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ABSTRACT

This paper presents an overview of the efficient Monte Carlo counterparty credit risk (CCR) estimation
framework recently developed by Ghamami and Zhang (2014). We focus on the estimation of credit value
adjustment (CVA), one of the most widely used and regulatory-driven counterparty credit risk measures.
Our proposed efficient CVA estimators are developed based on novel applications of well-known mean
square error (MSE) reduction techniques in the simulation literature. Our numerical examples illustrate
that the efficient estimators outperform the existing crude estimators of CVA substantially in terms of MSE.

1 INTRODUCTION

Counterparty credit risk (CCR) is the risk that a party to a derivative contract may default prior to the
expiration of the contract and fail to make the required contractual payments. We refer the reader to Canabarro
and Duffie (2003) and Gregory (2010) for the basic CCR concepts and definitions. Counterparty credit risk
has been widely considered as one of the key drivers of the 2007-08 credit crisis, and it has become one of
the main focuses of the major global and U.S. regulatory frameworks (Basel III and the Dodd-Frank Act of
2009-10; see, e.g., Bohme et al. (2011)). It is well known that pricing and measuring counterparty credit
risk is computationally extremely intensive; large financial institutions invest large amounts of resources
developing and maintaining Monte Carlo simulation “engines” to manage their counterparty risk (Pykhtin
and Zhu (2006), Gregory (2010), and Canabarro and Duffie (2003)). While various aspects of counterparty
credit risk have been subject of extensive research post 2007-08 financial crisis, statistical efficiency of
the CCR estimators has received little attention in the literature. Considering various counterparty credit
risk measures, Ghamami and Zhang (2014) are the first to develop an efficient Monte Carlo framework for
pricing and measuring CCR. This paper presents an overview of the efficient Monte Carlo counterparty
credit risk (CCR) estimation framework recently developed by Ghamami and Zhang (2014). We focus on
the estimation of credit value adjustment (CVA). Ghamami and Zhang introduce their efficient Monte Carlo
framework by focusing on a different CCR measure, namely, expected positive exposure (EPE). Due to
the similarities in the mathematical formulation of EPE and CVA, they address efficient Monte Carlo CVA
estimation indirectly through efficient EPE estimation. The attention that CVA has received post financial
crisis is unprecedented; this paper gives a detailed treatment of efficient Monte Carlo CVA estimation that
can be read independently from Ghamami and Zhang (2014).

CVA is defined as the difference between the risk free value of a derivatives portfolio and the counterparty
default risky derivatives portfolio value (Pykhtin and Zhu (2007)), and it has become one of the main
focuses of the Basel III; e.g., derivative dealers are required to calculate CVA capital charges for each
of their counterparties on a frequent basis. Efficiency criteria under consideration are variance, bias, and
computing time of the Monte Carlo estimators. Our proposed Monte Carlo estimators of CVA outperform
the existing crude estimators substantially in terms of mean square error (MSE).
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1.1 Problem formulation

Consider the setting where a financial institution holds a portfolio of derivative contracts with another
financial institution, namely, its counterparty. Counterparty credit exposure (Canabarro and Duffie (2003))
denoted by V , of a financial institution against the counterparty, is the larger of zero and the market value
of the portfolio of derivatives contracts the financial institution holds with this counterparty.

Contract level credit exposure at time t > 0 is the maximum of a contract’s market value and zero,
max{Ct ,0}, where Ct denotes the time-t value of the derivative contract. Consider a financial institution
that holds a portfolio of k derivative contracts with its counterparty. Counterparty level credit exposure is

Vt =
k

∑
i=1

max{Ci
t ,0}, (1)

where Ci
t denotes the time-t value of the i’th derivative contract in the derivatives portfolio. In practice, Vt

may need to be valued differently when risk mitigants are employed. For instance, in the presence of netting
agreements, credit exposure becomes, (see Gregory (2010) and the references therein for a comprehensive
overview of different types of risk mitigants and netting agreements). We emphasize that our methods
apply irrespective of the presence of risk mitigants and for simplicity one may assume that (1) holds for
the remainder of this paper.

Vt = max

{
k

∑
i=1

Ci
t ,0

}
. (2)

Let τ , a positive random variable, denote the default time of the counterparty and T > 0 represent the
expiration time of the longest maturity derivative contract in the OTC derivatives portfolio. It can be shown
that CVA, the price of the counterparty credit risk, is equal to the risk neutral expected discounted loss,
i.e.,

CVA≡ E[(1−R)DτVτ1{τ ≤ T}], (3)

where 1{A} is the indicator of the event A, Dt = B0/Bt is the stochastic discount factor at time t, Bt is the
value of the money market account at time t, and R is the financial institution’s recovery rate, (see, for
instance, Chapter 7 of Gregory (2010) for a derivation of this formula). When V and τ are assumed to be
independent, CVA is referred to as independent CVA, which we denote by CVAI . Wrong (right) way risk
are referred to as cases where credit exposures are negatively (positively) correlated with the credit quality
of the counterparty (Ghamami and Goldberg (2014), Canabarro and Duffie (2003), and Hull and White
(2012)). In this paper we focus on the estimation of CVAI . To simplify the presentation of the main idea,
we suppress the dependence of the CVA on the recovery rate, R, and that on the stochastic discount factor
by assuming zero short rate. Let F denote the cumulative distribution function of τ , which is assumed
to be known (market observable) from, for instance, credit default swap spreads of the counterparty (e.g.,
Hull and White (2012)). Independent CVA can be written as follows,

CVAI = E [E[Vτ1{τ ≤ T}|τ]] =
∫ T

0
E[Vt ]dFt , (4)

where the last equality follows from conditioning on τ and the independence of V and τ . The standard
crude Monte Carlo approach, which is being used in practice, estimates the independent CVA based on a
time-discretized summation approximation of the integral in (4) and Monte Carlo estimation of expected
exposures, E[Vt ]. We are to introduce efficient Monte Carlo CVA estimation schemes. Specifically, we are
interested in efficient Monte Carlo estimation of the Riemann-Stieltjes integral of the mean of a stochastic
process which depends on many other stochastic processes in a complicated way; note that under either (1)
or (2), Vt is determined by Ci

t , i = 1, ...,k, whose dynamics further depend on possibly multiple underlying

454



Ghamami and Zhang

stochastic processes. The order of k can be more 1000 for each portfolio in practice. Each Ci
t can depend

on the evolution of multiple risk factors such as interest rates and commodity prices.
Section 2 summarizes the common features of the Monte Carlo CCR framework widely used by

financial institutions and introduces the notion of Marginal Matching, which enables us to define and
differentiate the two widely used CCR sampling methods, Path Dependent Simulation (PDS) and Direct
Jump to Simulation (DJS) date. Practitioners often choose either of the sampling methods arbitrarily.
Section 3 introduces an efficient Monte Carlo framework for estimating CVAI . We illustrate that PDS
and DJS-based CCR estimators have drastically different MSE. This is an important result that could have
broader applicability. Our numerical examples indicate that employing our Monte Carlo CVA estimation
schemes leads to substantial MSE reduction.

2 MONTE CARLO COUNTERPARTY CREIDT RISK ESTIMATION

A typical Monte Carlo counterparty risk engine estimates various CCR measures by sampling from the
credit exposure process on a time grid, 0 < t1 < ... < tn = T , where T denotes the maturity of the longest
transaction in a portfolio and ti’s are sometimes referred to as valuation points. Set Vi ≡Vti .

In what follows we first summarize the simulation of the credit exposure process. Then, we introduce
the notion of Marginal Matching in sampling from the time evolution of the credit exposure process.

2.1 Simulating the Credit Exposure Process

Suppose that credit exposure is a stochastic process {Vt ; t ≥ 0} defined on a given filtered probability
space (Ω,F ,(Ft)0≤t≤∞,P). Given (1) and (2), Vt can be viewed as a function of the stochastic processes
that drive the values of the derivative contracts, C1

t , ...,C
k
t . In risk management, these underlying stochastic

processes are usually referred to as risk factors, e.g., interest rates, commodity prices, and equity prices.
To generate a Monte Carlo realization of Vt , for a fixed t > 0, first, the underlying risk factors should be
sampled from up to time t > 0. Next, given the Monte Carlo realization of the risk factors up to time
t > 0, the derivative contracts should be valued. This two-step procedure leads to a single Monte Carlo
realization of Vt . For risk management applications, one often chooses the physical probability measure in
the first step and the risk-neutral measure in the second. However, since CVA is often viewed as the market
price of counterparty credit risk, risk-neutral measure is usually used in both steps. Depending on the
complexity of the payoff function of the derivative contracts, the valuation step could take straightforward
Black-Scholes-type analytical calculations, or it could demand approximations that depending on the desired
level of accuracy might be computationally intensive. For instance, the valuation step could involve a
second layer of Monte Carlo (Gordy and Juneja (2010), Broadie et al. (2011), and Chapter 8 of Glasserman
(2004)).

2.2 Marginal Matching

Let X =(X1, ...,Xn)denote a random vector with distribution function FX . Let ωX ≡ (E[h1(X1)], ...,E[hn(Xn)])
for some functions h1, ...,hn. Let θX ≡ g(ωX) for a function g that maps ωX from Rn to R. Two simple
examples are ∑

n
i=1 E[h(Xi)] and max{E[h(X1)], ...,E[h(Xn)]}, for which θX is defined based on the marginal

distribution of (functions of) X1, ...,Xn. Let Y = (Y1, ...,Yn) denote another random vector with distribution
function FY such that, X 6=d Y and yet Xi =

d Yi for all i = 1, ...,n, where =d denotes “equal in distribution”.
Simply note that since the marginal distributions of X and Y match, θX = θY . Now, suppose that θX is
to be estimated with Monte Carlo simulation. Given Xi =

d Yi, samples can be drawn from FX or FY . Let
θ̂X ,m and θ̂Y,m denote Monte Carlo estimators of θX based on m simulation runs when samples are drawn
from FX and FY , respectively. Obviously, since X 6=d Y , we have θ̂X ,m 6=d θ̂Y,m, and so between θ̂X ,m and
θ̂Y,m, i.e., when deciding on whether to sample from FX or FY , the estimator with a lower MSE should be
chosen.
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Stochastic Models of the Risk Factors Let {St ; t ≥ 0}, representing the dynamics of a risk factor,
denote a stochastic process defined on a given filtered probability space, (Ω,F ,(Ft)0≤t≤∞,P). Similar
to the setting of Ghamami and Zhang (2014), we assume that {St ; t ≥ 0} is in the following class: a
Gauss-Markov process (Chapter 5 of Karatzas and Shreve (1991) or Chapter 3 of Glasserman (2004)), a
Geometric Brownian motion (GBM), or a square-root diffusion. Many of the widely used continuous time
stochastic processes in finance and economics are in this class. Consider the finite dimensional distribution
of {St ; t ≥ 0} on a time grid, t1, ..., tn and set Si ≡ Sti . Suppose that S = (S1, ...,Sn) can be sampled from
exactly in the sense that the distribution of the simulated S is precisely that of the {St ; t ≥ 0} process at times
t1, ..., tn; examples are Brownian motion, Ornstein-Uhlenbeck processes, GBM, and the square-root diffusion
whose simulations involve generating positively correlated normal random variables. Let S̃ = (S̃1, ..., S̃n)
denote a random vector for which S̃ 6=d S but S̃i =

d Si for all i = 1, ...,n and cov(S̃i, S̃ j) = 0 for all i 6= j.
That is, simulation of S̃1, ..., S̃n can be done by generating n uncorrelated or simply independent normal
random variables.

PDS Sampling versus DJS Sampling In the CCR literature when counterparty risk measures are
estimated based on sampling from the finite-dimensional distributions of the underlying risk factors, the
sampling is referred to as PDS sampling. When the notion of marginal matching is used, the sampling is
referred to as DJS. In Monte Carlo estimation of CCR measures, PDS and DJS sampling have been widely
considered equivalent (Pykhtin and Zhu (2006)). We have also observed that practitioners often choose
either of the sampling methods arbitrarily. We differentiate DJS and PDS in terms of the mean square error
of the estimators of CVA.

3 EFFICIENT MONTE CARLO ESTIMATION OF INDEPENDENT CVA

Consider a time grid, 0 ≡ t0 < t1 < ... < tn ≡ T , with a fixed n. Set ∆Fi ≡ F(ti)−F(ti−1) and Vi ≡ Vti ,
i = 1, ...,n. Let θ̂b,m,n,k denote a class of Monte Carlo estimators of CVAI defined as follows,

θ̂b,m,n,k ≡
n

∑
i=1

V̄i∆Fi,

where V̄i ≡∑
m
j=1Vi j/m and Vi1, ...,Vim represent the m simulation samples at valuation point ti. The subscript

b refers to the biased nature of the estimators, and the subscript k could take p and d, referring to PDS
and DJS based simulation of the credit exposure process, respectively.

As mentioned in Section 2.1, simulating the credit exposure process involves sampling from the
underlying risk factors. Hereafter, PDS and DJS-based simulations of the credit exposure process refer to
the cases where the underlying risk factors are sampled from based on their finite dimensional distributions
(PDS sampling) and based on the notion of marginal matching (DJS sampling), respectively. Note that,

MSE(θ̂b,m,n,k) = Var

(
n

∑
i=1

V̄i∆Fi

)
+

(
n

∑
i=1

E[V̄i]∆Fi−
∫ T

0
E[Vt ]dFt

)2

.

We assume that Monte Carlo realizations of Vi are unbiased estimates of E[Vi], i = 1, ...,n. This implies
that the bias part of the MSE of θ̂b,m,n,k is not affected by the choice of the sampling method (PDS or
DJS) and is only due to the time-discretization of the integral of expected exposures in the definition of
CVA. Our framework remains applicable in the absence of this assumption as shown in the Appendix H
of Ghamami and Zhang (2014).

In Section 3.1, we assume that n is fixed and compare the efficiency of θ̂b,m,n,p and θ̂b,m,n,d in terms
of variance and computing time for both path independent and path dependent derivatives.

3.1 Comparing PDS and DJS-based Estimation of CVAI

Suppose that the credit exposure process,V , is defined on a given filtered probability space (Ω,F ,(Ft)0≤t≤∞,P),
where (Ft)0≤t≤∞ denote the filtration generated by the underlying risk factors. Consider the setting where
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V denotes the contract level exposure and a financial institution takes a position in a maturity-T derivative
contract with its counterparty. Let ΠT denote the payoff function of the derivative contract. It is well
known from martingale pricing that

Ct = MtE
[

ΠT

MT
|Ft

]
, (5)

where M is a numeraire. Transactions between the financial institution and its counterparty for which
Vt = max{Ct ,0}=Ct for all 0 < t ≤ T are referred to as unilateral transactions, e.g. the financial institution
takes a long position in a call option with its counterparty. Transactions for which Vt = max{Ct ,0} 6=Ct
for some 0 < t ≤ T are referred to as bilateral transactions, e.g. an interest rate swap between the financial
institution and its counterparty.

The following simple example reviews simulation of the exposure process under PDS and DJS. Suppose
that {St ; t ≥ 0} is a GBM, St = S0eXt , and {Xt ; t ≥ 0} is a Brownian motion with drift µ and volatility
σ . Consider a unilateral transaction. Note that Vt =Ct = MtE

[
ΠT
MT
|St

]
≡ f (St). That is, credit exposure is

considered as a function of the risk factor.Consider the time grid, 0≡ t0 < t1 < ... < tn≡ T and let Vi≡Vti . Set
θ ≡∑

n
i=1 E[Vi]∆Fi. Recall that θ̂b,m,n,k = ∑

n
i=1 V̄i∆Fi, where V̄i is the m-simulation-run average of Vi1, ...,Vim.

With Vi = f (Si) and Si = S0eXi , Monte Carlo estimation of θ requires sampling from the multivariate normal
random vector, X = (X1, ...,Xn). This is the so-called PDS sampling method. An alternative sampling
method, using the notion of marginal matching, is to sample from the multivariate normal random vector,
Y = (Y1, ...,Yn), whose components are uncorrelated but marginal distributions match those of X . This is
the so-called DJS method. To be more specific, in DJS sampling, Si is generated from time zero. That
is, generate Yi, a normal random variable with mean µti and variance σ 2ti, and set Si = S0eYi . In PDS
sampling, Vi’s are sampled based on generating the sample path of the GBM sequentially at i = 1, ...,n.
That is, to generate a realization of Vi, Si is generated given the previously generated value of Si−1. More
specifically, to sample from Si generate X̃i and set Si = Si−1eX̃i , where X̃i is a normal random variable
with mean µ∆Fi and variance σ2∆Fi. Note that since for any given t > 0, Vt is a function of St = S0eXt ,
DJS-based simulation of the exposure process implies that cov(Vi,Vj) = 0 for any i 6= j, i, j = 1, ...,n.

In what follows we compare the efficiency of θ̂b,m,n,p and θ̂b,m,n,d in terms of variance and computing
time for path independent and path dependent derivatives. We consider unilateral and bilateral transactions
in both single risk-factor and multi-risk factor settings. That is, we consider two cases: a stylized setting
where (Ft)0≤t≤∞ is the filtration generated by a single risk factor; we also consider the more general
multi-risk factor settings.

3.1.1 Path Independent Case

The above mentioned example shows that under DJS, cov(Vu,Vt) = 0 for any 0 < u < t < T . Proposition
1 and Proposition 2 consider this covariance function of the contract level credit exposure process under
the PDS method for unilateral and bilateral transactions, respectively, and identify conditions under which
cov(Vu,Vt)> 0 for any 0 < u < t < T . Condition 2 of Proposition 1 below uses the well known changes of
numeraire techniques of Geman et al. (1995) for option type contracts with at most three distinct sources
of randomness: stochastic short rate and a maximum of two risky assets. Well known examples of these
contracts are options written on stocks or bonds, e.g. European options and exchange options.
Proposition 1 (Ghamami and Zhang (2014)) Consider the credit exposure process, {Vt ; t ≥ 0}, defined on
a given filtered probability space (Ω,F ,(Ft)0≤t≤∞,P), and a T-maturity transaction between the financial
institution and its counterparty that is unilateral, i.e. the credit exposure process is the price process,
Vt =Ct > 0 for all 0≤ t ≤ T , where Ct denotes the time-t value of the derivative contract with payoff ΠT .
Then,

cov(Vu,Vt)> 0,
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for any 0 < u < t < T under any of the following conditions:
Condition 1: Numeraire is the money market account, B, with deterministic short rate, r, and ΠT

is a function of N ≥ 1 exogenously given risky assets;
Condition 2: Short rate is stochastic and the T -payoff function is a function of at most two risky

assets as follows ΠT = (α1S1(T )+α2S2(T ))+, where α1 and α2 are any real numbers, and S1 and/or S2
are risky assets.

In the case of bilateral transactions for which the exposure process satisfies Vt = max{Ct ,0} 6= Ct
for some 0 < t ≤ T , where Ct denotes the time-t value of the derivative contract with payoff function ΠT
stronger assumptions are required to analytically show that cov(Vu,Vt)> 0 for any 0 < u < t < T . This is
shown in Proposition 2 below.
Proposition 2 (Ghamami and Zhang (2014)) Consider the credit exposure process, {Vt ; t ≥ 0}, defined on
a given filtered probability space (Ω,F ,(Ft)0≤t≤∞,P), and a T-maturity transaction between the financial
institution and its counterparty that is bilateral, i.e. the credit exposure process is the price process,
Vt = max{Ct ,0} 6=Ct for some 0 < t ≤ T , where Ct denotes the time-t value of the derivative contract with
payoff function ΠT . Then,

cov(Vu,Vt)> 0

for any 0 < u < t < T under the following condition:
Numeraire is the money market account, B, with deterministic short rate, r, and ΠT is a monotone

function of a single risky asset whose dynamics is modeled by a GBM, a Gauss-Markov process or a
square-root diffusion.

Propositions 1 and 2 identify conditions for unilateral and bilateral transactions under which the
credit exposure process satisfies cov(Vu,Vt)> 0 for any 0 < u < t < T . This, then, implies that

Var(θ̂b,m,n,d)≤ Var(θ̂b,m,n,p). (6)

Note that the above inequality holds since

Var(θ̂b,m,n,d) =
n

∑
i=1

Var(Vi)∆F2
i

m
≤

n

∑
i=1

Var(Vi)∆F2
i

m
+

2
m ∑

i< j
∑cov(Vi,Vj)∆Fi∆Fj = Var(θ̂b,m,n,p). (7)

3.1.2 Path Dependent Case

Suppose that Vt is time t value of a maturity-T contract, where the payoff at the time T is a function of
S1, ...Sn, (for instance, an arithmetic Asian option). That is, Vi = g(S1, ...,Si), where g is a function from
Ri to R. The DJS sampling method is to make Vi = g(S1, ...,Si) and Vj = g(S1, ...,S j), i < j, uncorrelated
random variables. That is, sample from S1, ...,Si to generate a single realization of Vi. To generate Vj, start
again from time zero, and sample from S1, ...,Si, ...S j. Under this DJS-type sampling method, Vi and Vj
become uncorrelated, cov(Vi,Vj) = 0. In the PDS-type sampling, given the Monte Carlo realization of Vi,
to generate Vj, one uses the previously generated S1, ...,Si and only samples from Si+1, ...,S j. In this case
Vi and Vj are dependent.

Using conditional covariance formula and arguments similar to the ones used in the path independent
case, it can be shown that cov(Vi,Vj)> 0, i 6= j. More specifically, it can be shown that cov(Vi,Vj)> 0 for
unilateral and bilateral transactions under the first condition of Proposition 1 and Proposition 2’s condition,
respectively. That is, for the above mentioned covariance function to be positive, we need the numeraire
money market account with deterministic short rate in the unilateral case. The bilateral case, additionally,
requires monotonicity of the payoff function and its dependence on a single risk factor.

To compare the efficiency of the DJS and PDS-based estimators of θ in the path dependent case,
computing time is also to be considered in parallel with variance of the estimators. In the path independent
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case computing time of DJS and PDS-based estimators of θ are roughly equal. More specifically, the
estimator with the lower (variance per replication× expected computing time) should be selected (see
Glynn and Whitt (1992) for the formal formulation of this useful criterion in comparing alternative Monte
Carlo estimators). Consider, for instance, arithmetic Asian options. Suppose that the computational time to
calculate θ̂b,m,n,k is proportional to the number of random variables that are to be generated. Let ct(θ̂b,m,n,k)

denote the computational effort associated with θ̂b,m,n,k. Note that,

ct(θ̂b,1,n,d)

ct(θ̂b,1,n,p)
≈ n and

Var(θ̂b,1,n,p)

Var(θ̂b,1,n,d)
≈ n. (8)

To see why (8) holds note that to calculate θ̂b,1,n,d , n(n+1)
2 random variables are to be generated while

θ̂b,1,n,p requires generating n random variables. Also, note that as can be seen from (7), the variance of the
PDS-based estimator is of order n2 because of the covariance terms while the DJS-based estimator has a
variance of order n . So, θ̂b,m,n,d and θ̂b,m,n,p have a similar performance for fixed and sufficiently large n.
PDS and DJS-based estimators of other derivatives whose payoff depends on the path in a different form
can be compared similarly.

3.1.3 Summary of Section 3.1

To compare the DJS and PDS-based estimators CVAI (viewed as weighted sums of expected exposures)
variance and computing time of the Monte Carlo estimators are considered. The DJS method induces zero
covariance between any two distinct time points of the simulated credit exposure process. So, it remains to
look at this covariance function for the credit exposure process under the PDS method. When the dynamics
of the risk factors are modeled by the class of continuous time stochastic processes considered in this
paper, the covariance function of the credit exposure process under the PDS method becomes positive under
conditions of Proposition 1 and 2 for unilateral and bilateral path independent derivatives transactions,
respectively. Similar results hold for path dependent derivatives. That is, under conditions of Proposition 1
and 2, DJS-based estimators of CVA outperform the PDS-based estimators in terms of variance. For path
independent derivatives PDS and DJS-based computing times are roughly equal. So, we recommend that the
counterparty credit risk modeler uses DJS for path independent derivatives. For path dependent derivatives,
DJS-based estimators usually have larger computing times. The criterion introduced above considers the
computing time in parallel with variance. There are widely traded path dependent derivatives for which
PDS and DJS-based estimators of CVA perform approximately equally. For instance, for arithmetic Asian
options the DJS and PDS-based estimators of CVA perform similarly. There are contracts whose payoff
function does not exactly match the mathematical conditions of Proposition 1 and 2. For those contracts,
a small simulation study could compare the variance of the DJS and PDS-based estimators of CVA.

Hereafter, we assume that the credit exposure process V satisfies cov(Vu,Vt) = 0 and cov(Vu,Vt) > 0
when simulated under the DJS and PDS methods, respectively, for any 0 < u < t.

3.2 Efficient Monte Carlo CVAI Estimation: Biased Estimators

In this subsection, we are interested in finding the approximately optimal number of valuation points, n,
and the number of simulation runs at each valuation point, m, that minimize MSE(θ̂b,m,n,k),

MSE(θ̂b,m,n,k) = Var(θ̂b,m,n,k)+(E[θ̂b,m,n,k]−CVAI)
2.

given a fixed computational budget, denoted by s, that is proportional to, mn. Also, k = p, and d refer to
PDS and DJS-based simulation of the credit exposure process on a time grid 0 ≡ t0 < t1 < ... < tn ≡ T .
That is, as shown in the previous section, under PDS sampling and DJS sampling, cov(Vi,Vj) > 0 and
cov(Vi,Vj) = 0, respectively, for any i 6= j, i, j = 1, ...,n.
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To formulate and solve this optimization problem, we specify the order of the variance and bias
of the Monte Carlo estimator of CVAI , θ̂b,m,n,k. Note that from basic results on endpoint Reimann sum
approximation of integrals, time-discretization bias is of order 1/n. We are not concerned with deriving sharp
estimates of the orders of variance. In fact, our numerical examples indicate that choosing approximately
optimal m and n using even very rough approximates for the orders of variance and bias leads to substantial
MSE reduction compared to industry practice.

Consider the equidistant time grid, 0≡ t0 < t1 < ... < tn ≡ T , where ti− ti−1 = ∆i ≡ ∆ = 1
n . Note that

∆Fi ≤ ∆i supti−1≤x≤ti f (x), where f denotes the density of the counterparty’s default time, τ . That is, we
can set ∆Fi = O(1

n). We assume that E[V 2
t ]< ∞ for all t ∈ [0,T ]. First, we note that

Var(θ̂m,n,d) = O(
1

mn
). (9)

To see this, consider M > 0 such that E[V 2
t ]≤M for t ∈ (0,T ]. Note that,

Var(θ̂m,n,d) = ∆
2

n

∑
i=1

Var(Vi)

m
≤ (

T
n
)2

n

∑
i=1

E(V 2
i )

m
≤ MT 2

mn
.

Now, consider the variance of the PDS-based estimator, θ̂m,n,p,

Var(θ̂m,n,p) = ∆
2

n

∑
i=1

Var(Vi)

m
+∆

2 2
m ∑

i< j
∑cov(Vi,Vj).

As shown before, the first term above is O( 1
mn). Also, under PDS sampling, the credit exposure process

is simulated according to its finite dimensional distributions for which the covariance terms are positive.
So, the second term is O( 1

m). This gives,

Var(θ̂m,n,p) = O(
1

mn
+

1
m
). (10)

PDS-Based Biased Efficient Estimator of CVAI We choose the number of valuation points, n, and
number of simulation runs at each valuation point, m, to minimize the mean square error of the PDS-based
estimator, θ̂m,n,p, under a fixed computational budget proportional to mn. Approximating the variance of
θ̂m,n,p using (10) leads to the following optimization problems,

min
m,n

(cp,1

mn
+

cp,2

m
+

c2

n2

)
subject to s = c3mn, (11)

for some constants, cp,1,cp,2,c2, and c3. MSE of θ̂m,n,p is minimized at,

m = cs
2
3 and n = c̃s

1
3 , (12)

for constants c and c̃.
DJS-Based Biased Efficient Estimator of CVAI Let cd denote a constant. Given (9), we approximate

Var(θ̂m,n,d) with cd
mn in the MSE minimization problem for the DJS-based estimator,

min
m,n

( cd

mn
+

c2

n2

)
subject to s = c3mn,

to which the trivial optimal solution is m = 1 and n = ĉs fo some constant ĉ. We note that estimating
the various constant parameters appearing in all the above mentioned MSE minimization problems is not
possible in practice. In our numerical examples we simply set all these constant parameters equal to 1.
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The MSE minimization setup has appeared in various contexts before; e.g., Duffie and Glynn (1995)) and
Chapter 6 of Glasserman (2004) and the references therein. However, this has neither appeared in the CCR
literature nor been applied by practitioners. Also, it has never been studied in the DJS setting and our
result that the efficient DJS-based estimator requires all its computational budget allocated to the number
of valuation points is surprising and new.

3.3 Efficient Monte Carlo CVAI Estimation: Unbiased Estimators

In this section we derive unbiased estimators of CVAI . Specifically, we eliminate the time discretization
bias at the expense of introducing additional randomness. To control the variance that would be increased
as the result of this new source of randomness, we use stratified sampling. Now, consider the following
identity,

E[Vτ1{τ ≤ T}] =
n

∑
i=1

E[Vτ |τ ∈ Ai]P(τ ∈ Ai), (13)

where stratum i is Ai = [ti−1, ti). Let mi, i = 1,2, ...,n denote the number of simulation runs used to estimate
E[Vi], where Vi ≡ Vti , t0 ≡ 0, and tn = T . Also, N = ∑

n
i=1 mi denotes the total number of simulation runs

used in estimating CVAI . Using τ as the stratification variable and the identity (13), the stratified sampling
estimator of CVAI is

θ̂u,m,n,k =
n

∑
i=1

V̄τi pi, (14)

where pi ≡ P(τ ∈ Ai) = ∆Fi, τi ≡ τ|τ ∈ Ai, V̄τi = ∑
mi
j=1Vτi j/mi, and k = p,d denotes PDS and DJS sampling,

respectively. That is, to draw a single realization of Vτi , we first sample from τ conditional on τ ∈ Ai;
next, given this realization of τi, we generate Vτi . PDS-based simulation in calculating θ̂u,m,n,p implies
that cov(Vτi ,Vτ j)> 0 for i 6= j, i, j = 1, ...,n, and DJS-based simulation in calculating θ̂u,m,n,d implies that
cov(Vτi ,Vτ j) = 0 for i 6= j. This immediately implies Var(θ̂u,m,n,d)≤ Var(θ̂u,m,n,p).

In terms of computing time, a biased estimator requires generating N realizations of Vi and an unbiased
one requires N additional samples from the truncated τ based on the strata defined above. Note that since
generating Vi is computationally much more intensive than the truncated τ , a biased estimator outperforms
an unbiased one merely marginally in terms of the computational time.

Proportional stratified sampling sets mi = NP(τ ∈ Ai) and if we further assume P(τ ∈ Ai) = 1/n, then
all mi’s are equal to m ≡ N/n. In this paper we do not address further possible improvements of our
unbiased stratified sampling-based estimators by attempting to find optimal m1, ...,mn and n under fixed
computational budgets. Our numerical examples indicate that using our unbiased stratified sampling-based
estimators by setting mi ≡m and choosing m and n as specified in subsection 3.2 leads to substantial MSE
reduction when compared to crude biased Monte Carlo estimators of CVAI .

θ̂u,m,n,d and the biased DJS-based estimator of CVAI , θ̂b,m,n,d , are asymptotically equivalent in terms
of MSE (Proposition 4 in Ghamami and Zhang (2014)). This equivalence is further confirmed by our
numerical experiments (see the next subsection) in practical settings with fixed and finite computational
budgets proportional to mn. Analytically comparing the MSE(θ̂b,m,n,p) and Var(θ̂u,m,n,p) is quite difficult
due to the presence of the covariance terms. Our numerical examples show that the unbiased PDS-based
estimator of CVAI , θ̂u,m,n,p, outperforms the efficient biased PDS-estimator, θ̂b,m,n,p.

3.4 Numerical Examples

In this section we use simple numerical examples to illustrate the efficiency of our proposed Monte Carlo
estimators of CVAI . We consider contract level exposure in a simple setting where Vt ≡ St denotes the value
of a geometric Brownian motion with drift µ and volatility σ at time t > 0. This stylized example enables
us to calculate the MSE exactly. We let T = 1 and τ be uniformly distributed on [0,T ] for simplicity.
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We consider six different Monte Carlo estimators of CVAI . Let θ̂c,p and θ̂c,d denote the “crude” and
biased Monte Carlo estimators of CVAI under PDS and DJS sampling, respectively. Let θ̂e,b,p and θ̂e,b,d
denote the efficient and biased Monte Carlo estimators of CVAI under PDS and DJS sampling, respectively.
In particular, their statistical efficiency is a result of solving the MSE minimization problems in Section
3.2 to derive the (approximately) optimal number of points on the time grid, n, and simulation runs at each
of these time points, m, given a fixed computational budget proportional to mn. Let θ̂u,p and θ̂u,d denote
the unbiased stratified sampling-based Monte Carlo estimators of CVAI under PDS and DJS sampling,
respectively.

The crude estimators of CVAI are calculated based on 12 valuation points, n = 12, at 1, 2, 3, 4, 8, 12,
18, 21, 24, 36, 49 weeks and 1 year. We note that one year with the number of valuation points fixed at 12
is a setting widely used by financial institutions. There is no mathematical basis for this arrangement of
valuation points. It is believed that since some trades have “short” expiration times, having more valuation
points earlier would increase the accuracy of the estimators of CCR measures. The time grid used to
calculate our efficient estimators of CVAI is equidistant, i.e., ∆Fi ≡ ∆ = T/n . Computational budget, s,
is fixed at 12,000 and 120,000, respectively. To calculate θ̂e,b,p under these fixed computational budgets,
the solution, (12) with both c and c̃ set to 1, to the MSE minimization problem of Section 3.2 is used.
This gives, n = 23 and m = 524 for s = 12,000, and n = 50, and m = 2433 for s = 120,000. Similarly, to
calculate θ̂e,b,d , we use the solution to the MSE minimization problem, (3.2). That is, we set n = 12,000 and
m = 1 for s = 12,000, and n = 120,000 and m = 1 for s = 120,000. In calculating the stratified sampling
estimators of CVAI , θ̂u,p and θ̂u,d , we simply use the same setting of (m,n) as θ̂e,b,p and θ̂e,b,d , respectively.

Table 1 on the facing page illustrates that our proposed estimators of CVAI lead to substantial MSE
reduction when compared to the “crude” Monte Carlo estimators. Comparing the MSE of the PDS-based
estimators, θ̂c,p, θ̂e,b,p, and θ̂u,p, we find that our proposed stratified sampling-based estimator leads to
an MSE reduction by a factor of up to 100; this unbiased estimator also dominates the efficient biased
estimator, in some cases quite substantially (see the third and fourth sections of Table 1). Comparing MSE
of the DJS-based Monte Carlo estimators, θ̂c,d , θ̂e,b,d , and θ̂u,d , we observe that the stratified sampling-
based estimator and our efficient biased estimator perform similarly. Both efficient DJS estimators lead
to substantial MSE reduction when compared to the corresponding crude estimator. Finally, we note that
the variance and MSE for the crude estimators do not change much as the computational budget increases
from 12,000 to 120,000, whereas those of efficient estimators reduce by up to an order of ten. This contrast
yields the simple, yet useful insight that the number of valuation points should vary as the computational
budget varies.

4 CONCLUSION

We propose an efficient two-step framework for CVAI estimation. The counterparty credit risk modeler
first needs to choose between the two credit exposure sampling methods: PDS or DJS. Using the notion
of marginal matching, we identify conditions under which the PDS method leads to estimators whose
variance is substantially larger than the variance of the DJS-based estimators. Taking into account the
computational time in parallel with the MSE, we demonstrate that DJS sampling is preferable to PDS
sampling for path independent derivatives. For path dependent derivatives since the computational time of
the DJS-based estimator usually exceeds that of the PDS-based estimator, the two sampling methods could
become approximately equivalent in some cases. Next, in the second step, the modeler needs to choose
the number of valuation points and simulation runs at each valuation point. We show that the MSE of the
crude Monte Carlo CVA estimators can be substantially reduced by solving approximate MSE minimization
problems that specify how to achieve an approximately optimal balance between bias squared and variance.
These MSE minimization problems can be easily solved after approximate orders of variance and bias
under the PDS and DJS methods are derived. If the PDS method has been chosen in the first step above,
we recommend employing our unbiased stratified sampling-based estimator. The unbiased estimator uses
stratified sampling with the number of strata and simulation runs allocated to each stratum being chosen
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Table 1: Monte Carlo CVAI estimates for different parameter settings.

CVAI Variance MSE CPU Time

Parameters: S0 = 30,µ = .2,σ = .3, s = 12,000
θ̂c,p 34.6559 0.047219 0.48478 0.00380
θ̂c,d 34.6522 0.005028 0.43768 0.00162
θ̂e,b,p 34.1802 0.077212 0.1117 0.00253
θ̂e,b,d 33.9955 0.004785 0.004786 0.00174
θ̂u,p 33.9964 0.072068 0.072064 0.00518
θ̂u,d 33.9956 0.004865 0.004866 0.00335

Parameters: S0 = 30,µ = .2,σ = .3, s = 120,000
θ̂c,p 34.652 0.004791 0.4372 0.03887
θ̂c,d 34.6521 0.000501 0.43303 0.01564
θ̂e,b,p 34.0798 0.016741 0.024026 0.02299
θ̂e,b,d 33.9948 0.000483 0.000483 0.02409
θ̂u,p 33.9957 0.015533 0.015533 0.04420
θ̂u,d 33.9945 0.000486 0.000486 0.03426

Parameters: S0 = 30,µ = 1,σ = .3, s = 12,000
θ̂c,p 57.7556 0.16106 23.5389 0.00389
θ̂c,d 57.7598 0.01628 23.4351 0.00189
θ̂e,b,p 54.1296 0.23369 1.6954 0.00270
θ̂e,b,d 52.9238 0.015853 0.015862 0.00189
θ̂u,p 52.9226 0.217 0.21698 0.00516
θ̂u,d 52.9198 0.015796 0.015796 0.00390

Parameters: S0 = 30,µ = 1,σ = .3, s = 120,000
θ̂c,p 57.7579 0.016112 23.4159 0.03891
θ̂c,d 57.7591 0.001616 23.4136 0.01661
θ̂e,b,p 53.4783 0.047841 0.35899 0.02412
θ̂e,b,d 52.9212 0.001563 0.001564 0.02627
θ̂u,p 52.9189 0.045783 0.045781 0.04657
θ̂u,d 52.9203 0.001565 0.001565 0.03598

based on the solution to the above mentioned MSE minimization problems, namely, under computational
budget s, allocating approximately s2/3 runs to each of the s1/3 valuation points. An interesting case arises
when the CCR modeler chooses the DJS method. In this case, our proposed efficient estimator uses 1
simulation run at each valuation point and the total computational budget is allocated to making the discrete
time grid (the set of valuation points) as fine as possible.

Finally, we would like to emphasize that our results are to be assessed and applied with the understanding
that evaluating the derivatives portfolio value V , consisting of possibly thousands of derivatives contracts
that depend on various risk factors, even at a single time point is computationally intensive. Seeking a
precisely MSE optimal setup, where the computing time is also to be taken in to account, is not practically
possible even in cases where the modeler has a good grasp of the time evolution of the value process of each
portfolio constituent, Ci

t . Similar situations could arise in other complex practical settings where developing
simple approximate guiding principles would lead to substantial efficiency improvements. When employing
our proposed framework, the modeler encounters three choices: PDS versus DJS, biased versus unbiased
estimation, number of valuation points versus the number of simulation runs.
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