
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

HOW TO DEVELOP YOUR OWN SIMULATORS FOR DISCRETE-EVENT SYSTEMS

Byoung K. Choi
Donghun Kang

Department of Industrial and Systems Engineering

Korea Advanced Institute of Science and Technology (KAIST)
Daehak-ro (373-1 Guseong-dong), Yuseong-gu

Daejeon, 305-701, REPUBLIC OF KOREA

ABSTRACT

This tutorial explains how to develop dedicated simulators for executing event graph models and activity
cycle diagram (ACD) models. An event-graph simulator template and an ACD simulator template are
presented in pseudo code form, together with example C# implementations for a simple discrete-event
system. A list of the simulation programs in C# codes is provided in a website. A brief description of a
general-purpose simulator for executing ACD models is also presented.

1 INTRODUCTION

A discrete-event system (DES) consisting of resources (e.g. machines and buffers) and entities (e.g. jobs)
is often referred to as a regular DES. A DES without physical resources may be termed a resource-less
DES. The entities in a resource-less DES are referred to as agents, and the basic concept of agent-based
modeling is that a system is modeled through placing agents in the system and letting the system evolve
from the interaction of those agents. Regular DESs include most service and manufacturing systems that
are designed and built, as well as traffic systems and military systems. A flock of seasonal birds in the sky
is an example of resource-less DES. Among the DES modeling formalisms (e.g. Petri nets, DEVS, timed
automata, event graphs, and activity cycle diagrams), the event graph and activity cycle diagram (ACD)
are commonly used in simulation modeling (i.e. modeling for simulation) of regular DESs, whereas Petri
nets and timed automata are primarily used in modeling DESs for analysis purposes. This tutorial
explains how to develop dedicated simulators for executing event graph models and ACD models. A brief
description of a general purpose simulator ACE® for executing ACD models is also presented. To the best
of the authors’ knowledge, there are no other tools that can be used to directly execute ACD models.

1.1 Event Graph

The event-based modeling concept was realized in SIMSCRIPT II in the 1960s (Kiviat, Villanueva, and
Markowitz 1968), but the event graph formalism was established later by Schruben (1983). An event
graph is a directed graph (GEG = <V, E, S, F, C, D, A>) defined by a set of vertices (V = {v}) that
represents the events, a set of directed edges (E = {eod = (vo, vd)}) that represents the temporal and logical
relationships between pairs of events, and a set of state variables (S = {s}) that represents the system state.
Associated with each vertex (v) is a state update function (fv∈F) that describes the state change caused by
the event. Associated with E = {e} are a set of conditions (C = {ce}), a set of time delays (D = {de}), and a
set of action types (A = {ae∈{scheduling, canceling}}). A state-of-the-art review of event graph is given
in Savage, Schruben, and Yücesan (2005).
 Figure 1 presents an event graph model for a single server system initially consisting of an idle
machine (M = 1) and an empty buffer (Q = 0): (1) an Arrive event, which increases the job count (Q) in the

147978-1-4799-7486-3/14/$31.00 ©2014 IEEE

buffer, a
immedia
decrease
resets the
single se
= {e11 =

1.2 A

The ACD
steel mil
steel pla
denoted
model is
= {ai}), a
a set of t
b ∈	B, an

Figu
where th
arrival ti
cycle and
the singl
b2 = C, b

2 HO

This sec
graph m
compute
will be
followed

always sched
ately if the m
es the job cou
e machine to

erver event gr
(v1, v1), e12 =

Activity Cycl

D was inven
ll (Hollocks 2
ant. The acti

using a rect
s a bipartite d
a finite set of
time delay fu
nd an initial m
ure 2 present
he activity no
ime; and ts is
d the dashed
le server ACD
b3 = Q, b4 = M

OW TO DEV

ction will ass
model using
er programmi
described in

d by function

dules anothe
machine is id
unt by one (Q
o idle (M++)
raph model m
 (v1, v2), e23 =

Figure 1

le Diagram

nted by Toch
2008). Toche
ivity flow dia
tangle and a
directed grap
f queue node
unctions (T =
marking μ0. A
ts a classical
odes are Cre
s the service
line loops d

D model may
M} … μ0 = {∞

Figu

VELOP YO

sist you in d
the next eve
ing. The pro
n a bottom-u
ns for generat

er Arrive eve
dle (M ≡ 1); (
Q--), schedul

and schedul
may be speci
= (v2, v3), e32

1: Event grap

her in the late
er used a flow
agram later
queue node

ph (GACD = <A
s (B = {bj}),
 {τa}) associ
A state-of-the
 ACD mode

eate and Proc
e time. In the
denote the res
y be specified
∞, 1, 0, 1}.

ure 2: ACD m

OUR OWN D

developing y
ent schedulin
cess of deve

up manner,
ting random v

Choi and Ka

nt to occur
(2) a Load ev
les an Unload
les a Load ev
ified as follow
= (v3, v2)}, S

ph model of a

e 1950s in o
w diagram of
evolved into

e is denoted
A, B, E, T, μ,
a finite set of
ated with a ∈
e-art review

el of the sam
cess; the que
e figure, the
source-activi
d as follows:

model of a sin

DEDICATED

your own sim
ng algorithm
eloping a ded
starting from
variates.

ang

after ta and
vent, which s
d event to occ
ent if the buf
ws: V = {v1 =

S = {Q, M}, e

a single serve

rder to solve
f activities to
o the classic
using a circ
, μ0>) define
f edges (E =
∈ A, a markin
of ACD is gi

me single serv
eue nodes are

main solid-l
ity cycles (Cr
: A = {a1 = C

ngle server sy

D EVENT G

mulation pro
m. It is assum
dicated simul
m the primit

d schedules
sets the mac
cur after ts; a
ffer is not em
= Arrive, v2 =
etc.

er system.

e a congestio
o model the d
cal ACD wh
le (Carrie 19
d by a finite
{ek} with ek
ng vector (μ
iven in Choi
ver system a
e C, Jobs, Q
line loop den
reator cycle an

Create, a2 = Pr

ystem.

GRAPH SIM

grams for ex
med that yo
lator for a gi
tive function

a Load even
hine to busy

and (3) the U
mpty (Q > 0)
= Load, v3 = U

on control pr
dynamic beha
ere an activ
988). A clas
set of activit
∈ (A ⨯	 B) ∪
= {μb}) asso
et al. (2013)

as depicted i
, and M; ta is
notes the ent
nd Machine cy
rocess}, B =

MULATORS

xecuting a g
ou have basi
iven event gr
ns for handli

nt to occur
y (M--) and
nload event
). Thus, the
Unload}, E

roblem at a
avior of the
ity node is

ssical ACD
ty nodes (A
∪	 (B ⨯	 A)),

ciated with
).
in Figure 1
s the inter-
tity-activity
ycle). Thus,
{b1 = Jobs,

S

given event
ic skills in
raph model
ing events,

148

2.1 F

In order
future ev
has the s
list (FEL
future ev

Figu
Retrieve-e
34.0>} s

1. I

i
i
a
s

2. I
d

3. I

2.2 F

Most pr
number (
is obtain
uniform
uniform
for X, we
random n
method.
generatin
descripti

2.3 E

Figu
canceling

Functions fo

to simulate t
vents. A futur
smallest (i.e.
), which is a

vent (Ek). The
ure 3 present
event (), and

stored in the F

If the Sched
immediately
increasing or
and <E3, 34.0
stored right a
If the Retriev
deleted from
If the Cancel-

F

Functions fo

rogramming
(u ~ U[0,1]). I

ned from u a
random num
random num
e can obtain
number. This
In Java, th

ng exponenti
ion on the sub

Event Routin

ure 5 present
g edge. The

r Handling E

the system dy
re event is an
earliest) eve

an ordered li
e FEL is also
ts a schemat
Cancel-event
FEL. The mec

ule-event (E4
after the in

rder of event
0>. If an inco
after the latte
ve-event (E, T)

the FEL).
-event (E4) fu

Figure 3: Sch

r Generatin

languages s
In Java, for e
as follows: x
mber (U) as

mber (U), we
X = θ*ln(1

s method of
e natural lo
ial random v
bject is provi

nes

ts a portion o
event graph

Events

ynamics of a
n event that h
ent-time is ca
ist of pairs ({
a priority qu

tic descriptio
 (). Initially,
chanisms of

4, 22.7) funct
ncumbent eve

times. Now,
ming event h

er so that a FI
) function is

unction is inv

hematic desc

ng Random V

upport a bu
example, the
x = a + (ba)*

follows. Be
have U = F(X
U), which is
generating a
g (ln(U)) is

variates and
ided in Law

of an event g
indicates tha

Choi and Ka

a discrete eve
has been sch
alled the nex
{<Ek, Tk>}), w
eue, ordered

on of the thr
there are thr
the event-han

tion is invok
ent <E2, 18.6
 FEL has fou

has the same
IFO rule is ap
invoked, the

oked, the eve

criptions of th

Variates

uilt-in functio
function u =
*u. An expon
ecause the d
X) = 1 ex/θ, w
s equivalent t
 random vari
implemented
uniform ran
(2007).

graph for an
at “whenever

ang

ent system, w
heduled to oc
xt event. The
where Tk is t

d in increasing
ee event-han

ree future eve
ndling functi

ked, the inco
6> in the FEL
ur future even

event time a
pplied (Other
e next event

ent node <E4

he event hand

on for gener
Math.random(

nential rando
distribution fu
where θ is th
to X = θ*ln(U
iable is referr
d as Math.log
dom variates

n event vertex
E0 occurs, t

we need a me
cur in the fut
simulation m

the scheduled
g values of T
ndling funct
ents {<E1, 12
ions are:

oming event
L, which is

nts: <E1, 12.1>
as an incumb
r tie-breaking
<E = E1, T =

4, 22.7> is del

dling functio

rating a stan
() does the jo
om variate (
function F(X)
he mean. Upo
U) because (1
red to as the
g (u). The J
s are listed i

x that has a
the state vari

echanism for
ture; a future

maintains a fu
d execution t

Tk.
tions: Schedu
2.1>, <E2, 1

t <E4, 22.7>
a priority qu
>, <E2, 18.6>,

bent event, th
g rules are po
 12.1> is retr

leted from th

ns.

ndard unifor
ob. Let x ~ U[a
(X) is genera
 can be reg

on solving th
1 – U) is also
inverse tran
ava and C#
in Figure 4.

scheduling e
iable s chang

processing
e event that
future event
time of the

ule-event (),
8.6>, <E3,

is inserted
ueue in an
, <E4, 22.7>,

he former is
ossible).
rieved (and

he FEL.

rm random
a, b], then x

ated from a
garded as a
his equation
o a uniform
nsformation
 codes for
A detailed

edge and a
ges to fE0(s).

149

Then, if
canceled
is a tabul
state cha

An e
variables
each eve
routine f

Exec

2.4 N

The over
as follow
(2) retrie
routine f
otherwis
seen in F

In F
describes
schedulin
initialize
While lo
specified

2.5 S

The
the (pur
statistics

Fig

edge conditi
d immediately
lar form of fo

ange, edge co

Figure 5

event routin
s and how th
ent routine. O
for E0 in Figu

cute-E0-event

Next Event S

rall procedur
ws: (0) Reset
eve the next
for the next
se return to s
Figure 6.
igure 6, the
s the main
ng algorithm

e routine and
op. Listed in

d using the si

Single Server

process of p
re) event gra
s variables an

gure 4: Rando

ion C1 is tru
y”. Figure 5

formally spec
onditions, act

: Originating

e for an orig
he future even
One event ro
ure 5 is expre

t-routine (Now

Scheduling A

re of the simu
t the simulati
event <E, T>
event (E); (4
tep (2). The

simulation i
program tem

m. The “Initia
d a statistics r
n the Event-r
imulation clo

r System Ev

programming
aph model i
nd a statistics

om variate ge

ue, E1 is sch
also illustrat

cifying an eve
tion types (sc

g event vertex

ginating eve
nts are sched
outine is req
essed as follo

w) { s = fE0(s);

Algorithm fo

ulation execu
ion clock (CL
> from the FE
4) if a termi
above next e

is terminated
mplate of th
alize” box an
routine, resp
routines list a
ock (CLK) and

vent Graph S

g a dedicated
s converted
s routine; (2)

Choi and Ka

eneration fun

eduled to oc
tes an event t
ent graph mo
chedule/canc

x E0 with a s

ent is a subp
duled and/or
quired for ea
ows:

 If (C1) Sched

or Simulatio

ution, which
LK); (1) initia
EL and set C
ination cond
event schedu

d if an end o
he event gra
nd “Output st
ectively, in F
are the event
d EOS time (t

Simulator

d simulator f
to an augm

) an event tra

ang

nctions in (a)

ccur after t1;
transition tab
odel. Specifie
el), time dela

scheduling ed

program that
canceled. Co

ach event in

ule-event (E1,

on Execution

is called the
alize state va
LK to next ev
ition is satis
ling algorith

of simulation
aph simulato
tatistics” box
Figure 7. The
t routines for
te).

for a given ev
mented event
ansition table

) Java and (b)

if edge con
ble for E0. An
ed for each o
ays, and dest

dge and canc

describes th
onditional ev
the event gr

, Now+ t1); If (C

n

next event s
ariables and
vent time (T)
sfied, compu
hm may be dr

n (EOS) cond
or that imple
x in Figure 6
e simulation
r E1~En. Her

vent graph m
t graph mod
e is construct

) C# .

dition C2 is
n event trans

originating ev
ination event

eling edge.

he changes i
vents are han
raph model.

C2) Cancel-ev

cheduling al
schedule ini
); (3) execute

ute the outpu
rawn as a flo

dition is met
ements the
 are impleme
is performed

re, the EOS c

model is as f
del through a
ted from the

true, E2 is
sition table
vent are the
ts.

in the state
ndled inside

The event

vent (E2) }.

lgorithm, is
tial events;
e the event

ut statistics,
ow chart as

t. Figure 7
next event
ented as an
d inside the
condition is

follows: (1)
adding the
augmented

150

event gra
the main
construc
in Figure
and serv

Figu
Let {Ck}
Ck+1  Ck

/ CLK. H
time and
8 is give

Figure 7: M

aph model; (
n program i
ting your ow
e 1. It is assu
ice times (ts)

ure 8 presents
 denote the
. Let Qk be th
ere, two stat

d Before for th
n in Table 1.

Fig

Fi

Main program

(3) the initial
is obtained f

wn event grap
umed that the
are Exp (5) a

s an augment
queue length

he queue size
tistics variab
he previous e
.

gure 8: Augm

igure 6: Next

m template im

lize routine,
from the ma

ph simulator w
e EOS time (
and Uni (4, 6
ted event gra
h change tim
e during k, t
bles are intro
vent time. A

mented event

Choi and Ka

t event sched

mplementing

event routin
ain program
will be descr
(te) is 500 an
6), respective
aph for collec

mes, then the
then the AQL
duced: SumQ

An event trans

graph model

ang

duling algorit

g the next eve

nes, and statis
m template g
ribed using th
nd the distrib
ely.
cting the ave
kth queue len

L is expressed
Q for accumu
sition table f

l for collectin

thm.

ent schedulin

stics routine
given in Figu
he single serv
utions of the

erage queue l
ngth change
d as AQL = (
ulating the qu
for this event

ng AQL stati

ng algorithm.

are develope
ure 7. The
ver system m
e inter-arriva

length (AQL
interval bec

(Qk  k) / (
ueue length v
t graph mode

istics.

.

ed; and (4)
process of

model given
al times (ta)

L) statistics.
comes k =
k) ≡ SumQ
values over
el in Figure

151

The

collectin
the main
described

F

As a
table for
with the
In additi
two even
into the
‘single s

2.6 C

This sect
C#. Figu

initialize rou
ng the AQL s
n program in
d in Figure 1

Ta

Figure 9: Initi

Figure

another exam
r a single ser
single server
on, a Fail eve
nt routines (R
single serve

erver system

C# Implemen

tion describe
ure 13 presen

utine, event
statistics are
n pseudo-co

10. A C# imp

able 1: Event

ialize routine

e 10: Main p

mple, Figure
rver system w
r system eve
ent must be s
Repair and Fa
er system ma

m with resourc

ntation of th

es how a dedi
nts the class d

routines, and
listed in Fig
des of the s

plementation

t transition ta

e, event routi

program of th

11 presents
with resource
ent graph of F
scheduled at t
ail), as listed
ain program
ce failures’ g

he Single Ser

icated event
diagram for t

Choi and Ka

d statistics ro
gure 9. Then
single server
of the pseud

able for the ev

ines, and stat

he single serv

an event gr
e failures (tf =
Figure 1, it h
the beginnin
in Figure 12

m in Figure 1
given in Figu

rver System

graph simula
the single ser

ang

outine of the
n, using the m
r system eve
do-codes is pr

vent graph m

tistics routine

ver system ev

raph model a
= inter-failur

has two addit
g. Thus, we n
2. By reflect
10, we can b
ure 11.

Event Grap

ator for a sing
rver system e

e augmented
main program
ent graph sim
resented in S

model of Figu

e for the sing

vent graph sim

and an augm
re time; tr = r
ional event v
need a revise
ting the even
build a dedic

ph Simulato

gle server sy
event graph s

event graph
m template in
mulator is o
ection 2.6.

ure 8.

le serve syste

mulator.

mented event
repair time).
vertices: Fail
ed Initialize r
nt routines of
cated simula

r

ystem is impl
simulation th

h model for
n Figure 7,
obtained as

em.

t transition
Compared
and Repair.
routine and
f Figure 12
ator for the

emented in
hat consists

152

Figure

of three
program
routine (
variate g
Q); (2) s
variable
random
manipula
class is a

e 12: Initializ

classes: Sim
m (Run metho

(Execute_Stat
generators (E
simulation cl
(U) for gene
variates; an

ating the futu
about the nex

Figure

Figure 1

ze routine and

mulator, Event
od), an initia
tistics_routine)

Exp, Uni). The
lock (CLK);
erating unifo
nd (5) the e
ure event list
xt event and tw

e 13: Class d

11: A single s

d additional e

tList, and Eve
alize routine
), event-hand
e member var
(3) statistics
rm random n
event-list va
t (FEL), defi
wo propertie

iagram for th

Choi and Ka

server system

event routine

vent classes.
(Execute_Ini

dling function
riables in the
variables (S

numbers that
ariable (FEL
ined as a mem
es of Name (e

he single serv

ang

m with resour

es for the reso

Contained in
itialize_routine
ns (Retrieve_
e Simulator cl
SumQ, Befor
t will be used
L). The Even
mber variabl
event name)

ver system ev

rce failure.

ource failure

n the Simula
e), three even
_Event, Sched
lass include:

re, and AQL)
d to generate
ntList class
le of the Sim
and Time (sc

vent graph si

e single serve

ator class are
nt routines,

dule_Event), a
(1) state var
; (4) a rando
Exp (m) and
contains m

ulator class.
cheduled even

mulator.

e system.

e the main
a statistics

and random
riables (M,
om number
d Uni (a, b)

methods for
 The Event
nt time).

153

The

Run met
the Time
phase. A
our webs

public

//
 CL

Ev
Ex

 wh
//

 }
 //
 Ex

3 HO

This sec
using the
model is

3.1 F

In simula
is used t
store/retr
a schema
there are
activities

1. I

C
c

2. I
r

main progra
thod describe
e-flow mecha

A complete li
site (Choi an

c void Run(
/1. Initial
LK = 0.0; FE
vent nextEv
xecute_Init
hile (CLK <
/2. Time-fl
 nextEven
 //3. Eve
 switch(n
 cas
 cas
 cas

4. Statisti
xecute_Stati

OW TO DEV

ction assists w
e activity sca
 described in

Functions fo

ation executi
to handle the
rieve activiti
atic descripti
e three candi
s using two f

If the Store-a
CAL (after
candidate ac
If the Get-act
removed from

Fi

am, whose ps
ed below. Th
anism phase,
ist of C# cod

nd Kang 2014

double eosT
lization ph
EL = new Ev
vent = null
tialize_rou
 eosTime) {
low mechani
nt = Retrie
ent-routine
nextEvent.N
se "Arrive"
se "Load":
se "Unload"

ics collect
istics_rout

VELOP YO

with develop
anning algor
n a bottom-up

r Handling A

ions of ACD
e candidate (
es into/from
ion of the tw
idate activiti
functions will

ctivity (A4) fun
<A3>), whic

ctivities: <A1>
tivity () functi
m the CAL.

igure 14: Sch

seudo code is
he main prog
, (3) the Eve
des for the si
4).

Time) {
ase
ventList();
;
tine(CLK);
{
sm phase
eve_Event()
e execution
Name) {
": { Execut
 { Execut

": { Execut

tion phase
tine(CLK);

OUR OWN D

ping your ow
rithm. The pr
p manner, sta

Activities

 models, an a
(or influenced

the CAL, w
wo activity ha
ies ({<A1>, <
l be explaine

nction is invo
h is a FIFO

>, <A2>, <A3>
ion is invoke

hematic descr

Choi and Ka

s given in Fi
gram consists
ent-routine ex
ingle server

; U = new R

); CLK = ne
n phase

te_Arrive_e
te_Load_eve
te_Unload_e

}

DEDICATED

wn simulatio
rocess of dev
arting from th

additional da
d) activities.

which is a firs
andling func

<A2>, <A3>})
ed with exam

oked, the inf
O queue of i
>, and <A4>.
ed, the next

riptions of th

ang

gure 10 (Sec
s of four pha
xecution pha
system even

Random();

extEvent.Ti

event_routi
ent_routine
event_routi

D ACD SIM

on programs
veloping a de
he primitive f

ata structure c
A pair of ac

st-in, first-ou
ctions: Store-a
) stored in th

mples.

fluenced activ
influenced a

activity (<A

he activity ha

ction 2.5), is
ases: (1) the I
ase, and (4) t
nt graph simu

ime;

ine(CLK);br
e(CLK);brea
ine(CLK);br

MULATORS

for executin
edicated simu
functions for

called a cand
ctivity handli

ut (FIFO) que
activity () and
he CAL. The

vity (A4) is in
activities. No

A = A1>) is re

ndling functi

implemented
Initialization
the Statistics
ulator may b

reak; }
ak; }
reak; } }

S

ng a given A
ulator for a g
r handling ac

didate activity
ing functions
eue. Figure 1
d Get-activity (
e managemen

nserted at the
ow, the CAL

eturned and

ions.

d using the
n phase, (2)
s collection
e found on

ACD model
given ACD
ctivities.

ty list (CAL)
s is used to
14 provides
(). Initially,
nt of these

e end of the
L has four

its entry is

154

3.2 A

Figure 1
output qu
the numb
ACD are
begin ev
bound to
to-occur
as ‘cond

The
input que
after de-
after the
created a
activities
(for acti
Specified
At-end c

The
executio
activity
an activi
in the ac
execute
satisfied

Exec

An e

the end o
each act
execute t
CAL by
15 can b

Exec

Activity Rou

5 displays a
ueue of activ
ber of idle re
e described f
vent and an
o occur after
r event (BTO
itional’ and ‘

F

At-begin ex
eue Q1 is at l
-queuing one
e activity du
and en-queue
s A2 and A3
ivity A1) tha
d for each ac
condition and

abovementio
n, and is per
routine is a

ity and sched
ctivity transit
the At-begin
. The activity

cute-A1-activi

event routine
of an activity
ivity in the a
the At-end ac
invoking the
e expressed a

cute-E1-event

utines and Ev

a portion of a
vity A1, and (
esources requ
for the A1 ac
activity-end
the time dela

O event). In th
‘bound’ even

Figure 15: Pa

ecution rules
least one and

e token from
uration (t1).”
ed into outpu
are examine

at formally
ctivity node
d action, and
oned executi
rformed using
subprogram

dules its BTO
tion table and
n action and
y routine for

ity-routine (t)

e for ACD is
y and storing
activity trans
ction if the A
e activity han
as follows:

t-routine (t) {

vent Routine

an ACD in w
(3) A2 and A3
uired to perf
ctivity in Fig

d event. Onc
ay of the acti
he literature,

nts, respectiv

artial ACD w

s of activity
d if there is a

Q1 and one
Similarly, th

ut queue Q2
ed for execut
specifies the
are its At-be
the influence
ion of an ac
g two routine
that describe

O event E1 in
d it has the fo
d schedule th
activity A1 in

 { if ((Q1>0) &

s a subprogra
 the influenc
sition table a

At-end condit
ndling metho

S1++; Store-a

Choi and Ka

es

which (1) Q1
3 are influenc
form activity
gure 15. An
ce an activity
ivity duration
, the ‘activity
ely.

ith three acti

A1 in Figure
at least one to

token from
he At-end e
 and a token
tion”. Figure
e ACD mod
egin conditio
ed activity of
ctivity is sep
es, an activit
es the change
nto the FEL.
following stru
he BTO eve
n Figure 15 c

& (S1>0)) {Q1--

am that descr
ced activities
and it has th
tion is satisfie
od Store-Activ

activity (A1); Q

ang

1 is an input
ced activities
y A1. In the f
activity is co
y-begin even
n. Thus, the a
y-begin’ and

vity nodes an

e 15 are as fo
oken in queu
S1, and its B

execution rul
n is returned

15 also illu
del in a tabu
on and action
f each output
arated into t

ty routine and
es in the state
An activity

ucture: (1) ch
ent of the ac
can be expres

-; S1--; Sched

ribes the cha
into the CA

he following
ed and (2) sto

vity (). The ev

Q2++; Store-ac

t queue of ac
s of activity A
following, th
onfined by tw

nt occurs, th
activity-end e

d ‘BTO’ even

nd three queu

ollows: “If th
ue S1, then th
BTO event E
les are expre

to queue S1
strates an ac
ular form (K
n, BTO-even
t arc.
the At-begin
d an event ro
e variables m
routine is req
heck the At-b
ctivity if the
ssed as follow

ule-event (Eve

anges in the
L. One even
structure. Fo
ore the influe

vent routine f

ctivity (A2); Sto

ctivity A1, (2
A1. Queue S1
he execution
wo events: a
e activity-en
event is calle
nts are often

ues.

he number o
he A1 activity
1 is schedule
essed as “on
1. Then, the
ctivity trans
Kang and C
t time and ev

n execution a
outine, respec

made at the be
quired for ea
begin conditi
e at-begin co
ws:

entA1, t)} }.

state variabl
t routine is r
or each At-e
enced activit
for activity A

ore-activity (A3

2) Q2 is an
 represents
rules of an

an activity-
nd event is
ed a bound-
referred to

of tokens in
y will begin
ed to occur
ne token is

influenced
ition table

Choi 2010).
vent name,

and At-end
ctively. An
eginning of
ach activity
ion and (2)
ondition is

les made at
equired for

end arc, (1)
ties into the

A1 in Figure

3) }.

155

The

variables
CAL ins
made du

3.3 A

It is desc
him at C
consists
events. T
occur (B
that the c
scanning
clock (C
Retrieve-e

Also
handling
stores th
of activit
allows th

is implem
Figu

scanning
box (Step
simulatio
the Activ
list. Here
scanning

event routin
s are describ
stead of sched
uring the activ

Activity Scan

cribed on p.
Christmas, 19

of individua
The three-ph
BTO) event, (
conditions in
g algorithm
LK), structur
event ()) that

o, the activit
g functions (
he influenced
ties to scan f
he manageme

mented with
ure 17 presen
g algorithm. A
p 5) in Figur
on is perform
vity-routines
e, the EOS co
g algorithm fo

ne of the AC
bed. Howeve
duling or can
vity routine.

nning Algori

5 of Hollock
957, evidently
al component
ase process

(2) Phase B:
n the model n
as illustrated
e future even
were introdu

ty scanning
Store-activity

d activities as
for the execu
ent of tie-bre

the sequence
nts the main
Along with th
re 16 are imp
med inside th
list. Also, th
ondition is sp

for parameter

CD is similar
er, the event
nceling future

ithm

ks (2008) tha
y while in hi
ts progressing
includes (1)
execute the

now permit. T
d in Figure 1
nt list (FEL),
uced in Sectio

Figure 16: A

algorithm u
() and Get-ac

ssists in Phas
ution. Anothe
eaking amon

e of Phase C
 program te
he event grap

plemented as
he do-while l
he event rout
pecified usin
rized ACD is

Choi and Ka

r to that of t
routine of t

e events in th

at the core id
is bath! The
g as time unf
Phase A: adv
BTO event,
This three-ph
16. The activ
and the two

on 2.1.

Activity scann

uses the cand
ctivity ()) that

se C of the th
er, perhaps m
ng the concur

C → Phase A
emplate of th
ph simulator
 an initialize
loop. The ac
tines for BTO

ng the simula
 almost the s

ang

the event gra
the ACD sto
he FEL. In an

dea of the To
notion began
folds through
vance the clo
and (3) Phas
hase process
vity scanning
 event-handl

ning algorithm

didate activi
t were introd
hree-phase pr
more critical,
rrent activitie

→ Phase B i
he ACD sim
r, the Initializ
e routine and
ctivity routin
O events E1~

ation clock (C
same as that o

aph in that th
ores the influ
n ACD, the n

cher’s three-
n from the co
h states that
ock to the tim
se C: initiate
is formally e

g algorithm
ling function

m.

ity list (CAL
duced in Sec
rocess throug
benefit of in

es. Note that

in the activity
mulator that im
ze box (Step
statistics rou

nes for activi
~En are liste
CLK) and EO
of Figure 16

he changes i
uenced activi
next-event sch

-phase proce
oncept of a s
only change

me of the next
‘conditional

expressed in
maintains a
s (Schedule-e

) and the tw
ction 3.1. Th
gh reducing t
ntroducing CA
the three-pha

y scanning al
mplements t
1) and Outpu
utine, respec
ties A1~An a
d in the Eve
S time (te). T
(Choi and K

in the state
ities in the
heduling is

ess came to
system that
 at discrete
t bound-to-
l’ activities
an activity
simulation

event () and

wo activity
he CAL that
the number
AL is that it
ase process

lgorithm.
the activity
ut statistics

ctively. The
re listed in

ent-routines
The activity
Kang 2013).

156

3.4 S

The proc
graph mo
to an aug
transition
activity r
program
using the
assumed
(ts) are E

Figu
the avera
and Befo
Process a
ACD mo
enabled
collectin

Figure 1

Single Server

cess of prog
odel presente
gmented ACD
n table is co
routines, and

m template giv
e single serv

d that the EOS
Exp (5) and U
ure 18 presen
age queue le

ore) are intro
are modified
odel is given
activities, o

ng output stat

F

7: Main prog

r System AC

gramming a d
ed in Section
D model thro
onstructed fr

d statistics rou
ven in Figur
er system mo
S time (te) is

Uni (4, 6), res
nts an augme
ength (AQL)
oduced. Then

in order to c
n in Table 2.
f which the
tistics.

Figure 18: A

gram templat

CD Simulato

dedicated sim
n 2. That is,
ough adding
rom the aug
utine are dev
re 17. The pr
odel conside
500 and the

spectively
ented ACD fo
) statistics. A
n, the At-en
collect the qu
 The Initialize
conditions

Augmented A

Choi and Ka

te implement

or

mulator for
the overall s
the statistics

gmented ACD
veloped; and
rocess of dev
red in Sectio
distributions

for the ACD
As mentioned
d action of

ueue length c
e row of the
permit initia

ACD model fo

ang

ting the activ

an ACD mo
teps are (1) t
variables an

D model; (3
(4) the main

veloping you
on 1. Along w
s of the inter

model descr
d in Section
activity Crea
hange times.
table provid

ally; the Stat

or collecting

vity scanning

odel is simila
the (pure) A

nd a statistics
3) the initial
n program is o
ur own ACD
with the even
r-arrival time

ribed in Figu
2.5, two sta

ate and At-b
. An activity
des the initia
tistics row lis

AQL statisti

algorithm.

ar to that for
CD model is

s routine; (2)
lize routine,
obtained from

D simulator is
nt graph sim
es (ta) and se

ure 2 in order
tistics variab

begin action
transition ta

al marking an
sts the expre

ics.

r the event
s converted
an activity
event and

m the main
s described

mulator, it is
ervice times

r to collect
bles (SumQ
of activity

able for this
nd a list of
essions for

157

The

for colle
ACD sim
Figure 2

3.5 C

This sect
based on

Table

initialize rou
ecting the AQ
mulator descr
0.

Fig

F

C# Implemen

tion describe
n the pseudo

2: Activity t

utine, activity
QL statistics
ribed in Figu

gure 19: Rout

Figure 20: M

ntation of th

es how a ded
codes given

transition tab

y and event r
 are given in

ure 17, a sing

tines for the A

Main program

he Single Ser

dicated ACD
in Section 3

Choi and Ka

ble for the AC

routines, and
n Figure 19.
gle server sys

ACD simulat

m of single ser

rver System

simulator fo
.4. The singl

ang

CD model pre

d statistics rou
 Then, from
stem ACD si

tor of the sin

rver system A

ACD Simul

or the single s
le server ACD

esented in Fi

utine of the a
m the main pr

imulator is o

ngle server sy

ACD simulat

lator

server system
D simulator

igure 18.

augmented A
rogram temp

obtained as d

ystem.

tor.

m is impleme
consists of fi

ACD model
plate of the
described in

ented in C#
ive classes:

158

Choi and Kang

Simulator, EventList, Event, ActivityList, and Activity classes. The Simulator class contain the main program
(Run method), two activity routines (Create and Process), two event routines (Created and Processed),
event handling functions, activity handling functions, and random variate generators (Exp and Uni). The
member variables in the Simulator class include: (1) state variables (C, M, and Q); (2) simulation clock
variable (Clock); (3) statistics variables (SumQ, Before, and AQL); (4) a random number variable (U) that
generates uniform random numbers that are used in generating Exp (m) and Uni (a, b) random variates; (5)
the event-list variable FEL; and (6) the activity-list variable CAL.

Along with the event graph simulation in Section 2.6, the EventList class is defined as a member
variable of the Simulator class. The ActivityList class contains methods for manipulating the candidate
activity list CAL, which is defined as a member variable of the Simulator class. The Activity class is about
the candidate (or influenced) activity and has a property of Name (activity name).

The main program, whose pseudo-code was given in Figure 20, is implemented by the Run method as
shown below. The main program consists of five phases: (1) Initialization phase, (2) Scanning phase, (3)
Timing phase, (4) Executing phase, and (5) Statistics collection phase. A complete list of C# codes for the
single server system ACD simulator may be found in the website (Choi and Kang 2014).

public void Run(double eosTime) {

//1. Initialization Phase
Clock = 0; FEL = new EventList(); R = new Random();
CAL = new ActivityList(); Event nextEvent = null;
Execute_Initialize_routine(Clock);
do {

//2. Scanning Phase
while (!CAL.IsEmpty()) {
 string ACTIVITY = Get_Activity();
 switch (ACTIVITY) {

case "Create": {Execute_Create_activity_routine(Clock);break;}
case "Process":{Execute_Process_activity_routine(Clock);break;}}}

//3. Timing phase
nextEvent = Retrieve_Event(); Clock = nextEvent.Time;
//4. Executing phase

 switch (nextEvent.Name) {
case "Created": {Execute_Created_event_routine(); break;}
case "Processed":{Execute_Processed_event_routine(); break;}}

} while (Clock < eosTime);
//5. Statistics collection phase
Execute_Statistics_routine(CLK); }

4 A GENERAL PURPOSE ACD EXECUTOR: ACE®

ACE® is the only tool that can execute ACD models. The advantage of ACE® is the use of a formal model
as its input (in the form of an activity transition table). Figure 21 presents the main window of ACE®
(with the single server ACD model from Table 2), which has three main regions: Main Menu, Activity
Transition Table (ATT) Window, and Spreadsheet Window. Three tool bars are also provided: ATT Tool
Bar in the ATT Window, and Queue Tool Bar and Variable Tool Bar in the Spreadsheet Window. The
ACE® Menu Bar contains four menus including File, Model, Run, and Help. The Activity Transition
Table (ATT) Window is where the activity transition table of the ACD model is constructed. The
Spreadsheet Window is used to declare the queues and variables that appear in the ACD model.

Figure 22 displays the components of ACE®, which consist of three GUI components (ATT Editor,
Run Options Editor, and Output Report Viewer) and two library components (ATT Simulator and Output
Report Generator). The GUI components were developed for the model implementation and
experimentation. The model implementation can be undertaken using the ATT editor to construct an
activity transition table, which is stored in the ATT model, and it consists of a set of queues, a set of

159

variables
specify t
the Run
trajectori
Output R

The
report. T
consists
and the
automati
begins.

The
pattern (
publishe
observer
After the
report da
regarding

s, and a set o
the end of si
Options edit

ies and statis
Report viewe

library comp
The ATT sim
of member v
main progr

ically constru

output data
(Gamma 199
d to the sim

rs. The obser
e simulation
ata that consi
g ACE® can

Figure 2

of activity tr
imulation (EO
tor. Once th

stics with reg
er.
ponents are
mulator impl
variables of C
ram. The ac
ucted from th

is collected u
94). Whenev
mulator, and
rver collects
ends, the Ou
ists of key pe
be found on

1: Main wind

ransitions. Pr
OS) time, ran
e simulation

gard to the re

developed in
lements the
CLK, FEL, an
ctivity/event
he given ATT

using the Pu
ver changes

then these
s these simul
utput Report G
erformance m
our website

dow of ACE

Figure 22

Choi and Ka

rior to the ex
ndom numbe

n is run succe
sources and

n order to sim
activity scan
nd CAL, as w

routines an
T model with

ublish-Subscr
in the syste
simulation e
lation events
Generator tra
measures with
(Choi and K

E® with the si

: Component

ang

xperimentatio
er seed, and
essfully, the
queues are g

mulate the A
nning algorit
well as Queu
nd main pro
h the specifie

ribe mechani
em states are
events are d
s and stores
ansforms the
h system traj

Kang 2014).

ingle server A

ts of ACE®.

on, the run o
other option
output repor

generated and

ATT model a
thm presente
ues, activity r
ogram of th
ed run option

ism of the ob
e made, the

distributed to
them in the
collected ou

jectories. Mo

ACD model

options shoul
ns for data co
rt including
d can be acce

and generate
ed in Figure
routines, even
he ATT sim
ns before the

bserver softw
simulation

o their subsc
e collected o
utput data into
ore detailed in

in Table 2.

ld be set to
ollection in
the system

essed in the

the output
16, which

nt routines,
mulator are

simulation

ware design
events are

cribers and
output data.
o an output
nformation

160

Choi and Kang

5 SUMMARY

In this tutorial, we have explained how to develop dedicated simulators for executing event graph models
and activity cycle diagram (ACD) models. The event-graph simulator template was developed from the
well-known next-event scheduling algorithm, and the ACD simulator template was developed based on
the activity scanning algorithm. C# implementations of the simulator templates are presented for a single -
server event system. Furthermore, a brief description of a general purpose simulator for executing ACD
models is presented.

ACKNOWLEDGMENTS

The tutorial was supported in part by VMS-Solutions Co., Ltd., for which the authors are grateful.

REFERENCES

Carrie, A. 1988. Simulation of Manufacturing Systems. John Wiley & Sons.
Choi, B. K., and D. Kang. 2013. Modeling and Simulation of Discrete Event Systems. John Wiley & Sons.
Law, A.M. 2007. Simulation Modeling and Analysis, 4th edition, McGraw Hill.
Choi, B. K., and D. Kang. 2014. Resources for How to Develop Your Own Simulators for Discrete-Event

Systems. Accessed April 8. http://vms-technology.com/book/msdestutorial/.
Choi, B. K, D. Kang, T. Lee, A.A. Jamjoom, and M.F. Abulkhair. 2013. “Parameterized Activity Cycle

Diagram and Its Application.” ACM Trans. on Modeling and Computer Simulation 23(4): Article 24.
Gamma, E., R. Johnson, R. Helm, and J. Vlissides. 1994. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley.
Hollocks, B. W. 2008. “Intelligence, Innovation and Integrity – KD Tocher and the Dawn of Simulation.”

Journal of Simulation 2(3): 128–137.
Kang, D. H., and B. K. Choi. 2010. “Visual Modeling and Simulation Toolkit for Activity Cycle

Diagram.” In Proceedings of the 24th European Conference on Modeling and Simulation, edited by
A. Bargiela, S. A. Ali, D. Crowley, and E. J. H. Kerckhoffs, 169–174. Kuala Lumpur, Malaysia.

Kiviat, P. J., R. Villanueva, and H. M. Markowitz. 1968. The SIMSCRIPT II Programming Language, R-
460-PR, The RAND Corporation.

Savage, E. L., L. W. Schruben, and E. Yücesan. 2005. “On the Generality of Event-Graph Models.”
INFORMS Journal on Computing 17(1): 3–9.

Schruben, L. W. 1983. “Simulation Modeling with Event Graph Models.” Communications of the ACM
26(11): 957–963.

Tocher, K. D. 1960. “An Integrated Project for the Design and Appraisal of Mechanized Decision-
Making Control Systems.” Operational Research Quarterly 11(1-2): 50–65.

AUTHOR BIOGRAPHIES

BYOUNG K. CHOI has been a professor in the Department of Industrial and Systems Engineering at
KAIST in Daejeon, Republic of Korea, since 1983. He has also been an adjunct professor at King
Abdulaziz University in Jeddah, Kingdom of Saudi Arabia, since 2012. He received a Ph.D. in Industrial
Engineering from Purdue University in 1982. His current research interests are system modeling and
simulation and simulation-based scheduling. His email address is bkchoi@kaist.ac.kr.

DONGHUN KANG is a postdoctoral researcher in the Department of Industrial and Systems
Engineering at KAIST in Daejeon, South Korea. He received a Ph.D. from KAIST in Industrial
Engineering in 2011. His research interests lie in the DES M&S and its applications in various domains.
His email address is donghun.kang@kaist.ac.kr.

161

