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ABSTRACT

Safety planning for crowd evacuation is an important and active research topic nowadays. One important
issue is to devise the evacuation plans of individuals in emergency situations so as to reduce the total
evacuation time. This paper proposes a novel evolutionary algorithm (EA)-based methodology, together
with agent-based crowd simulation, to solve the evacuation planning problem. The proposed method
features a novel segmentation strategy which divides the entire evacuation region into sub-regions based
on a discriminant function. Each sub-region is assigned with an exit gate, and individuals in a sub-region
will run toward the corresponding exit gate for evacuation. In this way, the evacuation planning problem
is converted to a symbolic regression problem. Then an evolutionary algorithm, using agent-based crowd
simulation as fitness function, is developed to search for the global optimal solution. The simulation results
on different scenarios demonstrate that the proposed method is effective to reduce the evacuation time.

1 INTRODUCTION

The world is getting more and more crowded with the rapid social and economic development. It has
become a common phenomenon that a large number of people gather at a public place such as a theatre,
a shopping mall, and an airport terminal. If an accident such as a fire happens in such crowded scenarios,
people may get injured or even die if they fail to evacuate the place in time. Therefore, safety planning for
crowd evacuation, which tries to reduce the evacuation time by guiding people’s evacuation behaviours,
has become an important and active research topic nowadays (Ferscha and Zia 2009b, Kamkarian and
Hexmoor 2012).

Over the past decade, various crowd evacuation modeling approaches have been proposed, including
the Cellular Automaton Model (Daoliang, Lizhong, and Jian 2006, Liu, Yang, Fang, and Li 2009), the
Social Force Model (Helbing, Farkas, and Vicsek 2000), the Flow-based Model (Hughes 2003), and the
Agent-Based Model (Zarboutis and Marmaras 2004, Toyama, Bazzan, and Da Silva 2006, Luo, Zhou, Cai,
Lees, Low, and Sornum 2011, Zhong, Luo, Cai, and Lees 2014). Different approaches simulate the crowd
evacuation dynamics from different points of view. Among these, agent-based approach has become the
most active and dominant one, due to its capability to model heterogeneous individuals. It is also flexible
to incorporate various behavioral factors in agent-based model, which is helpful to study the dynamics of
crowd evacuation.
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Some efforts have also been made to study people’s evacuation behaviours based on crowd simulation,
so as to reduce the evacuation time. However, existing works mainly focus on dynamic planning, which
requires special sensor devices to detect the crowd dynamics (or a central control station to guide the crowd)
in real-time. These approaches become inapplicable when the required devices (or the central station)
are not available. For example, Kamkarian and Hexmoor (Kamkarian and Hexmoor 2012) combined
Coulomb’s electrical law and graph theory to develop a tool for guiding people out of a public building.
The simulation studies reported promising performance of the method. However, the method requires
special sensor devices to dynamically detect environment features such as the body size and velocity of
each individual, which can be a challenging issue in practical applications. Liu et.al. (Liu, Yang, Fang,
and Li 2009) developed a Cellular Automaton Model to simulate an evacuation experiment conducted in a
classroom with obstacles. Their simulation results showed that people choosing exits by taking into account
the dynamic density around exits can lead to less evacuation time. Chen et. al. (Chen, Cheng, and Tseng
2012) developed a load-balancing framework to guide people evacuate from a building. Their method
requires deploying a sensor network to identify hazardous region dynamically. Ferscha and Zia (Ferscha
and Zia 2009b, Ferscha and Zia 2009a, Ferscha and Zia 2010) developed wearable device named LifeBelt
to support the evacuation process of crowds from emergency situations. The LifeBelt assists individuals
move towards the recommended exit gate based on sensing neighbourhood information such as the relative
spatial relations (distance and orientation) of all individuals. Although the LifeBelt method has been shown
very effective to reduce the evacuation time, it may not be practical in scenarios such as shopping malls
and airport terminals, as it requires each individual wearing a special Lifebelt device.

To address the above issue, this paper proposes a safety planning methodology which generates
evacuation plan before the occurrence of actual evacuation process. The proposed method does not require
complex devices or a central control station. The dynamic safety planning methods can provide more
robust guidelines to people than static planning strategy, because they can detect the dynamic environment
features and unexpected events in real time. The objective of the study is not to develop a method that
outperforms the existing dynamic safety planning methods. Instead, we aim to propose a general and
low-cost methodology to guide the evacuation behaviours of individuals where existing dynamic safety
planning methods are not applicable (e.g., in scenarios without sensor devices and the central control
station).

The key idea of our methodology is to divide the evacuation area into sub-regions using a specific
segmentation strategy defined by a discriminant function. Each sub-region is assigned with an exit gate. Once
an evacuation occurs, individuals situated in a sub-region will be guided to move towards the corresponding
exit gate. Since the planning strategy is generated in the design state, we can simply use sighboards to
guide people to the recommended exits. In this way, safety planning is converted to a symbolic regression
problem, i.e., to find the best discriminant function to divide the evacuation area. This paper develops an
evolutionary algorithm to solve the symbolic regression problem. Agent-based crowd simulation is used to
evaluate the fitness of each individual in a population. Our methodology is general, which can be applied
to find safety planning strategies in different scenarios. To test the effectiveness of our approach, we apply
our method to two evacuation scenarios. The simulation results show that our method is effective to reduce
the evacuation time of the crowds, in comparison with several commonly used evacuation strategies.

The outline of the paper is as follows. Section II describes the problem definition. Section III presents
the proposed methodology, and the simulation studies are given in Section IV. Finally, Section V draws
the conclusion.

2 PROBLEM DEFINITION

We aim to divide the evacuation area into sub-regions and assign each sub-region with an exit gate (EG).
Agents in a sub-region will choose the corresponding assigned EG when they start to evacuate. This is
actually a classification problem, i.e., to classify the points in the evacuation area into different categories
where each EG represents a category. One of the commonly used method in the classification research
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Figure 1: The three environment features considered to construct the discriminant function.

field is to construct a symbolic discriminant function that combines features of data as the classification
rule (Espejo, Ventura, and Herrera 2010). Inspired by these works, this paper proposes to use a discriminant
function (denoted as ¢(p)), which returns a score value of each EG for any given position p, to accomplish
the classification task. After calculating the score of each EG, the point p will be classified to the EG that
has the highest score. Clearly, the score of each EG for p is dependent on some environment features, such
as the distance from p to the EG, the number of people surrounding the EG, and the width of the EG. In this
way, finding the optimal segmentation strategy is equivalent to finding the optimal discriminant function
(¢(p)) which leads to the least evacuation time. The latter is a symbolic regression problem which can
be solved using genetic programming (GP) (Zhou, Xiao, Tirpak, and Nelson 2003, Schmidt and Lipson
2009, Espejo, Ventura, and Herrera 2010).

Generally, the optimal segmentation problem can be described as: Given some components such as the
environment features and numerical functions, construct the optimal discriminant function by combining
the components to divide the evacuation area, so that the total evacuation time of all agents using the
partition strategy can be minimized.

In this paper, we consider three environment features (as illustrated in Fig. 1) and four basic numerical
operators to construct @(p):

feature set = {d,w,n}

. (D
function set = {—i—, _7*7/}

The first factor (d) is the distance to the EG. Intuitively agents are more likely to choose an EG with a
shorter distance. The second factor (w) is the width of the EG. A wider EG would lead to a larger evacuation
rate and a shorter evacuation time. The third factor (n) is the number of agents that have shorter distance
to the EG than the agent at p. This factor is related to the waiting time for evacuation. A larger n will
result in a longer evacuation time. We assume that agents are uniformly distributed in the evacuation area,
so that we can estimate 7 if the total number of individuals is known in advance. Note that the feature set
and function set adopted in this paper are defined empirically, based on the intuitive understanding of the
evacuation behaviours in our daily life. These factors are effective to demonstrate the effectiveness of our
methodology in our experiments, and it is possible that incorporating different features and functions into
our methodology might generate better performance.

3 THE PROPOSED METHODOLOGY

In Section 2, we have converted the safety planning problem into an optimization problem. That is, to
construct an optimal symbolic discriminant function to divide the evacuation area, so that evacuation time
of agents using the partition strategy can be minimized. This optimization problem is known as a symbolic
regression problem. Gene expression programming (GEP), first proposed by Ferreira (Ferreira 2001), is
one of the notable evolutionary algorithm that has been shown very effective to generate accurate and
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Figure 3: Example of an expression tree.

readable solutions to symbolic regression problems (Zhou, Xiao, Tirpak, and Nelson 2003, Ferreira 2006).
Therefore, this paper adopts the GEP to search for the optimal discriminant function.

3.1 Chromosome Representation

In the GEP, each chromosome is represented by a vector of symbols with fixed length. The vector consists
of two parts, namely the “Head” and the “Tail”, as shown in Fig. 2. Each element of the “Head” can
be a function or a terminal, while each element of the “7ail” can only be a terminal. In this paper, the
elements in the feature set are used as terminals. For example, given a function set F = {+,—,*,/} and a
feature set T = {d,w,n}, a typical GEP chromosome with length of 11 can be:

X:[+7*a/,d,—,w,n,n,w,d,w]. (2)

Each chromosome can be converted to an expression tree (ET) using a breadth first traversal scheme. For
example, the chromosome expressed in (2) can be converted to an ET as shown in Fig. 3, which can be
further expressed in a mathematical formula as

d*(n—w)+%. 3)

The length of the “Head” (H) and that of the “Tail” (L) are fixed. In order to ensure that any chromosome
can result in a valid ET, H and L should have the following relation:

L=H-(u—1)+1, 4)

where u is the number of arguments of the function with the most arguments. For example, the number
of arguments of “+7, “-”, “*”_ or “/” is equal to two. Hence, in this paper, we consider u = 2, and we
have L = H + 1. Note that there may exist some redundant elements which are not useful for building the
ET (e.g., the last two elements in (2)). But these redundant elements may become useful to build ETs in
future evolution.

3.2 Algorithm Framework

Based on the above chromosome representation, the GEP adopts several GA-based operations (e.g.,
Crossover, Mutation and Transposition) to evolve a population of chromosomes, so as to search for the
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best discriminant function. The traditional GEP contains a number of controlling parameters. Tuning these
parameters is time consuming. To solve this problem, this paper develops a modified GEP to evolve the
chromosomes, by replacing the original GA-based operations with differential evolution operations. This is
because that DE operations are easy to implement and contains only two controlling parameters (i.e., F" and
CR). Besides, DE has been shown more effective than several other EAs such as GA on various complex
optimization problems (Price, Storn, and Lampinen 1997, Das and Suganthan 2011, Zhong and Zhang
2012, Zhong, Shen, Zhang, Chung, hui Shi, and Li 2013). Specifically, the procedures of the proposed
algorithm are as follows.

3.2.1 Initialization

The first step is to generate a population of random chromosomes. Denote each chromosome X; as:
Xi = [Xi1,%i2, -, Xi D], )

where x; ; is the j-th element of X;, D is the length of the chromosome. The value of x; ; is initialized by:

o {rand(F+T),if i s belong to Head ©

rand(T),otherwise

where F and T are the function set and terminal set respectively, and rand(A) returns a random element
in A. Here we use integers to represent the function set and terminal set. Suppose we have a functions
and b terminals. Then we use 1,2,...,a to represent the a functions, and a+ 1,a+2,...,a+ b to represent
the b terminals.

After generating the initial individuals, their fitness are evaluated. To evaluate the fitness of a chromo-
some, we first divide the evacuation area using the segmentation strategy represented by the chromosome.
Then we evenly deploy a number of agents in the evacuation area and run the simulation. Agent belonging
to each sub-region will always choose the EG assigned to the sub-region for evacuation. The fitness value
of the chromosome is equal to the total evacuation time of all agents.

3.2.2 Mutation

In the second step, a mutant string (denoted as Y;) is generated for each X; by:
Y; = Round(X; + F * (Xpess — Xi) + cauchy(0,1) x (X,, — X,,)), (7)

where r| and r, are two random individual indices, and F is a scaling factor. In this paper, the scaling
factor is set to be a random number which is uniformly distributed within 0 and 1:

F =rand(0,1). (8)

cauchy(u, o) returns a random number with cauchy distribution. Round(t) is a truncation function that
returns an integer value within 1 and a + b:

a+b,ift>a+b
Round(t) =< 1,if t < 1 . )

|7, otherwise

In this way, the elements of Y; are always feasible values that represent functions or terminals.

399



Zhong, Luo, Cai, and Lees

3.2.3 Crossover
After generating a mutant string for each individual, the mutant string will crossover with its parent string
to generate a trial string (U;):

(10)

Ui, j

B {y,-,j,if rand(0,1) < CR

x; j,otherwise,

where u; ;,y; j and x; ; are the j-th element of U;,Y;, and X; respectively, and CR is a parameter to control
the crossover rate. The value of CR is set as:

CR = rand(0,1). 1D

3.2.4 Selection

The fourth step is to evaluate all trial strings and choose a better string from each pair of trial and parent
strings to form the new population:

i =

: ) 12)
X;,otherwise

{Uzwif f(Ui) < f(X)
where f() is the fitness evaluation function which returns the fitness of the input chromosome. As mentioned
in Section 3.2.1, the fitness of a chromosome is evaluated using the agent-based crowd simulation. The
algorithm repeats the second step to the fourth step until the terminate condition (e.g., the maximum
generation) is met.

4 SIMULATION STUDIES
4.1 An Agent-based Crowd Simulation Platform

An agent-based crowd simulation platform is developed to test the algorithm. In the model, a number of
agents are distributed in an enclosed region. There are several exit gates (EGs) in the evacuation region.
Agents are supposed to move towards an EG and evacuate from the evacuation area. We use the social
force model (Helbing, Farkas, and Vicsek 2000) to guide the motions of agents. The social-force model
uses virtual forces to guide the motions of agents. The force imposed on an agent is expressed as:

fi=m = fut ¥ fit L (13)
t A~
J(#D) w

where m; and % are the mass and acceleration rate of the agent; f; ,f;; and f;, are attractive force
towards the goal, repulsive force from other agent and repulsive force from the static obstacles (e.g., wall)
respectively. The formulation of f; , f;; and f;,, can be found in (Helbing, Farkas, and Vicsek 2000). On
top of the social force model, some high level evacuation strategies are designed to determine the goal of
the agents (i.e., choosing an exit), such as the distance first strategy (agents always choose the nearest EG)
and the segmentation strategy provided by the proposed method.

4.2 Simulation Settings

Based on the defined crowd evacuation model, we design two scenarios for testing. The first scenario is
a 24m x 14m rectangle room with four EGs, as shown in Fig. 4. The widths of the EGs are different.
Agents reaching any of the four EGs are considered successfully evacuated from the room. The second
scenario has a more complicated layout and contains five EGs and multiple rooms. An agent reaching any
of the EGs is considered successfully evacuated and removed from the simulation.
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Figure 4: The two scenarios for simulation studies. (a) Scenario 1. (b) Scenario 2.
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Figure 5: The evolution curves of the best fitness on the two scenarios. (a) Results of scenario 1. (b)
Results of scenario 2.

To obtain the optimal segmentation strategies of the two scenarios, a number of agents are evenly
deployed in the evacuation area, as shown in Fig. 4. Given a segmentation strategy, we run a simulation
with the deployed agents to obtain the evacuation time which is used as the fitness of the segmentation
strategy. In this way, we carry out our algorithm to search for the optimal discriminant function. Since
EAs are stochastic algorithms which can provide different solutions in different runs, we perform 30 EA
runs for each scenario and use the average results for analysis. The parameter setting of the proposed
algorithm is as follows: population size = 20; maximum number of generations = 100; the head length of
the chromosome = 5.

4.3 Simulation Results

Fig. 5 shows the evolution curves of the best fitness. The fitness values are the average results of 30
independent runs. It can be observed that the best fitness value decreases gradually in both scenarios,
indicating that the best discriminant functions found by our algorithm in both scenarios are becoming better.
In the first scenario, the best evacuation time found by our algorithm in the first generation is 75 seconds.
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Figure 6: The best segmentation strategies found by our method on the two scenarios. (a) Results of
scenario 1. (b) Results of scenario 2.

As the population is evolved over generations, the evacuation time gradually reduces to 65s. Similarly, in
the second scenario, the evacuation time gradually reduces from 76 seconds to 71 seconds. These results
demonstrate that the proposed algorithm is effective to reduce the evacuation time.

In the first scenario, the best discriminant function found by our algorithm is:

()
(dx*d)

F(x) = *(w—d), (14)
which leads to an evacuation time of 62 seconds. In the second scenario, the best discriminant function
found by our algorithm is:

F(x)=((w—d)—(dxw))— (n+d)), (15)

which leads to an evacuation time of 69 seconds. Fig. 6 shows the segmentation results using the above
two discriminant functions. It can be observed that the sub-regions assigned to each EG have irregular
shapes. The sub-regions assigned to wider EGs generally have a larger size. Fig. 7 plots the execution
time of two EA runs on the two scenarios respectively. It can be observed that the execution time of the
two EA runs increases linearly with the number of generations, and the execution time of the EA run on
the second scenario is larger than that on the first scenario. This is because that the execution time of an
EA run is mainly dependent on the execution time of fitness evaluations (i.e., simulation time) and the
total number of fitness evaluations (i.e., population size * number of generations), while the simulation
time of the second scenario is larger than that of the first scenario. Considering that the safety planning
is an off-line optimization process, the total execution time of the two EA runs (about 4500s and 12500 s
respectively) are acceptable for practical application.

To test the effectiveness of the two segmentation strategies in (14) and (15), we run 30 different
simulations with differing number and initial positions of agents for each scenario. The initial positions
of agents follow an uniform distribution in all test instances. The 30 test instances are grouped into three
categories, each containing 400, 600, and 800 agents respectively. Each category contains 10 test instances.
At the beginning of the simulation, each agent first finds the nearest representative point and then uses
the assigned exit gate of the representative point as its goal. We compare the simulation results using our
segmentation strategy with other three evacuation strategies. The first strategy is named ‘“Random”, where
agents randomly choose an EG for evacuation. The second strategy is named “Distance first” where agents
always choose the nearest EG. The third strategy is the “LifeBelt” evacuation strategy (Ferscha and Zia
2009b). This method recommends EGs to agents based on three factors: the time to reach an exit gate
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(TEG), the number of individuals expected in the destination EG (EP), and the number of individuals that
can possibly escape through that exit per unit time (EC). The predicted evacuation time is calculated by:

EP
T=TEG+ —

e (16)

Since EC is in proportion to the width of the EG (w), we use the following formula to estimate 7 in the
simulation:
xS D (17)
s w
Agents will choose the EG with the smallest 7. Table 1 shows the simulation results of the four evacuation

Table 1: Average evacuation time of different evacuation strategies.

Scenario | Number of agents Random Distance first LifeBelt The proposed method
400 130.9 £ 8.0 89.7 £ 9.1 73.8 £3.0 68.7 £ 3.6
3 600 192.6 £ 11.4 | 1266 £ 6.4 | 96.5 £ 3.0 95.8 + 29
800 2484 + 158 | 171.2 £ 11.1 | 122.8 + 3.5 124.1 £5.1
400 1495 £208 | 815+ 1.1 753 £ 6.7 745 £ 29
S 600 190.7 £ 224 | 857 £ 1.8 79.1 £ 2.6 789 £ 3.3
800 2515 +£269 | 1049 +3.8 | 851 £4.8 924 £35

strategies. It can be observed that the “Random” method performed the worst, and the “Distance first”
method performed the second worst. Owning to the effective segmentation strategy, the evacuation time
of our method is always much better than that of the “Random” and “Distance first” strategies on all
test instances. Meanwhile, the proposed method offered similar performance to the “LifeBelt” method.
The proposed method performed slightly better on the first two groups of instances, while the “LifeBelt”
performed slightly better on the third group of instances. Note that our method is a static planning strategy;
whereas the LifeBelt methods is a dynamic planning strategy which requires special devices to sensor the

environment features dynamically. From this point of view, our method is effective and convenient for
practical use.
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5 CONCLUSION

This paper has proposed an EA-based methodology for safety planning in crowd evacuation. The key idea
is to find an optimal discriminant function to divide the evacuation area into sub-regions. Each sub-region is
assigned to an exit gate, and agents in a sub-region will choose the corresponding exit gate for evacuation.
An EA is utilized to optimize the discriminant function so as to minimize the evacuation time of agents.
The proposed method was applied to two different scenarios. The simulation results have demonstrated
that the proposed method is effective to reduce the evacuation time of agents, in comparison with several
other evacuation strategies.

This work is a preliminary research on safety planning in crowd evacuation using EA. A major limitation
of the current work is that the the simulation results are obtained in an ideal condition that individuals
are uniformly distributed in the evacuation region. Besides, the current method uses a single discriminant
function to control behaviors of all agents which can reduce the flexible and robustness of the obtained
solutions. Hence, an interesting future research direction is to consider the non-uniform distribution of
individuals and using multiple discriminant functions to generate more robust safety planning strategy. For
example, to consider the non-uniform distribution of individuals, we can first analyze some historical video
data to obtain the local density of sub-regions, and then use the local density factor as a new component
to construct the discriminant function. Besides, we can assign different discriminant functions to different
classes of agents that have distinct features (e.g., agents in specific regions may have much slower moving
speed than those in other regions). By using multi-gene chromosome representation of GEP, the proposed
method is applicable to evolve multiple discriminant functions simultaneously. In this way, we can integrate
the heterogeneity among agents to generate more robust and flexible safety planning strategy. In addition,
by incorporating sensing devices to detect the feature values of agents, and control the behaviours of
agents by calculating the discriminant function dynamically with the detected features values, the proposed
methodology can be extended to provide dynamic safety planning strategy.
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