Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

HOW TO DEVELOP YOUR OWN SIMULATORS FOR DISCRETE-EVENT SYSTEMS

Byoung K. Choi
Donghun Kang

Department of Industrial and Systems Engineering
Korea Advanced Institute of Science and Technology (KAIST)
Daehak-ro (373-1 Guseong-dong), Yuseong-gu
Daejeon, 305-701, REPUBLIC OF KOREA

ABSTRACT

This tutorial explains how to develop dedicated simulators for executing event graph models and activity
cycle diagram (ACD) models. An event-graph simulator template and an ACD simulator template are
presented in pseudo code form, together with example C# implementations for a simple discrete-event
system. A list of the simulation programs in C# codes is provided in a website. A brief description of a
general-purpose simulator for executing ACD models is also presented.

1 INTRODUCTION

A discrete-event system (DES) consisting of resources (e.g. machines and buffers) and entities (e.g. jobs)
is often referred to as a regular DES. A DES without physical resources may be termed a resource-less
DES. The entities in a resource-less DES are referred to as agents, and the basic concept of agent-based
modeling is that a system is modeled through placing agents in the system and letting the system evolve
from the interaction of those agents. Regular DESs include most service and manufacturing systems that
are designed and built, as well as traffic systems and military systems. A flock of seasonal birds in the sky
is an example of resource-less DES. Among the DES modeling formalisms (e.g. Petri nets, DEVS, timed
automata, event graphs, and activity cycle diagrams), the event graph and activity cycle diagram (ACD)
are commonly used in simulation modeling (i.e. modeling for simulation) of regular DESs, whereas Petri
nets and timed automata are primarily used in modeling DESs for analysis purposes. This tutorial
explains how to develop dedicated simulators for executing event graph models and ACD models. A brief
description of a general purpose simulator ACE” for executing ACD models is also presented. To the best
of the authors’ knowledge, there are no other tools that can be used to directly execute ACD models.

1.1 Event Graph

The event-based modeling concept was realized in SIMSCRIPT II in the 1960s (Kiviat, Villanueva, and
Markowitz 1968), but the event graph formalism was established later by Schruben (1983). An event
graph is a directed graph (Ggg = <V, E, S, F, C, D, A>) defined by a set of vertices (V' = {v}) that
represents the events, a set of directed edges (E = {e,q = (v,, v4)}) that represents the temporal and logical
relationships between pairs of events, and a set of state variables (S = {s}) that represents the system state.
Associated with each vertex (v) is a state update function (f,€F) that describes the state change caused by
the event. Associated with £ = {e} are a set of conditions (C = {c.}), a set of time delays (D = {d,}), and a
set of action types (4 = {a.€{scheduling, canceling}}). A state-of-the-art review of event graph is given
in Savage, Schruben, and Yiicesan (2005).

Figure 1 presents an event graph model for a single server system initially consisting of an idle
machine (M = 1) and an empty buffer (Q = 0): (1) an Arrive event, which increases the job count (Q) in the

978-1-4799-7486-3/14/$31.00 ©2014 IEEE 147

Choi and Kang

buffer, always schedules another Arrive event to occur after t, and schedules a Load event to occur
immediately if the machine is idle (M = 1); (2) a Load event, which sets the machine to busy (M--) and
decreases the job count by one (Q--), schedules an Unload event to occur after t; and (3) the Unload event
resets the machine to idle (M++) and schedules a Load event if the buffer is not empty (Q > 0). Thus, the
single server event graph model may be specified as follows: V' = {v, = Arrive, v, = Load, v;= Unload}, £

= {en= (v, vi), enn= (v, 1), €3 = (v2, 13), 2= (v3,)}, S = {Q, M}, etc.

{Q++} {M--, Q-} {M++}

Figure 1: Event graph model of a single server system.

1.2 Activity Cycle Diagram

The ACD was invented by Tocher in the late 1950s in order to solve a congestion control problem at a
steel mill (Hollocks 2008). Tocher used a flow diagram of activities to model the dynamic behavior of the
steel plant. The activity flow diagram later evolved into the classical ACD where an activity node is
denoted using a rectangle and a queue node is denoted using a circle (Carrie 1988). A classical ACD
model is a bipartite directed graph (G4cp = <A, B, E, T, u, uy>) defined by a finite set of activity nodes (4
= {ai}), a finite set of queue nodes (B = {b;}), a finite set of edges (£ = {e} withe; € (4 x B)U (B x A)),
a set of time delay functions (7 = {t,}) associated with a € 4, a marking vector (u = {u,}) associated with
b € B, and an initial marking u,. A state-of-the-art review of ACD is given in Choi et al. (2013).

Figure 2 presents a classical ACD model of the same single server system as depicted in Figure 1
where the activity nodes are Create and Process; the queue nodes are C, Jobs, Q, and M; t, is the inter-
arrival time; and {; is the service time. In the figure, the main solid-line loop denotes the entity-activity
cycle and the dashed line loops denote the resource-activity cycles (Creator cycle and Machine cycle). Thus,
the single server ACD model may be specified as follows: 4 = {a, = Create, a, = Process}, B = {b, = Jobs,
b2=C, b3 =Q, b4= M} oMo {OO, 1, 0, 1}

Creator cycle i Machine cycle

~-» Create [~ ™ Process |-

<t,> <ts>
Entity cycle

Figure 2: ACD model of a single server system.

2 HOW TO DEVELOP YOUR OWN DEDICATED EVENT GRAPH SIMULATORS

This section will assist you in developing your own simulation programs for executing a given event
graph model using the next event scheduling algorithm. It is assumed that you have basic skills in
computer programming. The process of developing a dedicated simulator for a given event graph model
will be described in a bottom-up manner, starting from the primitive functions for handling events,
followed by functions for generating random variates.

148

Choi and Kang

2.1 Functions for Handling Events

In order to simulate the system dynamics of a discrete event system, we need a mechanism for processing
future events. A future event is an event that has been scheduled to occur in the future; a future event that
has the smallest (i.e. earliest) event-time is called the next event. The simulation maintains a future event
list (FEL), which is an ordered list of pairs ({<Ex, Ti>}), where T is the scheduled execution time of the
future event (Ex). The FEL is also a priority queue, ordered in increasing values of Tk.

Figure 3 presents a schematic description of the three event-handling functions: Schedule-event (),
Retrieve-event (), and Cancel-event (). Initially, there are three future events {<El, 12.1>, <E2, 18.6>, <E3,
34.0>} stored in the FEL. The mechanisms of the event-handling functions are:

1. If the Schedule-event (E4, 22.7) function is invoked, the incoming event <E4, 22.7> is inserted
immediately after the incumbent event <E2, 18.6> in the FEL, which is a priority queue in an
increasing order of event times. Now, FEL has four future events: <E1, 12.1>, <E2, 18.6>, <E4, 22.7>,
and <E3, 34.0>. If an incoming event has the same event time as an incumbent event, the former is
stored right after the latter so that a FIFO rule is applied (Other tie-breaking rules are possible).

2. If the Retrieve-event (E, T) function is invoked, the next event <E = E1, T = 12.1> is retrieved (and
deleted from the FEL).

3. [If the Cancel-event (E4) function is invoked, the event node <E4, 22.7> is deleted from the FEL.

3 _ [EVENT E EVENT E2| [EVENT E3
Initial state of FEL: GREC " TIVE: 124 TIME: 186 TIME: 34.0
3 3 TEVENT B4} reoenm E20

_ [EVENT Ed EVENT E2 | » EVENT E4 [EVENT E3

(a) Schedule-event(E4, 2.7 |FEEE > TIME: 121 TIVE 186 | -TME227.0 [TiME 340

A _ EVENT E1 | [EVENT 2] _[EVENT £4) [EVENT E3

(b) Retrieve-event (E, T). GEE TME 121 | | TIME: 186 | "L TIME: 227 TIME: 34.0

E=E1, T= 121
, [EVENT E2] [EVENT £4| [EVENT B3
(¢) Cancel-event (E4): FEL "I TIME: 186 TIVE 227 | | TIME. 34.0

Figure 3: Schematic descriptions of the event handling functions.

2.2 Functions for Generating Random Variates

Most programming languages support a built-in function for generating a standard uniform random
number (u~U[0,1]). In Java, for example, the function u = Math.random() does the job. Let x ~ U[a, b], then x
is obtained from u as follows: x = a + (b—a)*u. An exponential random variate (X) is generated from a
uniform random number (U) as follows. Because the distribution function F(X) can be regarded as a
uniform random number (U), we have U = F(X) = 1— e*, where 0 is the mean. Upon solving this equation
for X, we can obtain X = —0*In(1-U), which is equivalent to X = —6*In(U) because (1 - U) is also a uniform
random number. This method of generating a random variable is referred to as the inverse transformation
method. In Java, the natural log (In(U)) is implemented as Math.log (u). The Java and C# codes for
generating exponential random variates and uniform random variates are listed in Figure 4. A detailed
description on the subject is provided in Law (2007).

2.3 Event Routines

Figure 5 presents a portion of an event graph for an event vertex that has a scheduling edge and a
canceling edge. The event graph indicates that “whenever EQ occurs, the state variable s changes to feo(s).

149

Choi and Kang

public double Exp(double a) { if (a<=0) return -1; Random U = new Random();
double u=Math.random(); return (-a*Math.log(u)); } public double Exp(double a) { if (a<=0) return -1;
(a) public double Uni(double a, double b) { (b) double u=U.NextDouble(); return (-a*Math.Log(u));}
if (@>=b) return -1; public double Uni(double a, double b) { if (a >=b) return -1;
double u=Math.random(); return (a+(b- a)*u); } double u=U.NextDouble(); return (a + (b-a)*u);}

Figure 4: Random variate generation functions in (a) Java and (b) C#.

Then, if edge condition C1 is true, E1 is scheduled to occur after ti,; if edge condition C2 is true, E2 is
canceled immediately”. Figure 5 also illustrates an event transition table for EQ. An event transition table
is a tabular form of formally specifying an event graph model. Specified for each originating event are the
state change, edge conditions, action types (schedule/cancel), time delays, and destination events.

@D F®

{s = feo(s)}
Originating Event | State Change | Edge | Condition Action Delay | Destination Event
1 C1 schedule t E1
EO S= on(S)
2 C2 cancel 0 E2

Figure 5: Originating event vertex EQ with a scheduling edge and canceling edge.

An event routine for an originating event is a subprogram that describes the changes in the state
variables and how the future events are scheduled and/or canceled. Conditional events are handled inside
each event routine. One event routine is required for each event in the event graph model. The event
routine for EQ in Figure 5 is expressed as follows:

Execute-E0-event-routine (Now) { s = feo(s); If (C1) Schedule-event (E1, Now+ ty); If (C2) Cancel-event (E2) }.

24 Next Event Scheduling Algorithm for Simulation Execution

The overall procedure of the simulation execution, which is called the next event scheduling algorithm, is
as follows: (0) Reset the simulation clock (CLK); (1) initialize state variables and schedule initial events;
(2) retrieve the next event <E, T> from the FEL and set CLK to next event time (T); (3) execute the event
routine for the next event (E); (4) if a termination condition is satisfied, compute the output statistics,
otherwise return to step (2). The above next event scheduling algorithm may be drawn as a flow chart as
seen in Figure 6.

In Figure 6, the simulation is terminated if an end of simulation (EOS) condition is met. Figure 7
describes the main program template of the event graph simulator that implements the next event
scheduling algorithm. The “Initialize” box and “Output statistics” box in Figure 6 are implemented as an
initialize routine and a statistics routine, respectively, in Figure 7. The simulation is performed inside the
While loop. Listed in the Event-routines list are the event routines for E1~En. Here, the EOS condition is
specified using the simulation clock (CLK) and EOS time (t).

2.5 Single Server System Event Graph Simulator

The process of programming a dedicated simulator for a given event graph model is as follows: (1)
the (pure) event graph model is converted to an augmented event graph model through adding the
statistics variables and a statistics routine; (2) an event transition table is constructed from the augmented

150

Choi and Kang

’ (0) Reset simulation clock: CLK = 0; ‘

v .
’ (1) Initialize state variables & schedule initial events %---Eygr-l-t-f-c-}-lfggl-l-r}-g -------- ;
¢ Event-retrieval
—»{ (2) Time-flow mechanism: Get Next-event & update CLK entretrieva
v)
Event-scheduli
‘ (3) Execute the event-routine for the Next-event. F venrsehiecuine
No Terminate?
] (4) Output statistics \
Figure 6: Next event scheduling algorithm.
Begin
CLK=0;
Execute-initialize-routine (CLK);
While (CLK < te) do { /I (1) Initialize
Retrieve-event (EVENT, TIME); CLK = TIME; // (2) Time-flow mechanism
Case EVENT of { Il (3) Execute event-routine

E1: Execute-E1-event-routine (CLK);
E2: Execute-E2-event-routine (CLK); Event-routines list
En: Execute-En-event-routine (CLK);
} I end-of-case
¥; I end-of-while
Execute-statistics-routine (CLK); /I (4) Output statistics
End

Figure 7: Main program template implementing the next event scheduling algorithm.

event graph model; (3) the initialize routine, event routines, and statistics routine are developed; and (4)
the main program is obtained from the main program template given in Figure 7. The process of
constructing your own event graph simulator will be described using the single server system model given
in Figure 1. It is assumed that the EOS time (t;) is 500 and the distributions of the inter-arrival times (ta)
and service times (Is) are Exp (5) and Uni (4, 6), respectively.

Figure 8 presents an augmented event graph for collecting the average queue length (AQL) statistics.
Let {Ci} denote the queue length change times, then the k" queue length change interval becomes Ak =
Ck+1 — Ck. Let Qx be the queue size during Ak, then the AQL is expressed as AQL = X(Qx x Ak) / Z(Ak) = SumQ
| CLK. Here, two statistics variables are introduced: SumQ for accumulating the queue length values over
time and Before for the previous event time. An event transition table for this event graph model in Figure
8 is given in Table 1.

Initialize:
Q=0, M=1,
Before=0,
SumQ=0

(CLK>500)

v

{SumQ += Q*(CLK-Before), {SumQ += Q*(CLK-Before), {M++} Statistics:
Before = CLK, Before = CLK, SumQ+= Q*(CLK-Before),
Q++} M--, Q--} AQL= SumQ/ CLK

Figure 8: Augmented event graph model for collecting AQL statistics.

151

Choi and Kang

The initialize routine, event routines, and statistics routine of the augmented event graph model for
collecting the AQL statistics are listed in Figure 9. Then, using the main program template in Figure 7,
the main program in pseudo-codes of the single server system event graph simulator is obtained as
described in Figure 10. A C# implementation of the pseudo-codes is presented in Section 2.6.

Table 1: Event transition table for the event graph model of Figure 8.

No | Originating Event State Change Edge | Condition | Delay [Destination Event
Initialize Q=0; M = 1; Before=0; SumQ =0; 1 True - Arrive
1 Arrive SumQ += Q*(CLK-Before); 1 True Exp(5) Arrive
Before= CLK; Q++ 2 M=1 0 Load
2 Load SumQ += Q*(CLK-Before); 1 True | Uni(4,6) Unload
Before= CLK; M--; Q——;
3 Unload M++; 1 Q>0 0 Load

Statistics SumQ+= Q*(CLK-Before); AQL= SumQ/CLK

Execute-Initialize-routine (Now){ Q= 0; M = 1; Before = 0; SumQ = 0; Schedule-event (Arrive, Now); }
Execute-Arrive-event-routine (Now){ SumQ += Q*(Now - Before); Before = Now; Q++;
Schedule-event (Arrive, Now+ Exp (5)); if (M=1) Schedule-event (Load, Now); }
Execute-Load-event-routine (Now){ SumQ += Q*(Now - Before); Before = Now; M--; Q--;
Schedule-event (Unload, Now+ Uni (4, 6)); }
Execute-Unload-event-routine (Now) { M++;
if (Q>0) Schedule-event (Load, Now); }
Execute-statistics-routine (Now) { SumQ += Q*(Now - Before); AQL = SumQ / Now; }

Figure 9: Initialize routine, event routines, and statistics routine for the single serve system.

Begin
CLK=0;
Execute-initialize-routine (CLK);
While (CLK <500)do{ //te =500
Retrieve-event (EVENT, TIME);, CLK = TIME;

Case EVENT of {
Arrive: Execute-Arrive-event-routine (CLK);
Load: Execute-Load-event-routine (CLK);
Unload: Execute-Unload-event-routine (CLK);

} Il end-of-case
}. Il end-of-while
Execute-statistics-routine (CLK);
End

Figure 10: Main program of the single server system event graph simulator.

As another example, Figure 11 presents an event graph model and an augmented event transition
table for a single server system with resource failures (t = inter-failure time; t; = repair time). Compared
with the single server system event graph of Figure 1, it has two additional event vertices: Fail and Repair.
In addition, a Fail event must be scheduled at the beginning. Thus, we need a revised Initialize routine and
two event routines (Repair and Fail), as listed in Figure 12. By reflecting the event routines of Figure 12
into the single server system main program in Figure 10, we can build a dedicated simulator for the
‘single server system with resource failures’ given in Figure 11.

2.6 C# Implementation of the Single Server System Event Graph Simulator

This section describes how a dedicated event graph simulator for a single server system is implemented in
C#. Figure 13 presents the class diagram for the single server system event graph simulation that consists

152

Choi and Kang

No| O.E. State Change Edge| Cond.| Action | Delay| D.E.
0 | Initialize [Q=0; M=1; 1 True | schedule| 0 Arrive
Before=0; SumQ=0; 2 True | schedule| t Fail
1| Arive |SumQ+=Q*(CLK-Before); | 1 True |schedule| t. Arrive
Before=CLK; Q++ 2 M=1 | scheduie| 0 Load
2 | Load [SumQ+=Q*(CLK-Before);| 1 True |schedule| t; |Unload
Before=CLK; M--; Q—-;
3 | Unload [M++: 1 Q>0 [schedule| O Load
4 | Repair |M=1; 1 True |schedule| t Fail
2 Q>0 |scheduie] 0 Load
5 Fail |M=-1; 1 True [schedule| t Repair
2 True | cancel 0 Unload
6 |Statistics|SumQ+= Q*(CLK-Before); AQL= SumQ/CLK:
(a) Event graph model (b) Augmented event transition table

Figure 11: A single server system with resource failure.

Execute-Initialize-routine (Now) {Q= 0; M= 1; Before= 0; SumQ= 0; Schedule-event (Arrive, Now); Schedule-event (Fail, Now +t)}
Execute-Repair-event-routine (Now) { M= 1; Schedule-event (Fail, Now +t;); if (Q>0) Schedule-event (Load, Now); }
Execute-Fail-event-routine (Now) { M= -1; Schedule-event (Repair, Now + t,); Cancel-event (Unload); }

Figure 12: Initialize routine and additional event routines for the resource failure single serve system.

of three classes: Simulator, EventList, and Event classes. Contained in the Simulator class are the main
program (Run method), an initialize routine (Execute_Initialize_routine), three event routines, a statistics
routine (Execute_Statistics_routine), event-handling functions (Retrieve_Event, Schedule_Event), and random
variate generators (Exp, Uni). The member variables in the Simulator class include: (1) state variables (M,
0); (2) simulation clock (CLK); (3) statistics variables (SumQ, Before, and AQL); (4) a random number
variable (U) for generating uniform random numbers that will be used to generate Exp (m) and Uni (a, b)
random variates; and (5) the event-list variable (FEL). The EventList class contains methods for
manipulating the future event list (FEL), defined as a member variable of the Simulator class. The Event
class is about the next event and two properties of Name (event name) and Time (scheduled event time).

EventList 2| Simulator 2

Class Class
7 |g¥ FEL r
= Methods E— BFields
¢ AddEvent 47 AQL
@ NextEvent 47 Before
R 4 CLK
¢ M
Q
? & ‘ -
4’ _Events i‘f & sumQ
; v . PRY
Event A -
Class = Methods
7 4¥ Execute_Arrive_event_routine
= Properties 4% Execute_Initialize_routine
%= Name #¥ Execute_Load_event_routine
= Time 4¥ Execute_Statistics_routine
2% Execute_Unload_event_routine
3¥ Exp
2¥ Retrieve_Event
@ Run
2% Schedule_Event
Y Uni

15

Figure 13: Class diagram for the single server system event graph simulator.

153

Choi and Kang

The main program, whose pseudo code is given in Figure 10 (Section 2.5), is implemented using the
Run method described below. The main program consists of four phases: (1) the Initialization phase, (2)
the Time-flow mechanism phase, (3) the Event-routine execution phase, and (4) the Statistics collection
phase. A complete list of C# codes for the single server system event graph simulator may be found on
our website (Choi and Kang 2014).

public void Run (double eosTime) {

//1. Initialization phase

CLK = 0.0; FEL = new EventList(); U = new Random();

Event nextEvent = null;

Execute Initialize routine (CLK);

while (CLK < eosTime) {

//2. Time-flow mechanism phase
nextEvent = Retrieve Event(); CLK = nextEvent.Time;
//3. Event-routine execution phase
switch (nextEvent.Name) ({

case "Arrive": { Execute Arrive event routine (CLK);break; }
case "Load": { Execute Load event routine (CLK);break; }
case "Unload": { Execute Unload event routine (CLK);break; } }

}
//4. Statistics collection phase
Execute Statistics routine (CLK); }

3 HOW TO DEVELOP YOUR OWN DEDICATED ACD SIMULATORS

This section assists with developing your own simulation programs for executing a given ACD model
using the activity scanning algorithm. The process of developing a dedicated simulator for a given ACD
model is described in a bottom-up manner, starting from the primitive functions for handling activities.

3.1 Functions for Handling Activities

In simulation executions of ACD models, an additional data structure called a candidate activity list (CAL)
is used to handle the candidate (or influenced) activities. A pair of activity handling functions is used to
store/retrieve activities into/from the CAL, which is a first-in, first-out (FIFO) queue. Figure 14 provides
a schematic description of the two activity handling functions: Store-activity () and Get-activity (). Initially,
there are three candidate activities ({<A1>, <A2> <A3>}) stored in the CAL. The management of these
activities using two functions will be explained with examples.

1. If the Store-activity (A4) function is invoked, the influenced activity (A4) is inserted at the end of the
CAL (after <A3>), which is a FIFO queue of influenced activities. Now, the CAL has four
candidate activities: <A1>, <A2>, <A3>, and <A4>.

2. If the Get-activity () function is invoked, the next activity (<A = A1>) is returned and its entry is
removed from the CAL.

Inital state of CAL: | CAL ——] At | 22 (A3 |
(a) Store-actity (M): | CAL ——»{ At > a2 > a3

(b) Get-activity (A): CAL 4 =‘| A2 }—>| A3
A=A

Figure 14: Schematic descriptions of the activity handling functions.

154

Choi and Kang

3.2 Activity Routines and Event Routines

Figure 15 displays a portion of an ACD in which (1) Q1 is an input queue of activity A1, (2) Q2 is an
output queue of activity A1, and (3) A2 and A3 are influenced activities of activity A1. Queue S1 represents
the number of idle resources required to perform activity Al. In the following, the execution rules of an
ACD are described for the A1 activity in Figure 15. An activity is confined by two events: an activity-
begin event and an activity-end event. Once an activity-begin event occurs, the activity-end event is
bound to occur after the time delay of the activity duration. Thus, the activity-end event is called a bound-
to-occur event (BTO event). In the literature, the ‘activity-begin’ and ‘BTO’ events are often referred to
as ‘conditional’ and ‘bound’ events, respectively.

------- anes > A3
/l\ Lt
Ec...> Al | ; A2
Q1 Q2
_’Q <t L 4 <>
At-begin BTO-event At-end
No| Activity r
Condition | Action | Time| Name |Arc| Condition | Action| Influenced Activity
1] A1 (Q1>0) & | Q1——; | t; E1 1 True S1++; | A1
(81>0) | S1--; 2| Te [aQ2++][A2,A3

Figure 15: Partial ACD with three activity nodes and three queues.

The At-begin execution rules of activity A1 in Figure 15 are as follows: “If the number of tokens in
input queue Q1 is at least one and if there is at least one token in queue S1, then the A1 activity will begin
after de-queuing one token from Q1 and one token from S1, and its BTO event E1 is scheduled to occur
after the activity duration (t;).” Similarly, the At-end execution rules are expressed as “one token is
created and en-queued into output queue Q2 and a token is returned to queue S1. Then, the influenced
activities A2 and A3 are examined for execution”. Figure 15 also illustrates an activity transition table
(for activity A1) that formally specifies the ACD model in a tabular form (Kang and Choi 2010).
Specified for each activity node are its At-begin condition and action, BTO-event time and event name,
At-end condition and action, and the influenced activity of each output arc.

The abovementioned execution of an activity is separated into the At-begin execution and At-end
execution, and is performed using two routines, an activity routine and an event routine, respectively. An
activity routine is a subprogram that describes the changes in the state variables made at the beginning of
an activity and schedules its BTO event E1 into the FEL. An activity routine is required for each activity
in the activity transition table and it has the following structure: (1) check the At-begin condition and (2)
execute the At-begin action and schedule the BTO event of the activity if the at-begin condition is
satisfied. The activity routine for activity A1 in Figure 15 can be expressed as follows:

Execute-A1-activity-routine (t) { if (Q1>0) & (S1>0)) {Q1--; S1--; Schedule-event (EventA1, 1)} }.

An event routine for ACD is a subprogram that describes the changes in the state variables made at
the end of an activity and storing the influenced activities into the CAL. One event routine is required for
each activity in the activity transition table and it has the following structure. For each At-end arc, (1)
execute the At-end action if the At-end condition is satisfied and (2) store the influenced activities into the
CAL by invoking the activity handling method Store-Activity (). The event routine for activity A1 in Figure
15 can be expressed as follows:

Execute-E1-event-routine (t) { S1++; Store-activity (A1); Q2++; Store-activity (A2); Store-activity (A3) }.

155

Choi and Kang

The event routine of the ACD is similar to that of the event graph in that the changes in the state
variables are described. However, the event routine of the ACD stores the influenced activities in the
CAL instead of scheduling or canceling future events in the FEL. In an ACD, the next-event scheduling is
made during the activity routine.

33 Activity Scanning Algorithm

It is described on p. 5 of Hollocks (2008) that the core idea of the Tocher’s three-phase process came to
him at Christmas, 1957, evidently while in his bath! The notion began from the concept of a system that
consists of individual components progressing as time unfolds through states that only change at discrete
events. The three-phase process includes (1) Phase A: advance the clock to the time of the next bound-to-
occur (BTO) event, (2) Phase B: execute the BTO event, and (3) Phase C: initiate ‘conditional’ activities
that the conditions in the model now permit. This three-phase process is formally expressed in an activity
scanning algorithm as illustrated in Figure 16. The activity scanning algorithm maintains a simulation
clock (CLK), structure future event list (FEL), and the two event-handling functions (Schedule-event () and
Retrieve-event ()) that were introduced in Section 2.1.

| 0. Set simulation clock: CLK = 0; |

i i I | Store-activity
‘ 1. Initialize Queues & store Enabled Activities into CAL [

Scanning Phase l E
2. While CAL is not empty {

—> Get an Activity from CAL <

Execute the activity-routine for the Activity }

Get-activity

Schedule-event

Timing Phase l
liRetrieve the Next-event from FEL and advance Time -
Retrieve-event
Executing Phase l
‘ 4. Execute the event-routine for the Next-event l[
No Terminate? Yes I 5. Collect statistics & Stop |

Figure 16: Activity scanning algorithm.

Also, the activity scanning algorithm uses the candidate activity list (CAL) and the two activity
handling functions (Store-activity () and Get-activity ()) that were introduced in Section 3.1. The CAL that
stores the influenced activities assists in Phase C of the three-phase process through reducing the number
of activities to scan for the execution. Another, perhaps more critical, benefit of introducing CAL is that it
allows the management of tie-breaking among the concurrent activities. Note that the three-phase process

is implemented with the sequence of Phase C — Phase A — Phase B in the activity scanning algorithm.

Figure 17 presents the main program template of the ACD simulator that implements the activity
scanning algorithm. Along with the event graph simulator, the /nitialize box (Step 1) and Output statistics
box (Step 5) in Figure 16 are implemented as an initialize routine and statistics routine, respectively. The
simulation is performed inside the do-while loop. The activity routines for activities A1~An are listed in
the Activity-routines list. Also, the event routines for BTO events E1~En are listed in the Event-routines
list. Here, the EOS condition is specified using the simulation clock (CLK) and EOS time (t;). The activity
scanning algorithm for parameterized ACD is almost the same as that of Figure 16 (Choi and Kang 2013).

156

Choi and Kang

Begin
CLK=0;
Execute-initialize-routine(CLK); Il (1) Initialize
do{
while (CAL is not empty) { /I (2) Scanning phase
ACTIVITY = Get-activity();
Case ACTIVITY of {
A1: Execute-A1-activity-routine (CLK);
A2 Execute-A2-activity-routine (CLK); Activity-routines list
An: Execute-An-activity-routine (CLK);
} /I end-of-case
} llend-of-while
Retrieve-event (EVENT, TIME), // (3) Timing phase
CLK = TIME;
Case EVENT of { Il (4) Executing phase
E1: Execute-E1-event-routine (CLK);
E2: Execute-E2-event-routine (CLK); T
CVENUTouurnes 1isc
En: Execute-En-event-routine (CLK); j
end-of-case
} while (CLK < te);
Execute-statistics-routine(CLK); /I (5) Output statistics
End

Figure 17: Main program template implementing the activity scanning algorithm.

3.4 Single Server System ACD Simulator

The process of programming a dedicated simulator for an ACD model is similar to that for the event
graph model presented in Section 2. That is, the overall steps are (1) the (pure) ACD model is converted
to an augmented ACD model through adding the statistics variables and a statistics routine; (2) an activity
transition table is constructed from the augmented ACD model; (3) the initialize routine, event and
activity routines, and statistics routine are developed; and (4) the main program is obtained from the main
program template given in Figure 17. The process of developing your own ACD simulator is described
using the single server system model considered in Section 1. Along with the event graph simulator, it is
assumed that the EOS time (s) is 500 and the distributions of the inter-arrival times (t;) and service times
(ts) are Exp (5) and Uni (4, 6), respectively

Figure 18 presents an augmented ACD for the ACD model described in Figure 2 in order to collect
the average queue length (AQL) statistics. As mentioned in Section 2.5, two statistics variables (SumQ
and Before) are introduced. Then, the At-end action of activity Create and At-begin action of activity
Process are modified in order to collect the queue length change times. An activity transition table for this
ACD model is given in Table 2. The Initialize row of the table provides the initial marking and a list of
enabled activities, of which the conditions permit initially; the Statistics row lists the expressions for
collecting output statistics.

E1, E2: {SumQ += Q*(CLK-Before),

@ i @ 3 Before = CLK}

Initialize: : : ‘
C=1, Q=0, M=1, | ! R I cu§>500)
Befors. Create |- M Process |-
SumQ=0 <Bxp®)> [{E1) : SURICHEP i | Statistics:
{2 i | SumQ+= Q*(CLK-Before),

AQL= SumQ/CLK

Figure 18: Augmented ACD model for collecting AQL statistics.

157

Choi and Kang

Table 2: Activity transition table for the ACD model presented in Figure 18.

At-begin BTO-event At-end
No| Activi
4 Condition Action Time Name |Arc|Condition Action Influfen.ced
Activity
1 |Create [(C>0) C—; Exp(5) | Created 1 True |C++; Create

2 True [SumQ+=Q*(CLK-Before);|Process
Before=CLK; Q++;

Process [(M>0) & [SumQ+=Q*(CLK-Before);| Uni(4,6) | Processed | 1 True |[M++; Process
(Q>0) Before=CLK; M--; Q—-;
Initialize |Initial Marking = {C=1, M=1, Q=0}; Enabled Activities= {Create}; Statistics Variables = {SumQ=Before=0}
Statistics |SumQ+=Q*(CLK-Before); AQL=SumQ/CLK;

N

The initialize routine, activity and event routines, and statistics routine of the augmented ACD model
for collecting the AQL statistics are given in Figure 19. Then, from the main program template of the
ACD simulator described in Figure 17, a single server system ACD simulator is obtained as described in
Figure 20.

Execute-initialize-routine (Now){C = 1; M =1; Q = 0; SumQ =0 ; Before = 0; Store-activity(Create); }
Execute-Create-activity-routine (Now) {if (C > 0) { C--; Schedule-event (Created, Now + Exp(5)); } }
Execute-Process-activity-routine (Now) { if (M>0) & (Q>0)) { SumQ+=Q*(Now - Before); Before= Now;

M--; Q--; Schedule-event (Processed, Now + Uni(4,6));} }
Execute-Created-event-routine (Now) { if (True) { C++; Store-activity (Create); }

if (True) { SumQ+=Q*(Now - Before); Before=Now; Q++; Store-activity (Process); } }
Execute-Processed-event-routine (Now) {if (True) { M++; Store-activity (Process); }}
Execute-statistics-routine (Now){ SumQ += Q*(Now — Before); AQL = SumQ / Now; }

Figure 19: Routines for the ACD simulator of the single server system.

Begin
CLK=0;
Execute-initialize-routine(CLK);
do{
while (CAL is not empty) {
ACTIVITY = Get-activity();
Case ACTIVITY of {
Create: Execute-Create-activity-routine (CLK);
Process: Execute-Process-activity-routine (CLK);
} /I end-of-case
} llend-of-while
Retrieve-event (EVENT, TIME);
CLK = TIME;
Case EVENT of {
Created: = Execute-Created-event-routine (CLK);
Processed: Execute-Processed-event-routine (CLK);
} /I end-of-case
} while (CLK < 500);
Execute-statistics-routine(CLK);
End

Figure 20: Main program of single server system ACD simulator.

3.5 C# Implementation of the Single Server System ACD Simulator

This section describes how a dedicated ACD simulator for the single server system is implemented in C#
based on the pseudo codes given in Section 3.4. The single server ACD simulator consists of five classes:

158

Choi and Kang

Simulator, EventList, Event, ActivityList, and Activity classes. The Simulator class contain the main program
(Run method), two activity routines (Create and Process), two event routines (Created and Processed),
event handling functions, activity handling functions, and random variate generators (Exp and Uni). The
member variables in the Simulator class include: (1) state variables (C, M, and Q); (2) simulation clock
variable (Clock); (3) statistics variables (SumQ, Before, and AQL); (4) a random number variable (U) that
generates uniform random numbers that are used in generating Exp (m) and Uni (a, b) random variates; (5)
the event-list variable FEL; and (6) the activity-list variable CAL.

Along with the event graph simulation in Section 2.6, the EventList class is defined as a member
variable of the Simulator class. The ActivityList class contains methods for manipulating the candidate
activity list CAL, which is defined as a member variable of the Simulator class. The Activity class is about
the candidate (or influenced) activity and has a property of Name (activity name).

The main program, whose pseudo-code was given in Figure 20, is implemented by the Run method as
shown below. The main program consists of five phases: (1) Initialization phase, (2) Scanning phase, (3)
Timing phase, (4) Executing phase, and (5) Statistics collection phase. A complete list of C# codes for the
single server system ACD simulator may be found in the website (Choi and Kang 2014).

public void Run (double eosTime) {
//1. Initialization Phase
Clock = 0; FEL = new EventList(); R = new Random();

CAL = new ActivityList(); Event nextEvent = null;
Execute Initialize routine (Clock);
do {

//2. Scanning Phase

while (!CAL.IsEmpty()) {

string ACTIVITY = Get Activity();
switch (ACTIVITY) {
case "Create": {Execute Create activity routine(Clock);break;}
case "Process":{Execute Process activity routine(Clock) ;break;}}}
//3. Timing phase - B -
nextEvent = Retrieve Event(); Clock = nextEvent.Time;
//4. Executing phase
switch (nextEvent.Name) {
case "Created": {Execute Created event routine(); break;}
case "Processed":{Execute Processed event routine(); break;}}
} while (Clock < eosTime);
//5. Statistics collection phase
Execute Statistics routine (CLK); }

4 A GENERAL PURPOSE ACD EXECUTOR: ACE®

ACE" is the only tool that can execute ACD models. The advantage of ACE" is the use of a formal model
as its input (in the form of an activity transition table). Figure 21 presents the main window of ACE®
(with the single server ACD model from Table 2), which has three main regions: Main Menu, Activity
Transition Table (ATT) Window, and Spreadsheet Window. Three tool bars are also provided: ATT Tool
Bar in the ATT Window, and Queue Tool Bar and Variable Tool Bar in the Spreadsheet Window. The
ACE® Menu Bar contains four menus including File, Model, Run, and Help. The Activity Transition
Table (ATT) Window is where the activity transition table of the ACD model is constructed. The
Spreadsheet Window is used to declare the queues and variables that appear in the ACD model.

Figure 22 displays the components of ACE®, which consist of three GUI components (ATT Editor,
Run Options Editor, and Output Report Viewer) and two library components (ATT Simulator and Output
Report Generator). The GUI components were developed for the model implementation and
experimentation. The model implementation can be undertaken using the ATT editor to construct an
activity transition table, which is stored in the ATT model, and it consists of a set of queues, a set of

159

Choi and Kang

variables, and a set of activity transitions. Prior to the experimentation, the run options should be set to
specify the end of simulation (EOS) time, random number seed, and other options for data collection in
the Run Options editor. Once the simulation is run successfully, the output report including the system
trajectories and statistics with regard to the resources and queues are generated and can be accessed in the
Output Report viewer.

The library components are developed in order to simulate the ATT model and generate the output
report. The ATT simulator implements the activity scanning algorithm presented in Figure 16, which
consists of member variables of CLK, FEL, and CAL, as well as Queues, activity routines, event routines,
and the main program. The activity/event routines and main program of the ATT simulator are
automatically constructed from the given ATT model with the specified run options before the simulation
begins.

The output data is collected using the Publish-Subscribe mechanism of the observer software design
pattern (Gamma 1994). Whenever changes in the system states are made, the simulation events are
published to the simulator, and then these simulation events are distributed to their subscribers and
observers. The observer collects these simulation events and stores them in the collected output data.
After the simulation ends, the Output Report Generator transforms the collected output data into an output
report data that consists of key performance measures with system trajectories. More detailed information
regarding ACE®™ can be found on our website (Choi and Kang 2014).

r N
™ Activity Cycle Executor - [Single Server System - SingleServerModel.att] o|&
Main og File Model Run Help - 8 X
Menu DEH EE| ¥
Activity Transition Table
ATT Tool Bar — i !‘3 i DB
] B At-begin BTO-event At-end
No Activity — - - — . o
Activity Condition Action Time Name Arc Condition Action Influenced Activity
Transition 1 true C++ Create
Table 1 Create C>0 C— Exp(5) Created
(ATT) 2 tue Q++. Process
Window 2 Process (M>0)88&(Q>0) M-Q— Uni(4.6) Processed 1 tue M++. Process
Initialize Initial Marking={C=1.M=1.Q=3}. Enabled Activities={Create}

| aueus | variable

Queue Tool Bar — 7
: ()
Queue Tool Bar -] — —
Name Type Initial Value Description
Sprg:‘l dsheet C Creator E} 1 Job Creator
Window M Resource E] 1 Machine
Q Entity [+] 3 Buffer

Figure 21: Main window of ACE® with the single server ACD model in Table 2.

Model File . Run Options Output Report
(XmL) ATT Editor Editor Viewer

~ ‘Output Report
Data
Run Options
ATT ——cottected—] Output Report
Simulator Generator

Figure 22: Components of ACE®.

7IITT modgli

160

Choi and Kang

5 SUMMARY

In this tutorial, we have explained how to develop dedicated simulators for executing event graph models
and activity cycle diagram (ACD) models. The event-graph simulator template was developed from the
well-known next-event scheduling algorithm, and the ACD simulator template was developed based on
the activity scanning algorithm. C# implementations of the simulator templates are presented for a single -
server event system. Furthermore, a brief description of a general purpose simulator for executing ACD
models is presented.

ACKNOWLEDGMENTS
The tutorial was supported in part by VMS-Solutions Co., Ltd., for which the authors are grateful.
REFERENCES

Carrie, A. 1988. Simulation of Manufacturing Systems. John Wiley & Sons.

Choi, B. K., and D. Kang. 2013. Modeling and Simulation of Discrete Event Systems. John Wiley & Sons.

Law, A.M. 2007. Simulation Modeling and Analysis, 4™ edition, McGraw Hill.

Choi, B. K., and D. Kang. 2014. Resources for How to Develop Your Own Simulators for Discrete-Event
Systems. Accessed April 8. http://vms-technology.com/book/msdestutorial/.

Choi, B. K, D. Kang, T. Lee, A.A. Jamjoom, and M.F. Abulkhair. 2013. “Parameterized Activity Cycle
Diagram and Its Application.” ACM Trans. on Modeling and Computer Simulation 23(4): Article 24.

Gamma, E., R. Johnson, R. Helm, and J. Vlissides. 1994. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Hollocks, B. W. 2008. “Intelligence, Innovation and Integrity — KD Tocher and the Dawn of Simulation.”
Journal of Simulation 2(3): 128—-137.

Kang, D. H., and B. K. Choi. 2010. “Visual Modeling and Simulation Toolkit for Activity Cycle
Diagram.” In Proceedings of the 24th European Conference on Modeling and Simulation, edited by
A. Bargiela, S. A. Ali, D. Crowley, and E. J. H. Kerckhoffs, 169—174. Kuala Lumpur, Malaysia.

Kiviat, P. J., R. Villanueva, and H. M. Markowitz. 1968. The SIMSCRIPT II Programming Language, R-
460-PR, The RAND Corporation.

Savage, E. L., L. W. Schruben, and E. Yiicesan. 2005. “On the Generality of Event-Graph Models.”
INFORMS Journal on Computing 17(1): 3-9.

Schruben, L. W. 1983. “Simulation Modeling with Event Graph Models.” Communications of the ACM
26(11): 957-963.

Tocher, K. D. 1960. “An Integrated Project for the Design and Appraisal of Mechanized Decision-
Making Control Systems.” Operational Research Quarterly 11(1-2): 50-65.

AUTHOR BIOGRAPHIES

BYOUNG K. CHOI has been a professor in the Department of Industrial and Systems Engineering at
KAIST in Daejeon, Republic of Korea, since 1983. He has also been an adjunct professor at King
Abdulaziz University in Jeddah, Kingdom of Saudi Arabia, since 2012. He received a Ph.D. in Industrial
Engineering from Purdue University in 1982. His current research interests are system modeling and
simulation and simulation-based scheduling. His email address is bkchoi@kaist.ac.kr.

DONGHUN KANG is a postdoctoral researcher in the Department of Industrial and Systems
Engineering at KAIST in Daejeon, South Korea. He received a Ph.D. from KAIST in Industrial
Engineering in 2011. His research interests lie in the DES M&S and its applications in various domains.
His email address is donghun.kang(@kaist.ac.kr.

161

