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ABSTRACT

An improved variance reduction method for accurate estimation of the price, delta, and gamma of Asian
options in a single simulation is presented. It combines randomized quasi–Monte Carlo with very efficient
new control variates, that are especially successful in reducing the variance of the pathwise derivative
method used to simulate delta and gamma. To improve the performance of randomized quasi–Monte Carlo,
we smooth the integrands by employing conditional Monte Carlo and reduce the effective dimension of the
smoothed integrands by using principal component analysis. Numerical results show that the new method
yields significant variance reduction for the price, for delta and for gamma.

1 INTRODUCTION

Asian options are path dependent derivative securities whose payoff is calculated using the average of the
prices of the underlying asset. Pricing Asian options requires efficient numerical methods, since there
is no closed form solution for their prices. Monte Carlo (MC) and quasi–Monte Carlo (QMC) methods
are among the most widely used methods for Asian options. In fact, pricing Asian options is a classical
simulation problem much studied by the researchers in the simulation literature. Many studies suggesting
new simulation methods use Asian options as an example to show the effectiveness of their methods. On the
other hand, computing the option sensitivities, which are known as greeks, attracts less attention, although
their accurate computation is as important as the computation of the prices.

We consider Asian call options with payoff functions (A−K)+, where A = ∑
d
i=1 S(ti)/d is the arithmetic

average of the prices of the underlying asset observed at d time points {S(ti),1≤ i≤ d} and K is the strike
price. The option price is given by the discounted risk neutral expectation of the payoff P= e−rT E [(A−K)+],
where r is the deterministic risk free interest rate and T is the maturity of the option. The time points
0 = t0 < t1 < .. . < td = T are assumed to be equidistant, i.e. ti− ti−1 = ∆t = T/d for i = 1, . . . ,d. We
assume that the underlying asset price process S(t) follows geometric Brownian motion (GBM) with a
constant volatility parameter σ , that is S(t) = S(0)exp((r−σ 2/2)t +σW (t)), where {W (t), t ≥ 0} denotes
standard BM.

Delta (∆) and gamma (Γ) are the two most important greeks of options. Delta is the sensitivity of the
option price (P) with respect to the initial stock price S(0), i.e. ∆ = ∂P/∂S(0). Gamma is the sensitivity of
delta with respect to S(0). So, it is given by the second derivative of the option price with respect to S(0),
i.e. Γ = ∂ 2P/∂S(0)2. In this paper, we suggest a new and efficient method for Monte Carlo estimation of
the price, delta and gamma of Asian options in a single simulation. Our algorithm combines quasi-Monte
Carlo with control variates and conditional Monte Carlo.

By using pathwise derivative (PD) and likelihood ratio (LR) methods, it is possible to obtain the estimates
of the price, delta and gamma of Asian options in a single simulation, see e.g. Glasserman (2004), Boyle
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and Potapchik (2008). The PD method is based on the interchange of differentiation and expectation,
whereas the LR method differentiates the density. The PD estimate of delta is given by e−rT A/S(0)1{A>K}.
The PD method is not applicable to gamma. But, as suggested by Glasserman (2004), we can combine
PD and LR methods. The resulting LR+PD gamma estimator is e−rT Z1/(S(0)2σ

√
∆t)1{A>K}K, where Z1

is the standard normal variate used to simulate the increment of W (t) over the first time interval (0, t1].
Dingeç and Hörmann (2013) suggest a very efficient variance reduction method for pricing basket and

Asian options under GBM assumption. Their method utilizes the combination of control variate (CV) and
conditional Monte Carlo (CMC) techniques. Dingeç, Sak, and Hörmann (2014) extend this method to
more general models than GBM. They also show that it is possible to obtain PD estimators of delta and
gamma under the new variance reduction method. The main aim in this study is to further improve the
performance of these methods and to obtain the price, delta and gamma of Asian options under GBM in
a single simulation.

For many simulation problems QMC sampling can achieve a rate of convergence close to O(1/n),
clearly higher than the O(1/

√
n) rate of MC. However, QMC sampling for delta and gamma is often

less successful than for the prices, as the estimators of delta and gamma include the indicator functions.
Still we hoped that a proper application of QMC could further enhance the efficiency of the algorithm.
Unfortunately our first experiments with QMC did not show any improvement of the rate of convergence.
This result seemed in line with common observations in the literature that QMC sampling under variance
reduction methods is less successful than under naive simulation. Numerical examples of Lemieux (2009)
and L’Ecuyer (2009) show for example, that for Asian options, the variance reduction obtained by QMC
under the classical CV method of Kemna and Vorst (1990) is clearly smaller than that obtained by QMC
under naive simulation. Nevertheless, since the estimators in our CV method are smoothed by CMC, we
had hoped for more success. At that point we remembered that it is a well known fact in the literature
that not only the smoothness of the integrand but also the so-called effective dimension of a problem has
a strong impact on the performance of QMC methods. Using principal component analysis (PCA) we are
able to reduce the effective dimension of the problem considerably. We also add several new CVs that
further increase the performance of our randomized quasi-Monte Carlo (RQMC) algorithm especially for
gamma.

In Section 2, we explain the methods of Dingeç and Hörmann (2013) and Dingeç, Sak, and Hörmann
(2014). Section 3 presents our improved simulation method for the price and the greeks. Numerical results
are reported in Section 4, whereas Section 5 contains our conclusions.

2 AN EFFICIENT VARIANCE REDUCTION METHOD

2.1 Using Lower Bound of Curran as CV

Curran (1994) decomposes the payoff function into two parts by using the geometric average G = ∏
d
i=1 S(ti)

as a conditioning variable, i.e. (A−K)+ = (A−K)+1{G<K}+(A−K)+1{G≥K} and suggests to use the
expectation of the second term e−rT E [(A−K)+1{G≥K}] as a lower bound for the price. Since G < A,
(A−K)+1{G≥K} is equal to (A−K)1{G≥K} and thus the lower bound LB = e−rT E [(A−K)1{G≥K}] is
available in closed form. Due to the high correlation between G and A, the expectation of the other term
E [(A−K)+1{G<K}] is close to zero, and LB is an accurate approximation of the price.

Dingeç and Hörmann (2013) propose to use the lower bound of Curran (1994) as a CV. Their
price estimator is YCV = PA− c(V −E [V ]), where PA = e−rT (A−K)+ is the naive simulation estimate,
V = e−rT (A−K)1{G≥K} is the new CV, and c is the CV coefficient. The expectation of the CV was
proposed by Curran (1994) as a lower bound for the price LB = e−rT E [(A−K)1{G≥K}]. Due to the high
correlation between A and G, (A−K)+1{G<K} is equal to zero, and so PA =V in most of the replications.
Thus the optimal coefficient c∗ = Cov(PA,V )/Var(V ) is very close to one, and fixing c = 1 does not cause
any significant loss of variance reduction. The resulting price estimator is e−rT (A−K)+1{G<K}+LB. The
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closed formula of the LB is

LB = e−rT

(
S(0)

d

d

∑
i=1

eri∆t
Φ(−k+ai)−KΦ(−k)

)
, (1)

where ai =σ
√

∆t i(d +1− (i+1)/2)/
√

d (d +1)(2d +1)/6 and k=(logK−µs̃)/σs̃, where µs̃ = logS(0)+
(r−σ2/2)∆t(d+1)/2, and σs̃ =σ/d

√
∆t d (d +1)(2d +1)/6, see Curran (1994) and Dingeç and Hörmann

(2013) for more details.

2.2 CMC

To reduce the variance of Y = (A−K)+1{G<K}, Dingeç and Hörmann (2013) suggest a CMC method,
which removes the variance contribution of G by integrating it out. They first write the arithmetic average
as a function of the standardized log geometric average, X ∼ N(0,1), and a d dimensional standard normal
vector, Z ∼ N(0, Id) (here Id denotes the identity matrix of size d). That is A(x,z) = 1/d ∑

d
i=1 eaixsi(z),

where si(z)’s are given by the recursion

si(z) = si−1(z)exp
(
(r−σ

2/2)∆t +σ
√

∆t ξi

)
, for i = 1, . . . ,d,

where s0(z) = S(0), ξ = z−υ(υ>z), and

υi =
d− i+1√

∑
d
j=1(d− j+1)2

=
d− i+1√

d (d +1)(2d +1)/6
, i = 1, . . . ,d. (2)

The smoothed estimator is given by the conditional expectation E [Y |Z = z] =
∫ k
−∞

(A(x,z)−K)+φ(x)dx =∫ k
b(z)(A(x,z)−K)φ(x)dx, where φ(x) is the standard normal density and b(z) is the unique root of A(x,z)−K =

0 for a given fixed z, i.e. A(b(z),z)−K = 0. The smoothed estimator has the following semi-closed form
expression

E [Y |Z = z] = 1/d
d

∑
i=1

si(z)ea2
i /2 [Φ(k−ai)−Φ(b(z)−ai)]−K [Φ(k)−Φ(b(z))] , (3)

where Φ(x) denotes the cdf of the standard normal distribution. The root b(z) is evaluated by means of
Newton-Raphson method.

2.3 Quadratic CVs

Dingeç and Hörmann (2013) reduce the variance of the smoothed estimator E [Y |Z] by introducing new CVs.
They observe that there is a strong relationship between the two conditional expectations E [Y |Z] and E [VL|Z],
where Y = (A−K)+1{X<k} = (A−K)1{b(Z)<X<k} and VL = (A−K)1{b∗<X<k} with b∗ = h−1(K), the unique
root of h(x)−K = E [A|X = x]−K = 0. Nevertheless, the observed relation is highly nonlinear, and using
E [VL|Z] as a single CV does not yield a large variance reduction. Therefore, a bivariate CV method is suggested
with a quadratic CV. The resulting price estimator is e−rT (E [Y |Z]−c1(Ψ−E [Ψ])−c2(Ψ

2−E [Ψ2]))+LB,
where Ψ = E [VL|Z] and {c1,c2} are the CV coefficients. Like for the conditional expectation of Y , there is a
simple semi-closed form solution for the conditional expectation of VL. It is given by Ψ=∑

d
i=1 γi si(Z)−Kη ,

where γi = (1/d)ea2
i /2 [Φ(k−ai)−Φ(b∗ −ai)] and η = Φ(k)−Φ(b∗). The root b∗ = h−1(K) can be easily

evaluated, as h(x) = E [A|X = x] is simply equal to S(0)/d ∑
d
i=1 exp

(
aix+ ri∆t−a2

i /2
)
. The closed form

expressions for the expectations of the CVs are

E [Ψ] =
d

∑
i=1

γi S(0)Hi−Kη , and E [Ψ2] =
d

∑
i=1

d

∑
j=1

γiγ jS(0)2Mi j−2Kη

d

∑
i=1

γi S(0)Hi +(Kη)2, (4)
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where
Mi j = exp

(
(r−σ

2/2)(i+ j)∆t +σ
2
∆t (Cii +Cj j +2Ci j)/2

)
,

Hi = exp
(
(r−σ

2/2)i∆t +σ
2
∆t Cii/2

)
,

and Ci j = min{i, j}−ai a j/(σ
2∆t).

2.4 Sensitivity Estimation

Dingeç, Sak, and Hörmann (2014) extend the CV+CMC method of Dingeç and Hörmann (2013) to more
general models than GBM. Moreover, they obtain the PD estimators of delta and gamma by using the
derivatives of the smoothed price estimator. In this section, we derive the formulas for the GBM case. The
PD estimators of Dingeç, Sak, and Hörmann (2014) for delta and gamma are

e−rT ∂E [Y |Z]
∂S(0)

+
∂LB

∂S(0)
and e−rT ∂ 2E [Y |Z]

∂S(0)2 +
∂ 2LB

∂S(0)2 ,

respectively. For the general model setting of Dingeç, Sak, and Hörmann (2014), it is possible to evaluate
LB and its derivatives only by numerical inversion of the characteristic functions. However, for the GBM
case, we have a simple closed form solution for LB given in (1). Furthermore, by using Leibniz rule, we
obtain the derivatives of LB = e−rT ∫ ∞

k (h(x)−K)φ(x)dx as

∂LB
∂S(0)

= e−rT

(
1
d

d

∑
i=1

eri∆t
Φ(−k+ai)+

(h(k)−K)φ(k)
S(0)σs̃

)
, (5)

∂ 2LB
∂S(0)2 =

e−rT φ(k)
S(0)2σ2

s̃
[2h(k)σs̃−h′(k)− (h(k)−K)(σs̃− k)]. (6)

Similar expressions were presented by Nielsen and Sandmann (2003) and Vanmaele et al. (2006) as
approximation formulas for the greeks of Asian options under GBM.

The formulas for the derivatives of E [Y |Z] are given by

∂E [Y |Z]
∂S(0)

=
1

S(0)

[
1
d

d

∑
i=1

si ea2
i /2 [Φ(k−ai)−Φ(b−ai)]− (A(k)−K)φ(k)/σs̃

]
(7)

∂ 2E [Y |Z]
∂S(0)2 =

1
S(0)2σ2

s̃

(
K2

σ
2
s̃ φ(b)/A′(b)+φ(k)

[
A′(k)−2A(k)σs̃ +(A(k)−K)(σs̃− k)

])
, (8)

where A(x)≡ A(x,z) and A′(x)≡ ∂A(x,z)/∂x.

3 IMPROVING THE PD METHOD

In this section, we introduce our improvements for the method explained in Section 2. We first suggest a
new multiple CV method in Section 3.1 by using the derivatives of the quadratic CVs given in Section 2.3.
Then in Section 3.2, we propose to use RQMC sampling. Since the estimators are smoothed by CMC,
we expect a superior performance for RQMC. However, we observed in our experiments that smoothing
by CMC is not enough to obtain a higher rate of convergence. It is also necessary to reduce the effective
dimension of the smoothed integrands by using some transformation method. In Section 3.2.1, we explain
the application of PCA sampling, which is one of the standard dimension reduction techniques in the
literature.

It is a common observation in the literature that combination of RQMC with variance reduction
techniques does not bring as much improvement as its use for naive simulation. So, it is interesting to
investigate the performance of RQMC when it is combined with the newly proposed CVs. In Section 3.2.2,
we present the combination of RQMC sampling with our new CVs.
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3.1 New CVs

We realized that it is possible to reduce the variance of the estimators by using also the derivatives of the
quadratic CVs of Dingeç and Hörmann (2013) as CVs. Our CV estimators for price, delta, and gamma are

YP = e−rT (E [Y |Z]+ c>P (ϒ−E [ϒ]))+LB

YD = e−rT
(

∂E [Y |Z]
∂S(0)

+ c>D(ϒ−E [ϒ])

)
+

∂LB
∂S(0)

YG = e−rT
(

∂ 2E [Y |Z]
∂S(0)2 + c>G(ϒ−E [ϒ])

)
+

∂ 2LB
∂S(0)2 ,

where

ϒ =

(
Ψ,Ψ2,

∂Ψ

∂S(0)
,

∂ 2Ψ

∂S(0)2 ,
∂Ψ2

∂S(0)
,

∂ 2Ψ2

∂S(0)2

)>
, (9)

is the CV vector and cP,cD, and cG are the CV coefficient vectors for price, delta, and gamma, respectively.
All of the above CVs contain some information about the variability of the smoothed estimators of the
price and greeks. So, instead of using only two CVs, i.e. {Ψ,Ψ2},{ ∂Ψ

∂S(0) ,
∂Ψ2

∂S(0)}, and { ∂ 2Ψ

∂S(0)2 ,
∂ 2Ψ2

∂S(0)2 } for
price, delta, and gamma, respectively, we use all possible CVs together. In our experiments, we observed
that using all six CVs together yields significantly larger variance reduction than using only two of them.
Also, using all CVs does not increase the computational time significantly.

The derivatives of Ψ are given by

∂Ψ

∂S(0)
=

1
S(0)

[
1
d

d

∑
i=1

si ea2
i /2 [Φ(k−ai)−Φ(b∗ −ai)]− (A(k)−K)φ(k)/σs̃ +(A(b∗)−K)φ(b∗)K/h′(b∗)

]
∂ 2Ψ

∂S(0)2 =
φ(k)

S(0)2σ2
s̃

[
A′(k)−2A(k)σs̃ +(A(k)−K)(σs̃− k)

]
+

φ(b∗)K
S(0)2

[
2A(b∗)
h′(b∗)

− KA′(b∗)
h′(b∗)2 − (A(b∗)−K)

(
1

h′(b∗)

(
2− Kh′′(b∗)

h′(b∗)2

)
− b∗K

h′(b∗)2

)]
.

The derivatives of Ψ2 are simply

∂Ψ2

∂S(0)
= 2Ψ

∂Ψ

∂S(0)
and

∂ 2Ψ2

∂S(0)2 = 2

[(
∂Ψ

∂S(0)

)2

+Ψ
∂ 2Ψ

∂S(0)2

]
.

The expectation vector E [ϒ] is also available in closed form. Since Ψ is a smooth function of S(0),
the order of expectation and differentiation can be interchanged. Therefore, by taking the derivatives of
E [Ψ] and E [Ψ2], we obtain the the expectations of the CVs as

E
[

∂Ψ

∂S(0)

]
=

∂E [Ψ]

∂S(0)
=

1
d

d

∑
i=1

eri∆t [Φ(k−ai)−Φ(b∗ −ai)]−
(h(k)−K)φ(k)

S(0)σs̃

E
[

∂ 2Ψ

∂S(0)2

]
=

∂ 2E [Ψ]

∂S(0)2 =
1

S(0)2σ2
s̃

(
K2

σ
2
s̃ φ(b∗)/h′(b∗)+φ(k)

[
h′(k)−2h(k)σs̃ +(h(k)−K)(σs̃− k)

])
E
[

∂Ψ2

∂S(0)

]
=

∂E [Ψ2]

∂S(0)
=

d

∑
i=1

d

∑
j=1

Mi j
∂ (S(0)2γiγ j)

∂S(0)
−2K

d

∑
i=1

Hi
∂ (S(0)γiη)

∂S(0)
+

∂ (Kη)2

∂S(0)

E
[

∂ 2Ψ2

∂S(0)2

]
=

∂ 2E [Ψ2]

∂S(0)2 =
d

∑
i=1

d

∑
j=1

Mi j
∂ 2(S(0)2γiγ j)

∂S(0)2 −2K
d

∑
i=1

Hi
∂ 2(S(0)γiη)

∂S(0)2 +
∂ 2(Kη)2

∂S(0)2 ,
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where

∂ (S(0)2γiγ j)

∂S(0)
= 2S(0)γiγ j +S(0)2(γi0γ j + γiγ j0),

∂ (S(0)γiη)

∂S(0)
= γiη +S(0)(γi0η + γiη0),

∂ (Kη)2

∂S(0)
= 2K2

ηη0,

∂ 2(S(0)2γiγ j)

∂S(0)2 = 2γiγ j +4S(0)(γi0γ j + γiγ j0)+S(0)2(γi00γ j +2γi0γ j0 + γiγ j00),

∂ 2(S(0)γiη)

∂S(0)2 = 2(γi0η + γiη0)+S(0)(γi00η +2γi0η0 + γiη00),
∂ 2(Kη)2

∂S(0)2 = 2K2(η2
0 +ηη00).

Here, γi0,γi00, η0, and η00 denote the first and second derivatives of γi and η with respect to S(0). They
are given by

γi0 =
∂γi

∂S(0)
=

ea2
i /2

d
[φ(k−ai)k0−φ(b∗ −ai)b∗0] ,

γi00 =
∂ 2γi

∂S(0)2 =
ea2

i /2

d

[
φ(k−ai)(k00− k2

0(k−ai))−φ(b∗ −ai)(b∗00− (b∗0)
2(b∗ −ai))

]
,

η0 =
∂η

∂S(0)
= φ(k)k0−φ(b∗)b∗0, and η00 =

∂ 2η

∂S(0)2 = φ(k)(k00− k2
0k)−φ(b∗)(b∗00− (b∗0)

2b∗),

where k0 = ∂k/∂S(0) =−1/(S(0)σs̃), k00 = ∂ 2k/∂S(0)2 = 1/(S(0)2σs̃),

b∗0 =
∂b∗

∂S(0)
=− K

S(0)h′(b∗)
, and b∗00 =

∂ 2b∗

∂S(0)2 =
K

S(0)2h′(b∗)

(
2− Kh′′(b∗)

h′(b∗)2

)
.

3.2 RQMC

Another way of improving a simulation method is to employ RQMC sampling. The price (P), delta (∆),
and gamma (Γ) can be written in the following integral form

(P,∆,Γ)> = e−rT (I( fP), I( fD), I( fG))
>+

(
LB,

∂LB
∂S(0)

,
∂ 2LB

∂S(0)2

)>
,

where (I( fP), I( fD), I( fG))
> =

(∫
[0,1)d fP(u)du,

∫
[0,1)d fD(u)du,

∫
[0,1)d fG(u)du

)>
is the vector of the in-

tegrals of the functions fP(u) = E [Y |Z = (Φ−1(u1), . . . ,Φ
−1(ud))], fD(u) = ∂ fP(u)/∂S(0), and fG(u) =

∂ 2 fP(u)/∂S(0)2, which are given by (3), (7), and (8), respectively. In MC simulation, we randomly sample
uniform numbers from [0,1)d to approximate the integrals. When using RQMC, these uniform numbers
are replaced by randomized independent copies of a low-discrepancy point set Pn = {u1 . . . ,un} where each
ui ∈ [0,1)d . The randomization guarantees that each ui ∼U([0,1)d), and therefore the estimators based on
Pn are unbiased. We are also able to obtain error bounds for the estimates by using m independent copies of
Pn. Lattices can be randomized by using random shifts, whereas for the randomization of digital nets, digital
shift and scrambling methods are preferred, since the random shift does not preserve the low-discrepancy
properties of digital nets.

The RQMC estimators of (I( fP), I( fD), I( fG))
> are given by

(µ̂P, µ̂D, µ̂G)
> =

(
1
m

m

∑
l=1

ŶP,l,
1
m

m

∑
l=1

ŶD,l,
1
m

m

∑
l=1

ŶG,l

)>
,
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where (ŶP,l,ŶD,l,ŶG,l)
>, l = 1, . . . ,m, are

(ŶP,l,ŶD,l,ŶG,l)
> =

(
1
n

n

∑
i=1

fP(ũi,l),
1
n

n

∑
i=1

fD(ũi,l),
1
n

n

∑
i=1

fG(ũi,l)

)>
, (10)

and {ũ1,l, . . . , ũn,l}, l = 1, . . . ,m, are independent randomized copies of the point set Pn = {u1, . . . ,un}.
It is a well known fact that the smoothness of the integrand f (u) has a significant impact on the

performance of RQMC. In fact, Owen (1997) shows that for smooth integrands, the variance of the RQMC
estimators using scrambled digital nets is of the order O(n−3 logd−1 n). As the functions, fP(u), fD(u), and
fG(u), in our simulation are smoothed by means of CMC, we expect a good performance. However, even
for smooth integrands, RQMC has a smaller error than MC only for very large sample sizes, unless the
effective dimension of the integrand is reduced by using special transformation techniques. In Section 3.2.1,
we show that it is possible to reduce the effective dimension of the integrands { fP(u), fD(u), fG(u)} by
principal component analysis (PCA). Then, in Section 3.2.2, we present the combination of the RQMC
sampling with the new CV method suggested in Section 3.1.

3.2.1 PCA Sampling

Reducing the effective dimension of an integrand f in truncation sense corresponds to the maximization of
the variance explained by the first few uniforms. This improves the variance reduction of QMC sampling,
as the first low dimensional projections of the point sets have better uniformity properties. In our algorithm,
the CMC method is the first step of dimension reduction, since it transforms the integrand by smoothing
out the most important variable. Indeed all variability coming from the geometric average is removed by
means of CMC. As second step we try to reduce the effective dimension of this smoothed integrand.

The simulated random variates in our estimators (3), (7), and (8) are the si values, which are given by
the following function of the standard normal vector: si(Z) = S(0)exp

(
(r−σ2/2)i∆t +σ

√
∆t ξi

)
, where

ξ = L(Id−υυ>)Z with Z ∼ N(0, Id) and L is a lower triangular matrix of which the entries on and below
the diagonal are all equal to one. Our aim is to replace L(Id−υυ>) by another matrix Q so that the variance
explained by Z1 is maximized, then conditional on Z1, the variance contribution of Z2 is maximized, and
so on. Under such a simulation scheme, the first coordinates of Z explain most of the variance of the
estimator. Therefore, if the Zi’s are generated by inversion Zi = Φ−1(ui), the effective dimension of the
integrand is reduced.

To select the matrix Q, the two standard dimension reduction methods in the literature are Brownian
bridge sampling and PCA sampling. The former is not suitable for our problem, as we do not simulate
Brownian paths due to the use of CMC. Therefore, we employ the latter technique. Let Σ denote the variance-
covariance matrix of ξ . It is given by Σ = Var(ξ ) = L(Id−υυ>)(L(Id−υυ>))> = L(Id−υυ>)L>, since
the matrix B = Id−υυ> has the property that BB> = B. Our aim is to find a matrix Q such that QQ> = Σ

and the effective dimension is reduced as much as possible. If we use PCA, we obtain Q =V D1/2 where
D is a diagonal matrix that contains the eigenvalues {λ1, . . . ,λd} of the covariance matrix Σ in decreasing
order and V is an orthogonal matrix whose columns are formed by the corresponding eigenvectors of Σ.
Note that the rank of the covariance matrix Σ = L(Id−υυ>)L> in our problem is d−1, and so the last
eigenvalue is zero, λd = 0.

We also implemented the linear transformation (LT) method of Imai and Tan (2006) and observed
that it slightly improves the variance reduction for the price estimates, whereas for delta and gamma PCA
sampling performs better. Therefore, since the implementation of the LT method is more difficult and it
does not yield a large improvement, we prefer to use PCA sampling in our algorithm.

By PCA sampling, we reduce the effective dimension, but we also increase the computational complexity
from O(nd) to O(nd2). Also, the setup for computing all eigenvalues and eigenvectors requires O(d3)
operations. Still in our experiments we observed that even for large dimensions (like d = 250), the variance
reduction obtained by PCA sampling is much larger than the resulting slow-down.
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3.2.2 Combination of RQMC with CVs

It is possible to combine the CVs of Section 3.1 with the RQMC sampling. But the optimal CV coefficients
of RQMC are different than those of MC, as noted by Hickernell, Lemieux, and Owen (2005). Our three
RQMC estimators combined with the new CVs have the form

(P̂, ∆̂, Γ̂)> = e−rT
µ̂cv +

(
LB,

∂LB
∂S(0)

,
∂ 2LB

∂S(0)2

)>
,

where µ̂cv = (µ̂cv,P, µ̂cv,D, µ̂cv,G)
> = ( 1

m ∑
m
l=1 Ŷcv,P,l,

1
m ∑

m
l=1 Ŷcv,D,l,

1
m ∑

m
l=1 Ŷcv,G,l)

> is the vector of the sample
means of the estimators Ŷcv,l = (Ŷcv,P,l,Ŷcv,D,l,Ŷcv,G,l)

>, l = 1, . . . ,m, which are given by

Ŷcv,l = Ŷl−C>rqmc(ϒ̂l−E [ϒ]), (11)

where Ŷl =
(
ŶP,l,ŶD,l,ŶG,l

)> is given by (10) and Crqmc is a 6×3 matrix whose columns are the CV coefficient
vectors {cP,rqmc,cD,rqmc,cG,rqmc} of the price, delta, and gamma, respectively. The CV vector ϒ̂l is

ϒ̂l =

(
1
n

n

∑
i=1

fϒ,1(ũi,l), . . . ,
1
n

n

∑
i=1

fϒ,6(ũi,l)

)>
, (12)

where {ũ1,l, . . . , ũn,l}, l = 1, . . . ,m, are independent randomized copies of the low-discrepancy point set
Pn = {u1, . . . ,un} and fϒ(u) = ( fϒ,1(u), . . . , fϒ,6(u))> is the vector of the integrands of E [ϒ] =

∫
[0,1)d fϒ(u)du.

These integrands are given by (9) with Z = Φ−1(u).
The matrix of the optimal CV coefficients for RQMC is C∗rqmc = Var(ϒ̂)−1Cov(ϒ̂,Ŷ ), where Ŷ =

(ŶP,ŶD,ŶG)
> is the random vector given by (10) and ϒ̂ is the CV vector of RQMC given by (12),

see Hickernell, Lemieux, and Owen (2005) (that is, columns of C∗rqmc are c∗P,rqmc = Var(ϒ̂)−1Cov(ϒ̂,ŶP),
c∗D,rqmc =Var(ϒ̂)−1Cov(ϒ̂,ŶD), and c∗G,rqmc =Var(ϒ̂)−1Cov(ϒ̂,ŶG) for price, delta, and gamma, respectively).
Therefore, the optimal coefficients depend on the point set Pn used in (10) and (12). Also, the variance
reduction factor of the CVs changes depending on the point set Pn and its size n. This is in fact different to
the situation for MC where the variance reduction brought by the CVs is independent of the sample size.

Like for MC simulation, C∗rqmc can be estimated by the least squares method using the sample
(Ŷ1, ϒ̂1), . . . ,(Ŷm, ϒ̂m), but the least squares estimation in the setting of RQMC is more difficult than
the case of MC simulation. The three possible approaches that we can follow are ”using the same sample”,
”using pilot runs” or ”splitting”, see Nelson (1990). Although the CV remedies of Nelson (1990) are
originally suggested in the context of MC, they are useful also for RQMC.

If we use the same sample for the least squares estimation, the resulting estimator is biased due to
the dependence between Ĉrqmc and ϒ̂ in (11). It is known that for large sample sizes the bias is negligible
compared to the standard deviation of the estimator. But in the RQMC setting, the sample size m is usually
selected as a comparatively small number, say m ≤ 50, in order to allocate the large proportion of the
computational budget to the QMC sampling by selecting a large n. If (Ŷ , ϒ̂) follows a multivariate normal
distribution, then using the same sample does not introduce any bias. Loh (2003) shows that for large n,
RQMC estimators of the smooth integrands using scrambled digital nets tend to be normally distributed.
On the other hand, L’Ecuyer and Munger (2010) show that the asymptotic distribution of the estimators
using randomly shifted lattices may be far from normal.

If we use pilot runs for the estimation of C∗rqmc, the resulting estimator Ŷcv,l is unbiased. But using
pilot runs increases the computational time, since each repetition of RQMC in the pilot run requires
n evaluations of the integrands. In the splitting approach, we use a different CV coefficient matrix
Ĉrqmc,−l for each Ŷcv,l . The CV coefficients matrix for the l-th sample Ĉrqmc,−l is estimated by the least
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squares method and omitting (Ŷl, ϒ̂l) from the sample. That is, Ĉrqmc,−l is estimated by using the sample
(Ŷ1, ϒ̂1), . . . ,(Ŷl−1, ϒ̂l−1),(Ŷl+1, ϒ̂l+1) . . . ,(Ŷm, ϒ̂m) (see Steps 17 and 18 of Algorithm 1). Therefore, since
Ĉrqmc,−l and ϒ̂l are independent, we get an unbiased estimator. Also, it is faster than using pilot runs,
as m least square estimations clearly take less time than the repetitions of RQMC in the pilot run. The
complexity of the splitting approach is O(m2), since m linear regressions are performed for the samples
of sizes m− 1. As m is small compared to n, splitting does not increase the overall computational time
significantly. But, since we introduce dependence among the samples Ŷcv,l , the standard sample variance
formula underestimates the true variance of the estimator. The bias of the variance estimate may be
significant for small sample sizes. In our experiments, we observed that m≥ 50 is enough to get sufficiently
reliable variance estimates. Therefore, as the splitting approach yields unbiased estimators Ŷcv,l in small
computational times, we decided to use this method in our algorithm.

3.2.3 Algorithm

Algorithm 1 presents the details our new method (RQMC+CV) for Asian call options.

Algorithm 1 RQMC+CV Algorithm for Price, Delta, and Gamma of Asian Call Options
Require: Low-discrepancy point set Pn, number of repetitions m, maturity T , number of control points d,

volatility σ , initial stock price S(0), strike price K, risk free interest rate r.
Ensure: Option price, delta, and gamma estimates and their (1−α) confidence intervals.

1: Compute the lower bound and its derivatives
(
LB,∂LB/∂S(0),∂ 2LB/∂S(0)2

)> by (1), (5), and (6).
2: Compute the matrices of the eigenvalues D and the eigenvectors V of Σ = L(Id−υυ>)L>.
3: Compute the matrix Q←V D1/2.
4: Compute E [ϒ] by (4) and the formulas in Section 3.1.
5: for l = 1 to m do
6: Generate a randomized copy P̃n = {ũ1,l, . . . , ũn,l} of Pn = {u1, . . . ,un}.
7: for i = 1 to n do
8: Compute Z j←Φ−1(ũi,l, j), for j = 1, . . . ,d, and set ξ ← QZ.

9: Set s j(Z)← S(0)exp
(
(r−σ 2/2) j∆t +σ

√
∆t ξ j

)
, for j = 1, . . . ,d.

10: Compute E [Y |Z], ∂E [Y |Z]
∂S(0) , and ∂ 2E [Y |Z]

∂S(0)2 by (3), (7), and (8).

11: Set fP(ũi,l)← E [Y |Z], fD(ũi,l)← ∂E [Y |Z]
∂S(0) , and fG(ũi,l)← ∂ 2E [Y |Z]

∂S(0)2 .
12: Compute ϒ by (9), and set fϒ(ũi,l)← ϒ.
13: end for
14: Compute Ŷl and ϒ̂l by (10) and (12).
15: end for
16: for l = 1 to m do
17: Compute Ĉrqmc,−l by the least squares method and omitting (Ŷl, ϒ̂l) from the sample.
18: Set Ŷcv,l ← Ŷl−Ĉ>rqmc,−l(ϒ̂l−E [ϒ]).
19: end for
20: Set (P̂, ∆̂, Γ̂)> ← e−rT

( 1
m ∑

m
l=1 Ŷcv,P,l,

1
m ∑

m
l=1 Ŷcv,D,l,

1
m ∑

m
l=1 Ŷcv,G,l

)>
+
(

LB, ∂LB
∂S(0) ,

∂ 2LB
∂S(0)2

)>
.

21: return (P̂, ∆̂, Γ̂)> and (1−α) error bounds.

4 NUMERICAL RESULTS

We implemented our RQMC+CV algorithm in R to perform experiments (R Core Team 2013). See the
R-package OptionPricing available on http://cran.r-project.org/. As randomized low-
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discrepancy point sets, we use randomly shifted Korobov lattices and scrambled Sobol nets. We apply the
baker’s transformation to the shifted Korobov point sets in order to periodize the integrand, see Hickernell
(2002). The generators of the Korobov lattices are taken from L’Ecuyer and Lemieux (2000). For the
Sobol nets, we use the implementation of Bratley and Fox (1988) used in the R-package randtoolbox.
The three scrambling techniques that we consider are the Owen type, the Faure-Tezuka type, and the
Owen+Faure-Tezuka type, see e.g. Faure and Tezuka (2002) and Hong and Hickernell (2003). In our
experiments with m = 50 and n = 1021 for the Korobov lattices and n = 1024 for the Sobol nets, we
observed that all of the above randomized point sets give considerable variance reductions compared to the
MC sampling. The observed variance reduction factors are similar and depend, as the error estimates, on
the used seed. We report our QMC results only for the Korobov lattices as they led to the smallest error
bounds for the used n.

In Table 1, we report the price, delta, and gamma estimates with their 95% error bounds for m = 50
and n = 1021. For comparison of the methods, the error bounds of the RQMC+CV method (EBQCV ),
the MC+CV method presented in Section 3.1 (EBMCV ), naive RQMC (EBQN), and naive MC (EBMN) are
reported. As explained in Section 1, for naive MC simulation of delta and gamma, we use the PD and the
PD+LR methods. For RQMC sampling of the naive estimators, PCA sampling is employed. We consider
long and short time to maturity cases, T = 30 and T = 1, respectively. The former is relevant for pricing
unit-linked life insurance contracts, see e.g. Schrager and Pelsser (2004).

From Table 1, we observe that the use of RQMC sampling clearly reduces the variance of the MC+CV
method. EBQCV (for n = 1021 and m = 50) is smaller than EBMCV (for n = 50×1021) with factors ranging
between 2 and 30. Also, as expected, for larger sample sizes, improvement of RQMC is more pronounced.
For the sample size n = 16381, EBMCV/EBQCV is always larger than 5. In Table 1, we also see that the
variance reduction over naive MC is very large. EBMN/EBQCV is always larger than 200. Also, when we
compare EBQCV and EBQN , we see that the new RQMC+CV method brings substantial variance reduction
over naive RQMC. In Table 1, EBQCV is at least 88 times smaller than EBQN .

It is also interesting to compare the variance reductions brought by RQMC sampling under naive
simulation and our new variance reduction method. In the literature, it is commonly observed that the
use of RQMC sampling under variance reduction techniques shows less success than their use for naive
simulation. In our numerical results, we can observe that behavior. In Table 1, EBMN/EBQN is often larger
than EBMCV/EBQCV . Although in some cases we observe the opposite (that is EBMCV/EBQCV is larger
than EBMN/EBQN), the difference in the ratios is not substantial.

In our implementation, the RQMC+CV method is a bit slower than the MC+CV method. The main
reason for it is the use of PCA sampling. Under PCA sampling, the simulation requires O(nd2) operations,
and there is a setup with complexity O(d3). Therefore, for large d and small n, the slow-down due to PCA
sampling is significant. For n = 1021 and m = 50, we observed that RQMC+CV is about 1.2, 1.5, 1.6,
and 2.5 times slower than MC+CV for the dimensions of d = 12, 30, 250, and 1000, respectively. The
slow-down factors of RQMC+CV compared to naive MC are 6.6, 8.5, 8.3, and 15.8 for d = 12, 30, 250,
and 1000, respectively. These slow-downs are clearly negligible compared to the huge error reductions
reported in Table 1.

Finally we consider the speed of convergence for the different point sets used. We observed in all our
QMC experiments rates of convergence closer to O(1/n) than the O(1/

√
n) rate of MC. To estimate the

order of convergence β in O(n−β ), we use the slope of the linear regression line, log σ̂rqmc+cv = α−β logn,
where σ̂rqmc+cv denotes the estimate of the standard deviation of the RQMC+CV method. For the Korobov
point sets, we use n ∈ {1021,2039,4093,8191,16381,32749,65521} with the corresponding generators
{306,280,1397,7151,5693,8363,944}, whereas for Sobol nets, we use n = 2q with q = 10, . . . ,16. For
the option parameters of Table 1 with T = 1 and d = 12, the estimate β̂ of the Korobov point set is ranging
between 0.60 and 0.94 depending on the seed used for the randomization. For the scrambled Sobol nets with
different seeds the lowest and the highest β̂ ’s we observed in our experiments were (0.62,0.98),(0.74,1.13),
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and (0.53,0.85) for the Owen type, the Faure-Tezuka type, and the Owen+Faure-Tezuka type of scramblings,
respectively.

Table 1: Numerical results for Asian call options with parameters S(0) = 100,σ = 0.5, and r = 0.05. The
Korobov point sets are used with sample size n = 1021, generator 306, m = 50 random shifts, and baker’s
transformation. Estimates of RQMC+CV (result) and the 95% error bounds of RQMC+CV (EBQCV ),
MC+CV (EBMCV ), naive RQMC (EBQN), and naive MC (EBMN) are reported.

T d K result EBQCV EBMCV EBQN EBMN
30 30 200 price 34.792197 9.1e−04 7.5e−03 1.3e+00 4.0e+00

delta 0.429068 1.7e−05 3.6e−05 1.3e−02 4.0e−02
gamma 0.000722 1.6e−07 5.9e−07 1.4e−05 3.6e−05

400 price 29.021773 1.1e−03 3.2e−02 4.1e+00 5.0e+00
delta 0.374549 9.8e−06 1.1e−04 4.1e−02 5.1e−02

gamma 0.000841 1.6e−07 1.7e−06 1.8e−05 5.9e−05
600 price 25.614258 1.1e−03 1.5e−02 1.5e+00 3.3e+00

delta 0.339596 8.7e−06 6.3e−05 1.5e−02 3.4e−02
gamma 0.000880 1.9e−07 1.1e−06 2.5e−05 6.2e−05

1 12 50 price 50.224309 9.6e−07 2.6e−06 5.6e−03 2.6e−01
delta 0.972950 5.3e−08 1.3e−07 1.9e−04 2.8e−03

gamma 0.000479 2.8e−09 7.3e−09 3.3e−05 2.7e−04
100 price 13.121994 3.1e−06 1.1e−05 1.1e−02 2.1e−01

delta 0.573201 1.0e−07 4.7e−07 1.7e−03 5.7e−03
gamma 0.012375 9.5e−09 4.0e−08 7.0e−05 4.2e−04

150 price 2.097908 9.9e−07 3.9e−06 9.8e−03 9.5e−02
delta 0.141291 1.7e−07 4.6e−07 6.3e−04 4.4e−03

gamma 0.006806 5.1e−09 1.9e−08 1.3e−04 3.2e−04

5 CONCLUSIONS

We developed new variance reduction methods to obtain the price, delta, and gamma of Asian options in
a single simulation. In our method, we combine RQMC sampling with a very efficient variance reduction
technique. Especially for the improvement of the pathwise derivative (PD) method used to simulate delta
and gamma, we introduced new CVs. To increase the efficiency of RQMC, the discontinuous estimators of
delta and gamma are also smoothed by CMC. Finally PCA sampling is employed to reduce the effective
dimension of the smoothed integrands. Numerical results show that the new method yields significant
variance reduction compared to naive MC and RQMC methods.
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