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ABSTRACT 

This tutorial explains how to develop dedicated simulators for executing event graph models and activity 
cycle diagram (ACD) models. An event-graph simulator template and an ACD simulator template are 
presented in pseudo code form, together with example C# implementations for a simple discrete-event 
system. A list of the simulation programs in C# codes is provided in a website. A brief description of a 
general-purpose simulator for executing ACD models is also presented. 

1 INTRODUCTION 

A discrete-event system (DES) consisting of resources (e.g. machines and buffers) and entities (e.g. jobs) 
is often referred to as a regular DES. A DES without physical resources may be termed a resource-less 
DES. The entities in a resource-less DES are referred to as agents, and the basic concept of agent-based 
modeling is that a system is modeled through placing agents in the system and letting the system evolve 
from the interaction of those agents. Regular DESs include most service and manufacturing systems that 
are designed and built, as well as traffic systems and military systems. A flock of seasonal birds in the sky 
is an example of resource-less DES. Among the DES modeling formalisms (e.g. Petri nets, DEVS, timed 
automata, event graphs, and activity cycle diagrams), the event graph and activity cycle diagram (ACD) 
are commonly used in simulation modeling (i.e. modeling for simulation) of regular DESs, whereas Petri 
nets and timed automata are primarily used in modeling DESs for analysis purposes. This tutorial 
explains how to develop dedicated simulators for executing event graph models and ACD models. A brief 
description of a general purpose simulator ACE® for executing ACD models is also presented. To the best 
of the authors’ knowledge, there are no other tools that can be used to directly execute ACD models. 

1.1 Event Graph 

The event-based modeling concept was realized in SIMSCRIPT II in the 1960s (Kiviat, Villanueva, and 
Markowitz 1968), but the event graph formalism was established later by Schruben (1983). An event 
graph is a directed graph (GEG = <V, E, S, F, C, D, A>) defined by a set of vertices (V = {v}) that 
represents the events, a set of directed edges (E = {eod = (vo, vd)}) that represents the temporal and logical 
relationships between pairs of events, and a set of state variables (S = {s}) that represents the system state. 
Associated with each vertex (v) is a state update function (fv∈F) that describes the state change caused by 
the event. Associated with E = {e} are a set of conditions (C = {ce}), a set of time delays (D = {de}), and a 
set of action types (A = {ae∈{scheduling, canceling}}). A state-of-the-art review of event graph is given 
in Savage, Schruben, and Yücesan (2005). 
 Figure 1 presents an event graph model for a single server system initially consisting of an idle 
machine (M = 1) and an empty buffer (Q = 0): (1) an Arrive event, which increases the job count (Q) in the 
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Simulator, EventList, Event, ActivityList, and Activity classes. The Simulator class contain the main program 
(Run method), two activity routines (Create and Process), two event routines (Created and Processed), 
event handling functions, activity handling functions, and random variate generators (Exp and Uni). The 
member variables in the Simulator class include: (1) state variables (C, M, and Q); (2) simulation clock 
variable (Clock); (3) statistics variables (SumQ, Before, and AQL); (4) a random number variable (U) that 
generates uniform random numbers that are used in generating Exp (m) and Uni (a, b) random variates; (5) 
the event-list variable FEL; and (6) the activity-list variable CAL. 

Along with the event graph simulation in Section 2.6, the EventList class is defined as a member 
variable of the Simulator class. The ActivityList class contains methods for manipulating the candidate 
activity list CAL, which is defined as a member variable of the Simulator class. The Activity class is about 
the candidate (or influenced) activity and has a property of Name (activity name). 

The main program, whose pseudo-code was given in Figure 20, is implemented by the Run method as 
shown below. The main program consists of five phases: (1) Initialization phase, (2) Scanning phase, (3) 
Timing phase, (4) Executing phase, and (5) Statistics collection phase. A complete list of C# codes for the 
single server system ACD simulator may be found in the website (Choi and Kang 2014). 

 
public void Run(double eosTime) { 

//1. Initialization Phase  
Clock = 0; FEL = new EventList(); R = new Random(); 
CAL = new ActivityList(); Event nextEvent = null; 
Execute_Initialize_routine(Clock);  
do { 

//2. Scanning Phase  
while (!CAL.IsEmpty()) { 
      string ACTIVITY = Get_Activity(); 
      switch (ACTIVITY) { 

case "Create": {Execute_Create_activity_routine(Clock);break;} 
case "Process":{Execute_Process_activity_routine(Clock);break;}}} 

//3. Timing phase 
nextEvent = Retrieve_Event(); Clock = nextEvent.Time; 
//4. Executing phase 

     switch (nextEvent.Name) { 
case "Created":  {Execute_Created_event_routine(); break;} 
case "Processed":{Execute_Processed_event_routine(); break;}}  

} while (Clock < eosTime); 
//5. Statistics collection phase 
Execute_Statistics_routine(CLK); } 

4 A GENERAL PURPOSE ACD EXECUTOR: ACE® 

ACE® is the only tool that can execute ACD models. The advantage of ACE® is the use of a formal model 
as its input (in the form of an activity transition table). Figure 21 presents the main window of ACE® 
(with the single server ACD model from Table 2), which has three main regions: Main Menu, Activity 
Transition Table (ATT) Window, and Spreadsheet Window. Three tool bars are also provided: ATT Tool 
Bar in the ATT Window, and Queue Tool Bar and Variable Tool Bar in the Spreadsheet Window. The 
ACE® Menu Bar contains four menus including File, Model, Run, and Help. The Activity Transition 
Table (ATT) Window is where the activity transition table of the ACD model is constructed. The 
Spreadsheet Window is used to declare the queues and variables that appear in the ACD model.  

Figure 22 displays the components of ACE®, which consist of three GUI components (ATT Editor, 
Run Options Editor, and Output Report Viewer) and two library components (ATT Simulator and Output 
Report Generator). The GUI components were developed for the model implementation and 
experimentation. The model implementation can be undertaken using the ATT editor to construct an 
activity transition table, which is stored in the ATT model, and it consists of a set of queues, a set of 
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5 SUMMARY 

In this tutorial, we have explained how to develop dedicated simulators for executing event graph models 
and activity cycle diagram (ACD) models. The event-graph simulator template was developed from the 
well-known next-event scheduling algorithm, and the ACD simulator template was developed based on 
the activity scanning algorithm. C# implementations of the simulator templates are presented for a single -
server event system. Furthermore, a brief description of a general purpose simulator for executing ACD 
models is presented. 
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