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ABSTRACT 

Like a system model in Information Systems and Software Engineering (IS/SE), a system model in 
simulation engineering mainly consists of an information model and a process model. In the fields of 
IS/SE there are widely used standards such as the Class Diagrams of the Unified Modeling Language 
(UML) for making information models, and the Business Process Modeling Notation (BPMN) for making 
process models. This tutorial shows how to use UML class diagrams and BPMN process models at all 
three levels of model-driven simulation engineering: for making conceptual simulation models, for 
making platform-independent simulation design models, and for making platform-specific, executable 
simulation models. 

1 INTRODUCTION 

We use the term simulation engineering for denoting the engineering activity of developing a computer 
simulation, which is a piece of software that can be executed with different settings for performing a 
simulation study. Since a running computer simulation is a particular kind of software system, we may 
consider simulation engineering as a special case of software engineering.  

Even though there is a common agreement that modeling is an important first step in a simulation 
engineering project, at the same time it is thought to be the least understood part of simulation 
engineering (Tako et al. 2010). In a recent panel discussion on conceptual simulation modeling (Zee et al. 
2010), the participants agreed that there is a lack of “standards, on procedures, notation, and model 
qualities”. On the other hand, there is no such lack in the field of Information Systems and Software 
Engineering (IS/SE) where widely used standards such as the Unified Modeling Language (UML) and the 
Business Process Modeling Notation (BPMN) and various modeling methodologies and model quality 
assurance methods have been established. 

Discrete Event Simulation (DES) is concerned with the simulation of real-world systems that are 
conceived as discrete event systems (or ‘discrete dynamic systems’). Such discrete system abstractions 
are immaterial entities that only exist in the mind of the user (or a community of users) of a language. In 
order to be documented, communicated and analyzed they must be captured, i.e. represented in terms of 
some concrete artifact with the help of a language. The representation of an abstraction in a language is 
called a model and the language used for its creation is called a modeling language. 

A discrete event system model may be expressed at different levels of abstraction. The system‘s state 
structure can be described by means of a set of variables and/or objects of some type. For the purpose of 
simulation, the goal is to develop an executable simulation model that allows simulating the successive 
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occurrence of events that may change the values of variables and the states of objects as well as create 
follow-up events. 

The standard view in the simulation literature (see, e.g., Himmelspach 2009) is that a simulation 
model can be expressed either in a general purpose programming language or in a specialized simulation 
language. This means, that the term ‘model’ in simulation model rather refers to a low-level computer 
program and not to a model expressed in a higher-level diagrammatic modeling language. In a modeling 
and simulation project, despite the fact that ‘modeling’ is part of the discipline’s name, often no model in 
the sense of a conceptual model or a design model is made, but rather the modeler jumps from her mental 
model to its implementation in some target technology platform. Clearly, as in IS/SE, making conceptual 
models and design models would be important for several reasons: as opposed to a low-level computer 
program, a high-level model would be more comprehensible and easier to communicate, share, reuse, 
maintain and evolve, while it could still be used for obtaining platform-specific implementation code with 
the help of model transformation. 

Unlike the IS/SE research community, which developed many modeling standards, such as UML and 
BPMN, the modeling and simulation research community did not develop any general simulation 
modeling language that could be used as a standard. There are only vendor-specific simulation modeling 
languages (such as the graphical models of ARENA) developed by simulation tool vendors and embedded 
in their tools. 

Due to their great expressivity and their wide adoption as modeling standards, UML Class Diagrams 
and BPMN seem to be the best choices for making information and process models in a model-driven 
simulation engineering approach. However, since they have not been specifically designed for this 
purpose, we may have to restrict, modify and extend them in a suitable way. In fact, both an analysis of 
UML with respect to its suitability for conceptual modeling in (Guizzardi 2005) and an analysis of BPMN 
with respect to its suitability for agent-based simulation modeling in (Guizzardi and Wagner 2011) have 
revealed a number of ambiguities and shortcomings that should be resolved and fixed for increasing the 
suitability of these languages for simulation modeling. 

Several authors, e.g. Wagner et al. (2009), Cetinkaya et al. (2011) and Onggo and Karpat (2011), 
have proposed to use BPMN for discrete event simulation modeling and for agent-based modeling. 
However, process modeling in general is much less understood than information modeling, and there are 
no guidelines and no best practices how to use BPMN for simulation modeling. 

In this tutorial, we provide short introductions to model-driven engineering, to information modeling 
with UML class diagrams, and to process modeling with BPMN diagrams, and then show how to develop 
a simulation of a service desk with the help of UML class diagrams and BPMN diagrams. 

1.1 What is Discrete Event Simulation? 

The term Discrete Event Simulation (DES) has been established as an umbrella term subsuming various 
kinds of computer simulation approaches, all based on the general idea of modeling entities and events. In 
the DES literature, it is often stated that DES is based on the concept of “entities flowing through the 
system”. E.g., this is the paradigm of an entire class of simulation software in the tradition of the classical 
ARENA system <www.arenasimulation.com>. However, the loose metaphor of a “flow” only applies to 
entities of certain types: events, messages, and certain material objects may, in some sense, flow, while 
many entities of other types, such as buildings or organizations, do not flow in any sense. Also, 
subsuming these three different kinds of flows under one common term “entity flow” obscures their real 
meanings. It is therefore highly questionable to associate DES with a “flow of entities”. Rather, one may 
say that DES is based on a flow of events. 

In Ontology, which is the philosophical study of what there is, the following fundamental distinctions 
are made:  

 there are entities (also called individuals) and entity types (called ‘universals’ in philosophy); 
 there are three fundamental categories of entities:  
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1. objects,  
2. tropes, which are existentially dependent entities such as qualities, dispositions and 

relationships, and  
3. events. 

These ontological distinctions are discussed, e.g., in Guizzardi and Wagner (2010a, 2010b, 2013) and 
in (Guizzardi et al. 2013). 

Clearly, objects and events are the most basic categories for DES. There is an interesting, and 
fundamental, duality between them: while all temporal properties of objects are defined in terms of the 
events they participate in, all spatial properties of events are defined in terms of the spatial properties of 
their participants, as has been noted in (Masolo et al. 2003). 

While the concept of an event is typically limited to instantaneous events in the area of DES, the 
general concept of an event, as discussed in philosophy and in many fields of computer science, includes 
composite events and events with non-zero duration. 

A discrete event system (or discrete dynamic system) consists of 
1. objects (of various types), 
2. events (of various types), 
3. dispositions of objects triggered by events, 

such that the states of objects may be changed by events occurring at times from a discrete set of time 
points, according to the dispositions of the objects affected by the events. 

For modeling a discrete event system as a state transition system, we have to describe its 
1. object types, e.g., in the form of classes of an object-oriented language; 
2. event types, e.g., in the form of classes of an object-oriented language; 
3. causal laws (disposition types) e.g., in the form of transition rules. 
Any discrete event simulation (DES) formalism has one or more language elements allowing to 

specify, at least implicitly, transition functions, or transition rules, that allow representing causal laws. 
These rules specify for any event type, the state changes of objects and the follow-up events caused by 
the occurrence of an event of that type, thus defining the dynamics of the transition system. 
Unfortunately, this is often obscured by the standard definitions of DES that are repeatedly presented in 
simulation textbooks and tutorials. It is common to call the different computational paradigms, on which 
simulation languages and systems are based, “worldviews”. 

According to Pegden (2010), a simulation modeling worldview provides “a framework for defining a 
system in sufficient detail that it can be executed to simulate the behavior of the system”. It “must 
precisely define the dynamic state transitions that occur over time”. Pegden continues saying that “Over 
the 50 year history of simulation there has been three distinct world views in use: event, process, and 
objects”: 

Event worldview: The system is viewed as a series of instantaneous events that change the state of the 
system over time. The modeler defines the events in the system and models the state changes that take 
place when those events occur. All DES systems implement their internal logic using this basic modeling 
approach, regardless of the worldview that they present to the user. 

Process worldview: The system is described as a process flow where a set of passive entities flow 
through the system and are subject to a series of process steps (e.g. seize, delay, release) that model the 
state changes that take place in the system. 

Object worldview: The system is modeled by describing the objects that make up the system. The 
system behavior emerges from the interaction of these objects. 

The process worldview is still widely used in practice and many simulation systems based on it have 
incorporated some form of support for objects and object-oriented (OO) programming. According to 
Pegden (2010), agent based modeling is typically implemented with the object world view. So, today’s 
DES landscape is largely based on the process worldview and object worldview, and the fundamental 
concept of events is hardly considered anywhere. 
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All three worldviews, and especially the process and object worldviews, which dominate today’s 
simulation landscape, lack important conceptual elements. The event worldview does not support 
modeling objects with their (categorical and dispositional) properties. The process worldview does neither 
support modeling events nor objects. And the object worldview, while it supports modeling objects with 
their categorical properties, does not support modeling events. None of the three worldviews does 
support modeling the dispositional properties of objects with a full-fledged explicit concept of transition 
rules. 

1.2 Do We Model Entities or Entity Types? 

When we model a particular discrete system, including the many different things that make up the system, 
do we model these particular things and this particular system or do we model this type of system with all 
the types of things that make up such a type of system? The answer to this question seems to vary from 
case to case. In the case of modeling a machine, we are typically interested in a model of this type of 
machine, and not in a model of a particular machine. But in the case of modeling an organization, we 
typically want to make a model of this particular organization only, and we are typically not really 
interested in considering the more general case of the type of organization that is instantiated by this 
particular organization.  

However, we argue that we should always model types, and not individuals. Even in the case when 
what we really need is a model of a particular organization o or of a specific unique machine m, only, we 
should adopt the view that there are not only o and m, but there are also corresponding types of 
organizations O and of machines M, which are instantiated by o and m, and the real goal of our modeling 
project is to model O or M, and not o or m. The additional cost of modeling types (O and M) instead of 
instances (o and m) is negligible, and the potential benefit is that the resulting models can be reused more 
easily. 

In the case of process modeling, the widely used terminology of “modeling a business process” may 
obscure the fact that we don’t really model a particular process, but rather a particular process type, which 
is instantiated many times (each day) by many different processes of that type. 

2 MODEL-DRIVEN ENGINEERING 

Model-Driven Engineering (MDE), also called model-driven development, is a well-established paradigm 
in IS/SE, see, e.g., the Model-Driven Architecture proposal of the Object Management Group (MDA 
2012). Since simulation engineering can be viewed as a special case of software engineering, it is natural 
to apply the ideas of MDE also to simulation engineering. There have been several proposals of using an 
MDE approach in Modeling and Simulation (M&S), see, e.g., the overview given in Cetinkaya and 
Verbraeck (2011). 

In MDE, there is a clear distinction between three kinds of models as engineering artifacts resulting 
from corresponding activities in the analysis, design and implementation phases: 

1. domain models (also called conceptual models), 
2. platform-independent design models, 
3. platform-specific implementation models.  
Domain models are solution-independent descriptions of a problem domain produced in the analysis 

phase of a software engineering project. We follow the IS/SE usage of the term ‘conceptual model’ as a 
synonym of ‘domain model’. However, in the M&S literature there are diverging proposals how to define 
the term ‘conceptual model’, see, e.g., (Guizzardi & Wagner 2012) and (Robinson 2013). A domain 
model may include both descriptions of the domain’s state structure (in conceptual information models) 
and descriptions of its processes (in conceptual process models). They are solution-independent, or 
‘computation-independent’, in the sense that they are not concerned with making any system design 
choices or with other computational issues. Rather, they focus on the perspective and language of the 
subject matter experts for the domain under consideration. 
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In the design phase, first a platform-independent design model, as a general computational solution, is 
developed on the basis of the domain model. The same domain model can potentially be used to produce 
a number of (even radically) different design models. Then, by taking into consideration a number of 
implementation issues ranging from architectural styles, nonfunctional quality criteria to be maximized 
(e.g., performance, adaptability) and target technology platforms, one or more platform-specific 
implementation models are derived from the design model. These one-to-many relationships between 
conceptual models, design models and implementation models are illustrated in Figure 1. 

 

Different 
Platforms

Different 
Solutions

Conceptual 
Model

Implementation 
Model 1-1

Design Model 1

Design Model 2

Implementation 
Model 1-2

Implementation 
Model 1-3

Implementation 
Model 2-1

 
Figure 1: From a conceptual model to design models to implementation models. 

In the implementation phase, an implementation model is encoded in the programming language of 
the target platform. Finally, after testing and debugging, the implemented solution is then deployed in a 
target environment. 

A model for a software (or information) system, which may be called a ‘software system model’, 
does not consist of just one model diagram including all viewpoints or aspects of the system to be 
developed (or to be documented). Rather it consists of a set of models, one (or more) for each viewpoint. 
The two most important viewpoints, crosscutting all three modeling levels: domain, design and 
implementation, are  

1. information modeling, which is concerned with the state structure of the domain; 
2. process modeling, which is concerned with the dynamics of the domain. 
In the computer science field of database engineering, which is only concerned with information 

modeling, domain information models have been called ‘conceptual models’, information design models 
have been called ‘logical design models’, and database implementation models have been called ‘physical 
design models’. In the sequel, we call information implementation models data models. So, from a given 
information design model, we may derive an SQL data model, a Java data model and a C# data model. 

Examples of widely used languages for information modeling are Entity Relationship (ER) Diagrams 
and UML Class Diagrams. Since the latter subsume the former, we prefer using UML class diagrams for 
making all kinds of information models, including SQL database models. Examples of widely used 
languages for process modeling are (Colored) Petri Nets, UML Sequence Diagrams, UML Activity 
Diagrams and the BPMN. Notice that there is more agreement on the right concepts for information 
modeling than for process modeling, as indicated by the much larger number of different process 
modeling languages. We claim that this reflects a lower degree of understanding the nature of events and 
processes compared to understanding objects and their relationships. 

Some modeling languages, such as UML Class Diagrams and BPMN, can be used on all three 
modeling levels in the form of tailored variants. Other languages have been designed for being used on 
one or two of these three levels only. E.g. Petri Nets cannot be used for conceptual process modeling, 
since they lack the required expressivity. 
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We illustrate the distinction between the three modeling levels with an example in Figure 2 below. In 
a simple conceptual information model of a person, expressed as a UML class diagram, we require that 
any person has exactly one mother and one father, expressed by corresponding binary many-to-one 
associations, while we represent the associations mother and father with corresponding reference 
properties in the object-oriented (OO) design model. Also, we may not care about the datatypes of 
attributes in the conceptual model, while we do care about them in the design model, where we use 
platform-independent datatype names (such as Decimal), and in the Java implementation model, where 
we use Java-specific datatypes (such as java.math.BigDecimal). Finally, in the Java implementation 
model, we add get and set methods for all attributes, and we specify the visibility private (symbolically -) 
for attributes and public (symbolically +) for methods. 

Model-driven simulation engineering is based on the same kinds of models as model-driven software 
engineering: going from a domain model via a simulation design model to a simulation implementation 
model for the simulation platform of choice (or to several implementation models if there are several 
target simulation platforms). The specific concerns of simulation engineering, like, e.g., the concern to 
capture certain parts of the overall system dynamics with the help of random variables, do not affect the 
applicability of MDE principles. However, they may affect the modeling languages to be used. 

name
dateOfBirth
/age
income

Person
*

mother 1

*

father

1

getAge() : NonNegativeInteger

«stdid» ssn : NonEmptyString
name : NonEmptyString
dateOfBirth : Date
income : Decimal
mother : Person
father : Person

Person

+getAge() : int
+getSsn() : String
+setSsn(in ssn : String)
+getName() : String
+setName(in name : String)
+...()

«stdid» -ssn : String
-name : String
-dateOfBirth : java.util.Date
-income : java.math.BigDecimal
-mother : Person
-father : Person

Person

conceptual model OO design model

Java implementation model  
Figure 2: From a conceptual information model via a design model to a Java implementation model. 

3 INFORMATION MODELING WITH UML CLASS DIAGRAMS 

Conceptual information modeling is mainly concerned with describing the relevant entity types of a 
domain and the relationships between them, while information design and implementation modeling is 
concerned with describing the logical (or platform-independent) and platform-specific data structures 
(called classes) for designing and implementing a software system or simulation. The most important 
kinds of relationships between entity types to be described in an information model are associations, 
which are called ‘relationship types’ in ER modeling, and subtype/supertype relationships, which are 
called ‘generalizations’ in UML. In addition, one may use various kinds of part-whole relationships 
between different kinds of aggregate types and component types, but this is a more advanced topic and 
cannot be covered in this introductory tutorial. 

As explained in the Introduction, we are using the visual modeling language of UML Class Diagrams 
for information modeling. In this language, an entity type is described with a name, and possibly with a 
list of properties and operations, in the form of a class rectangle with one, two or three compartments, 
depending on the presence of properties and operations. Integrity constraints, which are conditions that 
must be satisfied by the instances of a type, can be expressed in special ways when defining properties or 
they can be explicitly attached to an entity type in the form of an invariant box. 

An association between two entity types is expressed as a connection line between the two class 
rectangles representing the entity types. The connection line is annotated with multiplicity expressions at 
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both ends. A multiplicity expression has the form m..n where m is a non-negative natural number 
denoting the minimum cardinality, and n is a positive natural number (or the special symbol * standing 
for unbounded) denoting the maximum cardinality, of the sets of associated entities. Typically, a 
multiplicity expression states an integrity constraint. For instance, the multiplicity expression 1..3 means 
that there are at least 1 and most 3 associated entities. However, the special multiplicity expression 0..* 
(also expressed as *) means that there is no constraint since the minimum cardinality is zero and the 
maximum cardinality is unbounded. 

A subtype relationship between two entity types is expressed by an arrow with a large arrowhead, as 
in the example model shown in Figure 2 below, where the entity type Customer is a subtype of the entity 
type Person. Generally speaking, when A is a subtype of B, this means (1) that A inherits all properties 
(and other features) from B, and (2) that all instances of A are also instances of B. 

E.g., the model shown in Figure 3 below describes the entity types Person, Customer and 
ServiceQueue, and states that  

1. Customer is a subtype of Person (and, hence, inherits the property name);  
2. there is a many-to-one association between Customer and ServiceQueue, or, more precisely, a 

service queue (as an entity of type ServiceQueue) is associated with any number of entities of type 
Customer, while a customer may be waiting in at most one service queue; 

ServiceQueueCustomer

0..1*

name

Person

 
Figure 3: Describing the entity types Person, Customer and ServiceQueue. 

UML allows defining special categories (called ‘stereotypes’) of modeling elements. For instance, for 
distinguishing between object types and event types as two different categories of entity types we can 
define corresponding stereotypes of UML classes («object type» and «event type») and use them for 
categorizing classes in class models, as shown in the model of Figure 4 below, which also describes the 
event type GetInLine. An event of that type involves exactly one customer who gets in line at exactly 
one service queue (we also say the customer and the service queue participate in the event, or: they are its 
participants). 

The models shown in Figure 3 and 4 are solution-independent conceptual models, which often do not 
contain attributes, or if they contain attributes, their range (datatype) is typically not specified. Any such 
conceptual model can be refined into a solution-specific, but platform-independent, design model 
containing full attribute definitions. 

«object type»
ServiceQueue

«object type»
Customer

0..1*

«event type»
GetInLine

1

*

1
*

«object type»
Person

 
Figure 4: Distinguishing between object types and event types as two different categories of entity types. 
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UML also allows defining class-level attributes in the form of ‘tagged values’, which is shown in 
Figure 5 below, where we define the class-level attribute occurrenceTime, representing a random 
variable, in the form of a tagged value, and assign it the value U(1,8) denoting the uniform distribution 
with lower bound 1 and upper bound 8. 

«exogeneous event type»
CustomerArrival

{occurrenceTime = U(1,8)}  
Figure 5: A class with a class-level attribute in the form of a tagged value . 

For a short introduction to UML Class Diagrams, the reader is referred to Ambler (2010). A good 
overview of the most recent version of UML (2.5) is provided by www.uml-diagrams.org/uml-25-
diagrams.html 

4 PROCESS MODELING WITH BPMN 

The Business Process Modeling Notation (BPMN) is an activity-based graphical modeling language for 
defining business processes following the flow-chart metaphor. In 2011, the Object Management Group 
(OMG) has released version 2.0 of BPMN with a semi-formal token flow semantics.  

The most important elements of a BPMN process model are listed in Table 1. 

Table 1: Basic elements of BPMN. 

Name of 
element 

Meaning Visual symbol(s) 

Event 
Something that “happens” during the course of a process, affecting 
the process flow. 
A Start Event is drawn as a circle with a thin border line, while an Intermediate 
Event has a double border line and an End Event has a thick border line. 

  
Activity 

(Task, Sub-
Process) 

Work that is performed within a process.  
A Task is an atomic Activity, while a Sub-Process is a composite Activity. A Sub-
Process can be either in a collapsed or in an expanded view. The latter shows its 
internal process structure.  

Gateway 

For controlling how a process flows.  
A single Gateway could have multiple input and multiple output flows. The plain 
gateway symbol denotes an Exclusive OR-Split (if there are 2 or more output flows) 
or an Exclusive OR-Join (if there are 2 or more input flows). A gateway with a plus 
symbol denotes an AND-Split (if there are 2 or more output flows) or an AND-Join 
(if there are 2 or more input flows). 

 

Sequence 
Flow 

Defines the temporal order of Events, Activities, and Gateways. 
 

Pool 
Represents an agent role (like 'Buyer' or 'Seller') or a specific 
instance of such a role (like 'Amazon.com''). 

 
Message 

Flow 
Represents a message exchange communication link between two 
Pools. It’s an option to render the message type with a message icon.  

 
Ontologically, BPMN activities are special event types. However, the subsumption of activities under 

events is not supported by the semantics of BPMN. It is one of the issues that require further 
improvements of BPMN. Another severe issue of the official BPMN (token flow) semantics is its 
limitation to case handling processes. Each start event represents a new case and starts a new process for 
handling this case in isolation from other cases. This semantics disallows, for instance, to model 
processes where several cases are handled in parallel and interact in some way, e.g., by competing for 
resources. Consequently, this semantics is inadequate for capturing the overall process of a business 
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system with many actors performing tasks related to many cases with various interdependencies, in 
parallel. We do therefore not adopt the official BPMN semantics, but just the visual syntax of BPMN and 
large parts of the informal semantics of its elements. Defining a more general semantics for BPMN that is 
adequate for simulation modeling is still an open research issue. 

Due to these issues, it is not clear at present how to best use BPMN, and how to adapt its syntax and 
semantics, for simulation modeling. Our proposal how to use BPMN for simulation modeling is therefore 
rather experimental and still needs to be evaluated and improved. But we claim that despite these issues, 
using BPMN as a basis for developing a process simulation modeling approach is the best choice of a 
modeling language we can make, considering the alternatives, which are either not well-defined (Flow 
Charts, “Logic Flow Diagrams”) or not sufficiently expressive (Petri Nets, UML State Transition 
Diagrams, UML Activity Diagrams), and which are therefore all inferior compared to BPMN. 

For an introduction to BPMN, the reader is referred to Mancarella (2011). A good modeling tool, with 
the advantages of an online solution, is the Signavio Process Editor, which is free for academic use 
(www.signavio.com/bpm-academic-initiative). 

5 EXAMPLE: MODELING A SERVICE DESK 

In the service queue system example, as implemented in the Simurena Library (Simurena 2012), 
customers arrive at random times at a service desk where they have to wait in a queue when the service 
desk is busy. Otherwise, when the queue is empty and the service desk is not busy, they are immediately 
served by the service clerk. Whenever a service is completed (assuming some random duration), the next 
customer from the queue, if there is any, will be invited for the service. 

5.1 Information Modeling 

5.1.1 Making a Conceptual Information Model 

It is straight-forward to extract four entity types from the problem description above by analyzing the 
noun phrases, so a naïve conceptual information model of this system may look as shown in Figure 6. 
There are one-to-one associations between the entity types ServiceDesk and ServiceClerk and between 
ServiceDesk and ServiceQueue. The fact that a service queue consists of zero or more customers is 
modeled with the help of a one-to-many association between ServiceQueue and Customer. 

ServiceDeskServiceQueue SeviceClerkCustomer

0..1*

1 1 1 1

Person

 
Figure 6: An information model of a service queue system. 

Typically, in a simulation design model we would make several simplifications based on our simulation 
research questions, and, for instance, abstract away from the entity type ServiceClerk. But in a 
conceptual system model, we include all entity types that are relevant for understanding the real-world 
system, independently of the simplifications we may later make in the solution design and 
implementation. This approach results in a model that can be re-used in other simulation projects (with 
different research questions).  

Notice that we modeled Customer and ServiceClerk as subclasses of Person. This follows a general 
pattern analyzed by Guizzardi (2005) who recommends adding a base type (or kind), such as Person, for 
all role classes in a model, such as Customer and ServiceClerk. One of the benefits of applying this 
pattern is that we can see that a service clerk may also be a customer, which is a special case of the 
general possibility that an employee of an organization may also be a customer of it.  
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After modeling all relevant object types in the first step, we model the relevant event types in a 
second step, as shown in Figure 7 below. The main type of association between events and objects is 
participation. When adding event types to the object types in our conceptual information model, we 
therefore also model the participation types between them. For instance, in Figure 7, we have modeled 
that a customer arrival event has exactly one customer and one service desk as its participants. 

«object type»
ServiceDesk

«object type»
ServiceQueue

«object type»
SeviceClerk

«object type»
Customer

0..1*

1 1 1 1

«event type»
CustomerArrival

*

«event type»
CustomerDeparture

*

1

*

*

«event type»
ServiceStart

*

1

*

«event type»
ServiceEnd

*

*

«event type»
GetInLine

«event type»
InviteForService

1

*

1
*

*

*

«object type»
Person

 
Figure 7: Adding event types. 

From an analysis of the problem description, we may infer that there are six potentially relevant types 
of events in this system: customers arriving, customers getting in line, customers being invited by the 
clerk for being served, start of service, end of service and customers departing. Since the service queue 
system is an example of a business system, it is not surprising that all these events are actions (or action 
events) performed by human actors. In fact, we obtained this list of event types by asking ourselves: what 
are the relevant actions of the two actors of the system, customers and service clerks? 

A pattern of two coupled start and end events, like a ServiceStart and a ServiceEnd event, 
indicates that there is actually an activity that is temporally framed by these two events. So, in our 
example, these two event types indicate that we may model a GetService activity type that would replace 
the ServiceStart and ServiceEnd event types. Notice that also a GetInLine event may be considered to 
start an activity of waiting for a InviteForService event, as modeled by the Wait activity in the 
conceptual process model shown in Figure 11 below. 

In order to complete the model of Figure 7, we may add attributes that help describing objects and 
events of these types. 

5.1.2 Making a Solution-Specific and Platform-Independent Information Design Model 

We now derive an information design model from the solution-independent conceptual information model 
shown in Figure 7 above. Our design model is solution-specific because it is a computational design for 
the following specific simulation research question: compute the "mean response time" statistics as the 
average length of time a customer spends in the system from arrival to departure, which is the average 
waiting time plus the average service duration. 
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Our research question requires that we model individual customers, since for being able to compute 
the time a customer spends in the system we need to know which customer is next for getting the service 
and what is their arrival time. For knowing which customer is next, we need to model the service queue as 
a First-In-First-Out (FIFO) queue, which can be expressed in the UML class diagram with the help of the 
ordered association end waitingCustmers. Notice that by placing a dot on the line at this end of the 
association, and not on the other end as well, we make the association uni-directional implying the design 
decision that it will be represented by a reference property with name waitingCustmers in the 
ServiceDesk class. For being able to easily retrieve the arrival time of a customer, which is an 
information item coming from the CustomerArrival event, we record it along with the customer data, so 
we add a corresponding attribute to the Customer class. 

In an information design model we distinguish between two kinds of event types: exogenous event 
types and caused event types. While exogenous events of a certain type occur again and again with some 
random periodicity that can be modeled with a probability distribution assigned to the event type, caused 
events occur at times that result from the internal causation dynamics of the simulation. So, for any event 
type adopted from the conceptual model, we have to make a decision if we model it as an exogenous or as 
a caused event type, and for any exogenous event type, we have to specify a probability distribution for its 
periodicity in our simulation’s information design model. 

In our example model, shown in Figure 8 below, we define CustomerArrival as an exogenous event 
type with the class-level attribute occurrenceTime (in the form of a ‘tagged value’) having the value 
U(1,8) denoting the uniform distribution with lower bound 1 and upper bound 8, while we define 
CustomerDeparture as a caused event type. 

randomServiceDuration() : Integer
isBusy : Boolean

«object type»
ServiceDesk

arrivalTime : Integer

«object type»
Customer

0..1

waitingCustomers

*
{ordered}

«exogenous event type»
CustomerArrival

{periodicity = U(1,8)}

1

*

«caused event type»
CustomerDeparture

*

1

*

*

 
Figure 8: An information design model. 

Notice that we have modeled the random duration of a service with the help of the operation 
randomServiceDuration() shown in the third compartment of the ServiceDesk class. In this operation, 
we can either define an empirical distribution function or invoke a theoretical standard distribution. 

5.1.3 Deriving an Object-Oriented Design Model 

In certain cases, we can make a generic OO design model that can be re-used for, or encoded in, several 
OO programming languages. E.g., the OO design model shown in Figure 10 below, which is derived from 
the information design model shown in Figure 9, could be transformed to more specific C++, Java or 
JavaScript data models. In each OO target language, there would be two foundation classes Object and 
Event, each with suitable properties, implementing the two stereotypes «object type» and «event type». 
Then in the data model, classes stereotyped as event type or object type in the design model extend the 
pre-defined foundation classes Object and Event. This is shown for the two event types 
CustomerArrival and CustomerDeparture in Figure 9. 
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occurrenceTime : Integer
category : EventCategory

Event

getInterOccurrenceTime() : Integer

category : EventCategory = Exogeneous {frozen}
customer : Customer
serviceDesk : ServiceDesk

CustomerArrival

Exogeneous
Caused

«enumeration»
EventCategory

category : EventCategory = Caused {frozen}
customer : Customer
serviceDesk : ServiceDesk

CustomerDeparture

 
Figure 9: An OO data model for the event types CustomerArrival and CustomerDeparture. 

Notice that an OO design model does no longer contain associations. In our example the associations 
between CustomerArrival and Customer and between CustomerArrival and ServiceDesk have been 
replaced with the reference properties customer and serviceDesk, and similarily for 
CustomerDeparture. 

5.1.4 Deriving a Platform-Specific Data Model 

As an example of a platform-specific data model for a standard programming language, we present a data 
model for a simple Java simulator similar to the simple Java simulator discussed in (Banks et al. 2005), 
but with classes for representing object types and event types. In a data model for this platform, as shown 
in Figure 10, the reference property waitingCustmers would have the parameterized type 
Queue<Customer> as its range, where Queue is a Java built-in interface that extends Collection and that 
can be implemented, e.g., with the pre-defined library class LinkedList. 

randomServiceDuration() : Integer

isBusy : Boolean
waitingCustomers : Queue<Customer>

ServiceDesk
arrivalTime : Integer

Customer

id[1] : Integer
name[0..1] : String

Object

 
Figure 10: A Java simulation data model with the parameterized type Queue<Customer>. 

5.2 Process Modeling 

5.2.1 Making a Conceptual Process Model 

In a conceptual process model we prefer modeling activites instead of corresponding start and end events. 
Consequently, for the service desk example modeled with 6 event types in Figure 7, we merge the 
ServiceStart and ServiceEnd event types into a GetService activity type. In addition, we also use a 
Wait activity type replacing the GetInLine event type, which is its implicit start event type. This results 
in a model with the event types CustomerArrival, CustomerDeparture and InviteForService, and the 
activity types Wait and GetService, as shown in Figure 11. 
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Figure 11: A conceptual process model of the service queue system describing two causal laws. 

After modeling the relevant activity types and event types, we identify those types of events that 
account for the causation of relevant state changes and follow-up events. They trigger a causal law. Any 
event type modeled in the information model could potentially trigger a causal law. For simplicity, 
however, we omit event types that classify events, which can be considered to temporally coincide with 
events of another type. Thus, we consider only two laws: one for CustomerArrival events and one for 
ServiceEnd events. We omit service start events, since they can be viewed to coincide either with 
customer arrival events, when the service queue is empty, or with customer departure events, when the 
queue is non-empty. In a similar way, service end events can be viewed to coincide with customer 
departure events. 

In the conceptual process model, we use a BPMN element group rendered with a dashed line for 
visualizing a causal law. In this way we get the two BPMN groups Customer Arrival Law and Get 
Service Law with the following intended meanings: 

1. The Customer Arrival Law states that when a customer arrives, she either gets in line and waits, 
if the service desk is busy, or else gets the service. 

2. The Get Service Law states that when a service ends, the customer immediately departs, and the 
service clerk checks if there are still waiting customers. If there are still waiting customers, the 
next customer is invited for service, so this customer moves forward to the service desk and the 
next service starts. 

In the process design model shown in Figure 12, we turn the causal laws defined in the conceptual 
process model into corresponding transition rules described as BPMN sub-processes with tasks 
expressed as statements having a clear computational meaning and with a binding to objects. For instance, 
when variables are used in a task statement, such as the object variables c and sd in the task statement 
“Add c to sd.waitingCustomers”, then they need to be bound to an object type with the help of a suitable 
BPMN data object, like the ones shown on the left hand side of Figure 12. 
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Figure12: A process design model. 

6 CONLCUSIONS 

In this tutorial, we show how to use UML class diagrams and BPMN process diagrams in a model-driven 
simulation engineering approach. While the use of UML class diagrams for modeling the (information) 
state structure of a system is well-understood, this is not the case for the use of BPMN diagrams for 
modeling the dynamics (or process type) of a system.  

For further reading on modeling for simulation, see www.modeling-for-simulation.info 
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