [[x -> x / 28], [0, 28]]);
X3 := BinomialRV(84, 82 / 84);
X3 := Transform(X3, [[x -> x / 84], [0, 84]]);
T := Product(X1, X2, X3);

There are a possible 24 · 29 · 85 = 59,160 potential mass values for T. Of these, only 6633 are distinct
because the Product procedure combines repeated values. The lower 95% bootstrap confidence interval
bound is the 0.05 fractile of the distribution of T, which is 6723/9016∼= 0.7457. This is consistent with
bootstrapping experiments, but, once again, avoids the use of a finite number of bootstrap replications.
Further details concerning the bootstrapping algorithm to determine a lower bound, plus a modification to
the algorithm associated with components with perfect test results are given in Leemis (2006).

7 BENFORD’S LAW

Benford’s law concerns the distribution of the leading digit in a data set. The history associated with
Benford’s law is given in Miller (2015). Simon Newcomb noticed that the early pages of logarithm tables

58

Leemis

were more worn than the later pages in 1881. He conjectured that the probability mass function of X , the
leading digit in a set of data, is

fX(x) = P(X = x) = log10

(
1+

1
x

)
x = 1,2, . . . ,9.

So ones are the most likely and nines are the least likely leading digit. More specifically, P(X = 1)= 0.301 and
P(X = 9) = 0.0458. Frank Benford apparently independently discovered the same probability distribution
in 1938 and proceeded to fit the distribution to a wide variety of data sets. Benford’s law has found a
number of applications, including detecting election and accounting fraud. The goal in this section is to
search for a probability distribution with positive support that satisfies Benford’s law exactly.

Our approach for using APPL described here is given in more detail in Leemis, Schmeiser, and Evans
(2000). Let T denote a random lifetime with survival function S(t) = P(T ≥ t), for t > 0. Let Y be the
value of the leading digit in the lifetime T :

P(Y = y) =
∞

∑
i=−∞

[
S
(
y ·10i)−S

(
(y+1)10i)]

for y = 1,2, . . . ,9. We initially considered two measures of conformance to Benford’s law:

c =
9

∑
x=1

[P(Y = x)−P(X = x)]2

P(X = x)

and
m = max

x=1,2,...,9
{|P(Y = x)−P(X = x)|} .

The first measure is analogous to the chi-square goodness-of-fit test statistic and the second measure is
analogous to the Kolmogorov–Smirnov goodness-of-fit test statistic. We calculated these measures of
conformance for several well-known probability distributions, and the results are shown in Table 4.

Although Benford’s law applies to a wide variety of data sets, there is, surprisingly, no perfect match
to Benford’s law among the lifetime distributions listed in Table 4. The distribution classes based on the
hazard function given in the table are IFR (increasing failure rate), DFR (decreasing failure rate), BT
(bathtub-shaped failure rate), and UBT (upside-down bathtub-shaped failure rate). Some distributions,
such as the log logistic distribution, can come very close to a perfect match with Benford’s law. Our
experimentation revealed that the results for the exponential distribution with λ are identical for 10iλ , for
i =±1,±2, Both c and m increased for larger values of the shape parameter κ .

Table 4: Conformance to Benford’s law for several survivor distributions.

Distribution λ κ Class c m
Exponential 1 IFR/DFR 0.61 ·10−2 0.29 ·10−1

Exponential 5 IFR/DFR 0.54 ·10−2 0.18 ·10−1

Muth 0.1 IFR 0.13 ·10−1 0.41 ·10−1

Gompertz 5 1.1 IFR 0.62 ·10−2 0.20 ·10−1

Weibull 1 0.3 DFR 0.37 ·10−10 0.16 ·10−5

Weibull 1 2 IFR 0.19 0.11
Gamma 1 0.3 DFR 0.15 ·10−3 0.29 ·10−2

Gamma 1 2 IFR 0.48 ·10−1 0.50 ·10−1

Log logistic 1 0.3 DFR 0.86 ·10−21 0.67 ·10−11

Log logistic 1 2 UBT 0.24 ·10−1 0.35 ·10−1

Expon Power 1 0.3 BT 0.48 ·10−4 0.17 ·10−2

59

Leemis

So our search for a probability distribution satisfying Benford’s law exactly expanded beyond the
popular probability models. Our next observation concerned the ability to generate a random variate from
Benford’s law. Since X has probability mass function

fX(x) = P(X = x) = log10

(
1+

1
x

)
x = 1,2, . . . ,9,

it has cumulative distribution function

FX(x) = P(X ≤ x) = log10 (1+ x) x = 1,2, . . . ,9.

So for U ∼U(0,1), a Benford random variate X is generated via

X ← b10Uc.

(This formula can be generalized from base 10 to base b and from the leading digit to the leading r digits
as X ← bbU+r−1c.) This variate generation formula leads to a simple probability distribution that follows
Benford’s law exactly. If U ∼U(0,1) and T = 10U then T has probability density function

fT (t) =
1

t ln10
1 < t < 10,

which is a distribution whose leading digit is a perfect match to Benford’s law. The APPL Transform
procedure calculated the distribution of T so as to find other distributions satisfying Benford’s law exactly.

8 QUEUEING

APPL has also been applied to problems in queueing. Standard queueing formulas typically apply to steady-
state results for simple models. Kaczynski, Leemis, and Drew (2012) wrote additional APPL procedures
to find the probability distribution of the sojourn time (the time spent in the queue plus the time spent in
service) for the initial customers in an M/M/1 queue. Three examples illustrate the use of the code.

Example 1 (sojourn time distribution). Consider an M/M/1 queue with arrival rate λ and service rate µ

starting empty and idle at time t = 0. Calculate the probability distribution of the fourth customer’s sojourn
time, T4, mean sojourn time, E[T4], and sojourn time variance, V [T4].

The following APPL statements calculate these quantities. The first statement sets X to the interarrival
time distribution. The second statement sets Y to the service time distribution. The third statement sets
T to the distribution of the fourth customer’s sojourn time for a single-server queue that starts with no
customers in the queue at time t = 0. The last two statements calculate the mean and variance of T4.
X := ExponentialRV(lambda);
Y := ExponentialRV(mu);
T := Queue(X, Y, 4, 0, 1);
Mean(T);
Variance(T);

These statements return the probability density function of the fourth customer’s sojourn time as

f4(t) =
1

6(λ +µ)5 µ
4e−µt (30λ

2 +30λ
3t +24λ µ +24λ

2
µt +6µ

2+

6µ
2
λ t +9t2

λ
4 +12t2

λ
3
µ +3t2

λ
2
µ

2 + t3
λ

5 +2t3
λ

4
µ + t3

λ
3
µ

2)
for t > 0 which has mean

E [T4] =
µ5 +6λ µ4 +26µ2λ 3 +16µ3λ 2 +17µλ 4 +4λ 5

µ (λ +µ)5

60

Leemis

and variance

V [T4] =
(
181µ

2
λ

8 +484µ
3
λ

7 +816µ
4
λ

6 +868µ
5
λ

5 +574µ
6
λ

4+

244µ
7
λ

3 +40µλ
9 +68µ

8
λ

2 +12µ
9
λ +µ

10 +4λ
10)/(

µ
2 (λ +µ)10

)
Example 2 (variance–covariance matrices) Find the variance–covariance matrix of the first three customer
sojourn times in an initially empty and idle M/M/1 queue with arrival rate λ and service rate µ .

The number of potential sequences of arrival and departures to the queue for the first n customers is
the Catalan number (2n)!/(n!(n+ 1)!). The population covariance between first and second customer’s
sojourn times when n = 3 can be determined by the following APPL statement.
Cov(1, 2, 3);

When this statement is called for all elements, the resulting variance–covariance matrix is

1
µ2

λ (2µ +λ)

(λ +µ)2µ2
λ 2(λ 2 +4λ µ +5µ2)

(λ +µ)4µ2

• 2λ 2 +4λ µ +µ2

(λ +µ)2µ2
λ (2λ 2 +8λ 2µ +11λ µ2 +2µ3)

(λ +µ)4µ2

• • 3λ 6 +18λ 5µ +45λ 4µ2 +54λ 3µ3 +30λ 2µ4 +8λ µ5 +µ6

(λ +µ)6µ2

.

Example 3 Find the variance–covariance matrix of the first nine customer sojourn times in an initially
empty and idle M/M/1 queue with arrival rate λ = 1 and service rate µ = 2.

The queueing extension to APPL can perform the calculations symbolically or numerically. Again
calling the Cov procedure to calculate the covariances, the variance–covariance matrix is

1
4

5
36

29
324

181
2916

1181
26244

2647
78732

18191
708588

127111
6377292

2699837
172186884

• 7
18

13
54

239
1458

1543
13122

10303
118098

23485
354294

163493
3188646

3462503
86093442

• • 1451
2916

8531
26244

53995
236196

356291
2125764

805705
6377292

5576849
57395628

39197977
516560652

• • • 34514
59049

209794
531441

1357010
4782969

3031606
14348907

20810726
129140163

145390102
1162261467

• • • • 12525605
19131876

77889229
172186884

170586983
516560652

1156711327
4649045868

8013045911
41841412812

• • • • • 551583889
774840978

1162296371
2324522934

7727099083
20920706406

52871149859
188286357654

• • • • • • 10582107143
13947137604

67728246079
125524238436

454382575415
1129718145924

• • • • • • • 225196533287
282429536481

1455144635743
2541865828329

• • • • • • • • 75890492486993
91507169819844

.

This matrix could be used to check the correctness of the associated discrete-event simulation code.

9 PROBABILITY DISTRIBUTION RELATIONSHIPS

Many of the probability distributions that are in common use (e.g., binomial, normal, exponential) are
related to one another. For example, (a) a chi-square random variable with an even number of degrees of

61

Leemis

freedom is an Erlang random variable, (b) the difference of two independent exponential random variables
is a Laplace random variable, (c) a beta random variable with equal parameters approaches a normal random
variable as the parameters go to ∞, (d) a binomial(n, p) random variable with fixed n and p ∼ beta is a
beta–binomial random variable.

A chart has been placed on-line atwww.math.wm.edu/∼leemis/chart/UDR/UDR.htmlwhich
displays and proves many of these relationships. The static version of this diagram is from Leemis and
McQueston (2008). Based on the distributions in this diagram, Vargo, Pasupathy, and Leemis (2010) created
moment ratio diagrams that give plots of the coefficient of variation vs. skewness and the skewness vs.
kurtosis for many of the distributions in the diagram. APPL was required in order to check the relationships
in the diagram as well as computing the moments for the moment ratio diagrams.

In order to assess a potential parametric distribution to use for modeling purposes based on a data set
of n observations x1,x2, . . . ,xn, we could conduct the following steps: (a) calculate the sample coefficient
of variation and skewness

γ̂2 =
s
x̄

and γ̂3 =
1
n

n

∑
i=1

(
xi− x̄

s

)3

,

(b) plot the point (γ̂2, γ̂3) on the moment ratio diagram of the coefficient of variation vs. skewness, (c) draw
B bootstrap samples of size n from the data set, calculating (γ̂2, γ̂3), (d) fit the bivariate normal distribution
to the (γ̂2, γ̂3) pairs, (e) plot the concentration ellipse associated with the fitted bivariate normal distribution.
The probability distributions that are contained in the concentration ellipse are potential models for the
data set.

10 TESTING RANDOM NUMBERS

Consider the Lehmer linear congruential generator

Zi = aZi−1 mod m,

where the modulus m and the multiplier a are positive integers satisfying a < m. This relationship is used
to generate the pseudo-random numbers Ui = Zi/m. George Marsaglia observed that random numbers that
are produced by this generator fall in planes in two or more dimensions, and sometimes the number of
planes is relatively small. While this negative aspect of random numbers generated by a Lehmer generator
lessens their value for Monte Carlo simulation, it does not assess the order that the numbers are generated.
If X1,X2,Y1,Y2 mutually independent U(0,1) random variables, then the probability distribution of the
distance between adjacent pairs (X1,Y1) and (X2,Y2) in the unit square, D =

√
(X2−X1)2 +(Y2−Y1)2, is

calculated with the following APPL statements.
U1 := UniformRV(0,1);
U2 := UniformRV(0,1);
V1 := Difference(U1, U2);
g1 := [[x -> x * x, x -> x * x], [-infinity, 0, infinity]];
V2 := Transform(V1, g1);
V3 := Convolution(V2, V2);
g2 := [[x -> sqrt(x)], [0, 2]];
V4 := Transform(V3, g2);

The resulting probability density function of D is

f (x) =

2x(x2−4x+π) 0 < x≤ 1

−2x
(

2
√

x2−1+4−4x2 +2
√

x2−1arcsin
(

x2−2
x2

)
+ x2
√

x2−1
)

√
x2−1

1 < x <
√

2.

62

Leemis

Duggan, Drew, and Leemis (2005) use this probability density function to test whether the distance between
adjacent pairs D =

√
(X2−X1)2 +(Y2−Y1)2 for two random points (X1,Y1) and (X2,Y2) in the unit square

follows this probability distribution.

11 BIVARIATE TRANSFORMATIONS

The Transform procedure in APPL finds the probability distribution of the random variable Y = g(X).
An extension to the APPL language developed by Yang, Drew, and Leemis (2012) can be used to find
the probability distribution function of a transformation of two random variables. The BiTransform
procedure gives the joint distribution of X and Y as its first argument, the function of interest g(X ,Y) as its
second argument, and an option third argument h(X ,Y) as a dummy transformation. If the third argument
is defaulted, the procedure will choose a dummy transformation. So the call to the procedure has the form
BiTransform(XY, g, h)

and can be used for continuous random variables X and Y . Two examples illustrate its use.

Example 1 The joint probability density function of X and Y is

f (x,y) = 2 x > 0,y > 0,x+ y < 1.

Find the probability distribution of U = g(X ,Y) = X +Y .
The APPL code to solve this problem is
XY := [[(x, y) -> 2], [[x > 0, y > 0, x + y < 1]],

["Continuous", "PDF"]];
g := [(x, y) -> x + y];
h := [(x, y) -> x - y];
U := BiTransform(XY, g, h);

The constraints associated with the definition of the support of the joint probability density function of X
and Y must be entered as adjacent constraints; either a clockwise or counterclockwise fashion is acceptable.
These APPL statements correctly return

fU(u) = 2u 0 < u < 1

as the probability density function of U.

Example 2 The random variables X and Y are uniformly distributed on (1,2)× (−π,π). Find the joint
probability distribution of U = X cosY and V = X sinY and the marginal distribution of U .

The APPL code to solve this problem is
X := UniformRV(1, 2);
Y := UniformRV(-Pi, Pi);
XY := JointPDF(X, Y);
g := [(x, y) -> x * cos(y)];
h := [(x, y) -> x * sin(y)];
BiTransform(XY, g, h);

These APPL statements correctly return

fU,V (u,v) =
1

2π
√

u2 + v2
1 < u2 + v2 < 4

as the joint probability density function of U and V . Note that the support of U and V is a donut-shaped
region. The marginal probability density function of U is

fU(u) =

{
π−1 sinh−1

√
4u−2−1 1 < |u|< 2

π−1
(

sinh−1
√

4u−2−1− sinh−2
√

u−1−1
)

|u|< 1.

63

Leemis

12 ARMA MODELS

Box–Jenkins autoregressive (AR) moving average (MA) models are widely used to model time series in
economics, engineering, meteorology, quality control, medicine, etc. An extension to APPL described in
Webb and Leemis (2014) allows for the symbolic evaluation of ARMA models. The notation that is used
to describe an ARMA model is

• Yt is the value of the time series at time t,
• c is a real-valued constant,
• φ1,φ2, . . . ,φp are real-valued AR(p) parameters,
• θ1,θ2, . . . ,θq are real-valued MA(q) parameters,
• ε0,ε1,ε2, . . . ,εt are mutually independent error terms with mean 0.

The AR(p) model is
Yt = c+φ1Yt−1 +φ2Yt−2 + · · ·+φpYt−p + εt .

The MA(q) model is
Yt = c+ εt +θ1εt−1 +θ2εt−2 + · · ·+θqεt−q.

The ARMA(p,q) model is

Yt = c+φ1Yt−1 +φ2Yt−2 + · · ·+φpYt−p + εt +θ1εt−1 +θ2εt−2 + · · ·+θqεt−q.

For more details, see Box and Jenkins (1994). Within the suite of programs in the time series extension
for APPL is one known as “Exploratory Time Series Analysis,” which is coded into an APPL procedure
named ETSA. The APPL code to perform an exploratory time series analysis of an MA(3) model is

X := MA([1 / 5, -7 / 5, 11 / 5]):
ETSA(X);

This particular time series model is

Yt = c+ εt +
1
5

εt−1−
7
5

εt−2 +
11
5

εt−3.

The ETSA procedure prints graphs of the autocorrelation function and the partial autocorrelation function.
The procedure then performs a unit roots analysis, which indicates that the three unit roots are

− 1
33

(
8171+33

√
61305

)1/3
− 16

33
(

8171+33
√

61305
)1/3

+
7
33

,

(
8171+33

√
61305

)1/3

66
+

8

33
(

8171+33
√

61305
)1/3

+
7

33
− i
√

3
2

−
(

8171+33
√

61305
)1/3

33
+

16

33
(

8171+33
√

61305
)1/3

 ,

(
8171+33

√
61305

)1/3

66
+

8

33
(

8171+33
√

61305
)1/3

+
7

33
+

i
√

3
2

−
(

8171+33
√

61305
)1/3

33
+

16

33
(

8171+33
√

61305
)1/3

,

 .

where i =
√
−1. All of these unit roots lie inside the unit circle. Assuming error terms are independent

and identically distributed, an invertible representation of this model is

Yt = c+ εt −
7
11

εt−1 +
1
11

εt−2 +

(
1

1089

√
61305+

4096
35937(8171+33

√
61305)

+
8164
35937

)
εt−3.

64

Leemis

The ETSA procedure then calculates the spectral density function for the model, which in this case is

f (ω) =
1
π

(
196
25
− 158

25
cos(ω)− 48

25
cos(2ω)+

22
5

cos(3ω)

)
0 < ω < π.

Finally, the ETSA procedure displays two realizations of the process.

REFERENCES

Birnbaum, Z. W. 1952. “Numerical Tabulation of the Distribution of Kolmogorov’s Statistic for Finite
Sample Size”. Journal of the American Statistical Association 47: 425–441.

Box, G., G. Jenkins. 1994. Time Series Analysis: Forecasting & Control. 3rd ed. Upper Saddle River,
New Jersey: Prentice–Hall, Inc.

Drew, J. H., D. L. Evans, A. G. Glen, and L. M. Leemis. 2008. Computational Probability: Algorithms
and Applications in the Mathematical Sciences. New York: Springer.

Drew, J. H., A. G. Glen, and L. M. Leemis. 2000. “Computing the Cumulative Distribution Function of
the Kolmogorov–Smirnov Statistic”. Computational Statistics and Data Analysis 34 (1): 1–15.

Duggan, M. J., J. H. Drew, and L. M. Leemis. 2005. “A Test of Randomness Based on the Distance Between
Consecutive Random Number Pairs. In Proceedings of the 2005 Winter Simulation Conference, edited
by M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, 741-748. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Efron, B., and R. J. Tibshirani. 1993. An Introduction to the Bootstrap. New York: Chapman & Hall.
Evans, D. L., J. H. Drew, and L. M. Leemis. 2008. “The Distribution of the Kolmogorov–Smirnov,

Cramer–von Mises, and Anderson–Darling Test Statistics for Exponential Populations with Estimated
Parameters”. Communications in Statistics–Simulation and Computation 37 (7): 1396–1421.

Glen, A. G., D. L. Evans, and L. M. Leemis. 2001. “APPL: A Probability Programming Language”. The
American Statistician 55 (2): 156-166.

Kaczynski, W. H., L. M. Leemis, and J. H. Drew. 2012. “Transient Queueing Analysis”. INFORMS
Journal on Computing 24 (1): 10–28.

Leemis, L.M. 2006. “Lower System Reliability Bounds from Binary Failure Data Using Bootstrapping”.
Journal of Quality Technology 38 (1): 2–13.

Leemis, L. M., M. J. Duggan, J. H. Drew, J. A. Mallozzi, and K. W. Connell. 2006. “Algorithms to
Calculate the Distribution of the Longest Path Length of a Stochastic Activity Network with Continuous
Activity Durations”. Networks 48 (3): 143–165.

Leemis, L. M., and J. T. McQueston. 2008. “Univariate Distribution Relationships”. The American
Statistician 62 (1): 45–53.

Leemis, L. M., B. W. Schmeiser, and D. L. Evans. 2000. “Survival Distributions Satisfying Benford’s
Law”. The American Statistician 54 (4): 236–241.

Miller, S. J., editor. 2015. Theory and Applications of Benford’s Law. In press. Princeton, New Jersey:
Princeton University Press.

Vargo, E., R. Pasupathy, and L. Leemis. 2010. “Moment-Ratio Diagrams for Univariate Distributions”.
Journal of Quality Technology 42 (3): 276–286.

Webb, K. H., and L. M. Leemis. 2014. “Symbolic ARMA Model Analysis” Computational Economics 43
(33): 313–330.

Yang, J. X., J. H. Drew, and L. M. Leemis. 2012. “Automating Bivariate Transformations”. INFORMS
Journal on Computing 24 (1): 1–9.

AUTHOR BIOGRAPHY

LAWRENCE M. LEEMIS is a Professor in the Department of Mathematics at The College of William
& Mary. He has formerly held faculty positions at The University of Oklahoma and Baylor University. He
received his B.S., M.S, and Ph.D. from Purdue University. His email address is leemis@math.wm.edu.

65

