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ABSTRACT

The square-root process is used to model interest rates and volatility in financial mathematics. The pricing
of derivatives involving that process often requires simulating it, since there are often no explicit formulas
for prices. We study how a change of measure (CM) may improve those simulations. We compare with
Andersen’s quadratic-exponential scheme (QE), which so far appears to be the most efficient technique
to simulate the stochastic differential equation satisfied by the square-root process. An integer-dimension
squared Bessel process, easy to simulate, is used to generate the law of the square-root process using a
change of measure. The new method performs very well, and the two algorithms execute at similar speeds;
however, CM is slower than QE if random number generation is taken into account, because CM requires
more random numbers. The Radon-Nikodym derivative sometimes has a rather intriguing behavior, which
is itself of interest. We propose an explanation.

1 INTRODUCTION

Suppose W is standard Brownian motion. The stochastic differential equation (SDE)

dVt = (aVt +b) dt + c
√

Vt dWt , V0 = v0, (1)

has a unique strong solution when a ∈ R, b,v0 ≥ 0 and c > 0 (Revuz and Yor 1999, Chapter 9). The
solution is called the square-root process. This process has a number of explicit properties, one of them to
remain non-negative at all times. For appropriately chosen parameters it also has a stationary distribution.
In financial mathematics, this process has been used as a model for interest rates (Cox, Ingersoll, and
Ross 1985) and for squared volatility (Heston 1993). Despite the explicit results known since the 1950s
(Feller 1951) about the square-root process, there is no closed form expression for the prices of many
options involving that process. As a consequence, pricing those derivatives requires simulating (1). This is
not a straightforward exercise, since the discretized version of (1), when generated in the usual way, will
take negative values with positive probability at every step. Even if

√
V (that multiplies dW ) is replaced

with
√|V | the resulting simulated process is not a good approximation of the true square-root process.
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Andersen (2008) reviews the previous schemes proposed to simulate this process, and describes one, the
”quadratic-exponential” (QE) scheme, that does better than the previous ones. The QE scheme is base on
an approximation of the transition density function of the process V .

This paper proposes an alternative to the QE scheme, based on the intimate connection between the
square-root process and squared Bessel processes. The idea is to simulate a squared Bessel process of
integer dimension (see below), which can be done without discretization error, and then apply a change of
probability measure to compute expectations involving the square-root process. Section 2 summarizes the
needed theorems, Section 3 shows a successful application to option pricing, while Section 4 describes an
unexpected phenomenon, that may affect results obtained when applying this method.

An important point is that we are looking for methods that work for path-dependent as well as path-
independent options. For the latter, in particular European calls or puts, the Fourier inversion method,
proposed by Heston (1993) and others, works fine and is much faster than any simulation scheme. In order
to compare the change of measure and QE methods, this paper uses of formulas in Dufresne, Garrido, and
Morales (2009); for European, path-independent derivatives those formulas are hundreds or thousands of
times faster than any method involving simulating whole paths of the process S (for instance, compare the
execution times in Table 2 below); this is simply because the Mellin transform of St is known in closed
form. Hence, Fourier inversion is the method of choice for all European options with a payoff function
that has a closed form Laplace transform, such as calls or puts. In those cases it is overkill to simulate the
process, or to find the explicit probability distribution of St .

However, in the context of the Heston model there are no explicit formulas or transforms for path-
dependent options, for example average or barrier options. For those options it is required to simulate the
stock price for at least all the time points where the options are monitored. For instance, a one-year average
option with weekly averaging requires obtaining the values of the underlying at least 52 times. Generating
the “exact” transition density, as del Baño Rollin, Ferreiro-Castilla, and Utzet (2010) and Glasserman and
Kim (2011) have shown, is clearly more complicated and much less efficient than QE, as the transition
density needs to be generated anew at every time step. This is why methods that generate an “exact”
transition density are not included in our numerical investigations. (The word “exact” is a misnomer,
as the known expressions for the density of St include either infinite series or integrals, and need to be
approximated.)

With this goal in mind (focusing on methods that could be used for path-dependent or American
options), our numerical work compares the change of measure and the QE methods for speed and accuracy,
for option prices that can also be computed using a third method, namely Fourier inversion. We have
also checked whether the methods yielded accurate expectations for moments of the square-root process
(integral moments and expectations of logarithms), as the latter can be obtained from explicit formulas. We
were able to confirm the excellent accurracy of the QE method (something that was perhaps not covered
enough in Andersen’s original paper). All those computations show that, despite being based on a rather
simplistic approximation, the QE method yields very accurate results.

2 ABSOLUTE CONTINUITY RELATIONSHIPS AMONG SQUARE-ROOT PROCESSES

For the sake of brevity we introduce radial Ornstein-Uhlenbeck (ROU) processes and then note that
squared Bessel processes are particular cases; textbooks, see for example Revuz and Yor, describe Bessel
processes first and then apply some transformation to obtain ROU processes. Göing-Jaeschke and Yor
(2003) parametrize ROU processes as follows.

Definition 1 For λ ∈ R, δ ≥ 0 and y ≥ 0 the unique strong solution to the SDE

Xt = x+
∫ t

0
(δ +2λXs) dt +2

∫ t

0

√
Xs dWs
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is called the squared δ -dimensional radial Ornstein-Uhlenbeck process with parameter λ . The probability
law of the process is denoted λ Qδ

x or λ Q(ν)
x , where (here and in the rest of the paper)

ν =
δ
2
−1

is the index that corresponds to the dimension δ .
Multiplying (1) by 4/c2, the square-root process becomes a ROU process, with λ = 2a/c2 and dimension

δ = 4b/c2. The transition density of a δ -dimensional ROU processes is known in closed form, and involves
the Bessel function of index ν = δ/2−1. This density is computationally too onerous to use in simulation,
so we will not need it in this paper. However, the index appears in many formulas, so we will end up using
both δ and ν for the same process.

The behaviour of ROU processes near the origin is important in understanding when the method we
describe can or cannot be applied. For any λ and δ ≥ 2 (i.e. for ν ≥ 0), with probability one the ROU
process does not reach 0; for any λ and δ < 2 (i.e. for ν < 0) with probability one the ROU process

reaches 0. Therefore, the laws λ Q(ν)
x and λ ′

Q(ν ′)
x cannot be mutually absolutely continuous if ν ≥ 0 and

ν ′ < 0. More details may be found in Göing-Jaeschke and Yor (2003). The special case λ = 0 is at the
heart of the method we study in this paper.

Definition 2 For every δ ≥ 0 and y ≥ 0, the unique strong solution to the SDE

Xt = x+δ t +2

∫ t

0

√
Xs dWs (2)

is called the square of a δ -dimensional Bessel process starting at x, and is denoted by BESQδ
x , or

BESQ( δ
2 −1)

x . We call ν = δ/2−1 the index of the process. Its law on C(R+,R) is denoted Qδ
x or Q(ν)

x .
Combining results from Göing-Jaeschke and Yor (2003) and Chapter 11 of Revuz and Yor (1999), we

get the following theorem.

Theorem 1 Let Ft = σ (Xs, 0 ≤ s ≤ t). For every λ ∈ R, μ,ν ≥ 0 and x > 0,

dλ Q(ν)
x

dQ(μ)
x Ft

=

(
Xt

x

) ν−μ
2

exp

(
λ
2
[Xt − x− (2ν +2) t]− λ 2

2

∫ t

0
Xs ds+

μ2 −ν2

2

∫ t

0

ds
Xs

)
. (3)

This says that there is an explicit Radon-Nikodym derivative that allows one to calculate expectations

under λ Q(ν)
x by simulating Q(μ)

x . The squared Bessel process of integer dimension is especially easy to
simulate, from the following classical result.

Theorem 2 Let β ∈ {1,2,3, . . .}, y j ∈R, and suppose W (1), . . . ,W (β ) is a vector of independent standard
Brownian motions issued from 0. Then the law of the process

{(y1 +W (1)
t )2 + · · ·+(yβ +W (β )

t )2, t ≥ 0}

is Qβ
x = Q(μ)

x , where μ = β/2−1 and x = y2
1 + · · ·+ y2

β .

These facts say that to calculate expectations under λ Qδ
x = λ Q( δ

2 −1)
x , δ ≥ 2, it is sufficient to simulate

the squared norm of a β -dimensional Browian motion, with β ∈ {2,3, . . .}. Note that β = 1 will not work,
because Theorem 1 does not apply if μ = β/2−1 < 0. This implies that the change of measure method
needs more random numbers than other methods for simulating a square-root process, since at each step
the β -dimensional Brownian motion needs to be updated. However, the simulation of the squared Bessel
process is exact, in the sense that there is no discretization error.
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Table 1: Square-root process estimated parameters from various authors

Reference a b c δ ρ Data

Ait-Sahali and Kimmel (2007) -5.070 0.232 0.480 4.02 -0.77 S&P 500 option

Bakshi, Cao, and Chen (1997) -2.180 0.174 0.530 2.48 -0.70 S&P 500 option

Bollerslev and Zhou (2002) -0.146 0.076 0.579 0.90 0.00 Deutsch Mark/US$

Dragulescu and Yakovenko (2002) -11.350 0.250 0.618 2.62 0.00 Dow Jones index

Duffie, Pan, and Singleton (2000) -6.210 0.118 0.610 1.27 -0.70 S&P 500 option

Eraker (2004) -0.017 0.015 0.107 5.26 -0.37 S&P 500 option

Forbes, Martin, and Wright (2007) -5.480 0.789 0.719 6.11 0.16 ASX option

Fouque and Lorig (2011) -3.400 0.082 0.390 2.15 -0.64 S&P 500 index option

Pan (2002) -5.300 0.128 0.380 3.55 -0.57 S&P 500 index option

3 APPLICATION TO A STOCHASTIC VOLATILITY MODEL

Heston (1993) proposed the following model for stock prices. The squared volatility V and the stock price

S are driven by correlated standard Brownian motions W (S)
t ,W (V )

t :

dSt = rSt dt +
√

VtSt dW (S)
t (4)

dVt = (aVt +b)dt + c
√

Vt dW (V )
t . (5)

The first SDE is the one in the Black-Scholes model, except that the “σ” is replaced with the stochastic
volatility process

√
Vt . The squared volatility follows a square-root process. Heston derived Fourier

inversion formulas for ordinary European calls and puts, but other derivatives, in particular path-dependent
ones, do not have explicit expressions.

Several authors have fitted the square-root process to observed volatility, see Table 1. The change of
measure method we describe only applies when δ ≥ 2, but two of the entries are smaller than 2. When
0 < δ < 2 the process reaches 0 with positive probability and is instantaneously reflected (Göing-Jaeschke
and Yor 2003, p.315). We will use the parameters estimated in Eraker (2004), with v0 = 0.15, to illustrate
how the change of measure compares with the QE scheme. All computations were performed on a
MacBookPro 11,3 2.6 GHz. Simulations were coded in C.

3.1 Option Prices by Inverse Mellin Transform

To compute the exact prices of the European call options we use to compare the CM and QE schemes, we
could use the formulas derived in Heston (1993). We will instead employ a much more general formula, from
Dufresne, Garrido, and Morales (2009), that applies Parseval’s Theorem to the complex Mellin transform
ESiu, for any non-negative variable S.

Theorem 3 Let S ≥ 0, K > 0 and

h(u) =
K−iu+1

iu(iu−1)
E(Siu).

(a) If E(Sα)< ∞ for some α < 0, then

E(K −S)+ = KP{S = 0}+ 1

2π
PV

∫ ∞

−∞
h(u− iα)du.

If, moreover, E(S)< ∞, then

E(S−K)+ = ES−KP{S > 0}+ 1

2π
PV

∫ ∞

−∞
h(u− iα)du.
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(b) In all cases,

E(K −S)+ =
K
2
[1+P{S = 0}]+ 1

π

∫ ∞

0
Re[h(u)]du.

If E(S)< ∞, then

E(S−K)+ = ES− K
2
[1+P{S = 0}]+ 1

π

∫ ∞

0
Re[h(u)]du.

The Mellin transform of the stock price may be found from the joint Laplace transform of
(
Vt ,

∫ t
0 Xs ds

)
.

The latter has been known since Feller (1951):

L(p,q) = Eexp

(
−pVt −q

∫ t

0
Vs ds

)
= [A(p,q, t)]−

2b
c2 exp[B(p,q, t)],

where

A(p,q, t) =
eat/2

P
[Pcosh(Pt/2)−asinh(Pt/2)+ c2 psinh(Pt/2)]

B(p,q, t) = −v0

c2

{
P+a− (P+a− c2 p)e−(P−a)t/2

A(t)

}

P = P(q) =
√

a2 +2c2q.

Let ρ denote the correlation between W (S)
t and W (V )

t . From (5),

∫ t

0

√
Vs dW (V )

s =
1

c

(
Vt − v0 −a

∫ t

0
Vs ds−bt

)
.

Then, from (4), St has the same distribution as

S0 exp

(
rt − 1

2

∫ t

0
Vs +

ρ
c

(
Vt − v0 −a

∫ t

0
Vs −bt

)
+
√

1−ρ2

(∫ t

0
Vs

) 1
2

Z

)

= S0ert− ρ
c (v0+bt) exp

(
−
(

1

2
+

ρa
c

)∫ t

0
Vs +

ρ
c

Vt +
√

1−ρ2

(∫ t

0
Vs

) 1
2

Z

)
,

where Z has a standard normal distribution and is independent of V . Raising this expression to power p
and taking conditional expectation given the process V yields

ESp
t = Sp

0 eprt− ρ p
c (v0+bt) L

(
−ρ p

c
,

p
2
+

ρap
c

− (1−ρ2)p2

2

)
.

In this formula p is replaced with iu, and the result is inserted in the expression for the call price in part
(b) of Theorem 3. Mathematica computed the numbers shown in the column labelled “Mellin” in Table 2.
(Moments and other properties of the square-root process and its time integral may be found in Dufresne
(2001).)
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Table 2: Call option prices with a =−0.017,b = 0.015,c = 0.107,r = 0,ρ =−0.37,v0 = 0.15

T Mellin CM QE

K=80

0.25 21.1333 21.1588 (±0.0340) 21.1530 (±0.0352)

0.50 23.0023 23.0196 (±0.0459) 23.0372 (±0.0478)

1.00 26.3282 26.3716 (±0.0641) 26.3042 (±0.0668)

K=100

0.25 7.73778 7.75206 (±0.0239) 7.75482 (±0.0246)

0.50 10.9596 10.9728 (±0.0351) 10.9832 (±0.0364)

1.00 15.5441 15.5799 (±0.0530) 15.5298 (±0.0551)

K=120

0.25 1.92283 1.92918 (±0.0122) 1.93001 (±0.0126)

0.50 4.46886 4.47241 (±0.0233) 4.47674 (±0.0242)

1.00 8.71782 8.74311 (±0.0415) 8.70359 (±0.0430)

Time (sec) 0.0352 142.19 88.96

3.2 Andersen’s Quadratic-Exponential Scheme

The method proposed by Andersen (2008) approximates the true transition distribution from Vt to Vt+h (the
so-called non-central chi-square) with two distributions, one for large values of the current V̂t , and another
one for small values of V̂t . The first one is the distribution of

α(β +Z)2, Z ∼ N(0,1).

The transition distribution used when V̂t is small is an exponential distribution with parameter γ , mixed
with a probability mass π at the origin. There is a boundary ψ separating small and large values of V̂t .
The numbers α,β ,γ,π and ψ are derived by moment matching in Andersen (2008). They all depend on
V̂t . Section 4.2 of that paper describes a way to discretize the SDE for logSt , which we applied without
modification, yielding column “QE” in Table 2. We used N = 106 iterations, 100 time steps per year, and
an expiry t of one year.

3.3 Change of Measure

We use β = 2, that is, we simulate a two-dimensional squared Bessel process. Once again we use 106

iterations, 100 time steps per year, and an expiry of one year. In Table 2 the change of measure (column
“CM”) performs similarly to the QE scheme. Confidence intervals were most often the same, though on
some occasions the confidence intervals under CM were a little wider than those under QE. Computation
times are shorter for QE, because of the time it takes to generate random numbers. At every time step
QE requires two random numbers, one for each Brownian motion. However, CM requires two random
numbers for V and one for logS. If the random numbers are separately generated then execution times
of CM were 5-15% shorter than those of QE. There is no surprise in those observations, since CM only
requires the simulation of the squared Bessel process and the Radon-Nikodym derivative, while QE involves
a few supplementary conditions and computations. For both CM and QE, computation times have a linear
relationship to the product of expiry, number of steps and number of iterations.

We have seen very similar results with the other scenarios in Table 1, CM being sometimes a little
more precise, sometimes a little less precise than QE, but the differences were almost always rather small,
and within the 95% confidence interval. However, after systematically testing the expected value of the
Radon-Nikodym derivative for various parameter combinations we did find cases where CM gave results
that were off the mark. This is analysed in the next section.

470



Dufresne, Vázquez-Abad and Chin

0.5 1.0 1.5 2.0 2.5 3.0

0.99

1.00

1.01

1.02

1.03

Figure 1: Average simulated values of the Radon Nikodym derivative for μ = 0 as a function of ν , at time

t = 1. The number of steps is 32 (red), 64 (magenta) and 128 (blue).

4 THE “BUMP”: A CAUTIONARY TALE

One of the first things we did was to check that the computed average of the Radon-Nikodym derivative was
close to 1. This appeared to happen in most cases, but in some cases even long simulations failed to produce
a value close enough to 1. In Figure 1 we show the results when the simulated process is a two-dimensional
squared Bessel process (i.e. μ = 0) and the Radon-Nikodym derivative is the one given in (3), with λ = 0,
t = 1 and x = 0.5; the dots correspond to the average of 106 replications of the Radon-Nikodym derivative,
in steps of 0.02. We used independent random variables (independent replications) for each value of ν .
The “bump” is therefore not a fictitious phenomenon due to the use of common random numbers. Not
shown in our plot are confidence intervals: these are very small for small values of ν and increase as ν
increases. Around the bump the value 1 is outside the estimated 95% confidence intervals. This may cause
option values to be incorrect. For instance, let

a = −5.070, b = 0.232, c = 0.480, v0 = 0.046,

and consider a call option with expiry t = 1 and strike 100. Using CM with 32 steps the price was 8.956
±0.0659, which is pretty far from the exact price 8.204 (inverse Mellin transform). The computed average
Radon-Nikodym derivative was 1.0498. These errors decrease as the number of steps is increased, for
example with 256 steps the average Radon-Nikokym derivative was 1.00078 and the option price was 8.2388
±0.0636, which is correct. By comparison, the QE method wth 32 steps produced 8.22518 ±0.02274.

The very surprising fact is that the average Radon-Nikodym derivative is further from the correct value
1 for small ν , while things improve for larger ν . As ν increases the standard deviation increases, but this
was to be expected. Near ν = 0 the dots resemble a “bump”, and this is the name we used to describe this
phenomenon. In all cases we looked at, the bump reduces in height and moves to the left as the number
of time steps used increases, but it does not disappear. This behaviour is the opposite of what one would
expect, the computed Radon-Nikodym derivative “should” become less accurate as one moves away from
the case μ = 0.
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To explain what is happening, let us differentiate the Radon-Nikodym derivative with respect to ν :

R(μ,ν , t) = exp

{
ν −μ

2
log

(
Xt

x

)
+

1

2
(μ2 −ν2)Jt

}

Jt =
∫ t

0

1

Xs
ds

∂
∂ν

R(0,ν , t) =

(
1

2
log

(
Xt

x

)
−νJt

)
R(0,ν , t).

Since Q(μ)
x R(μ,ν , t) = 1 for all μ,ν ≥ 0, we know that the partial derivative of Q(μ)

x R(μ,ν , t) with respect

to ν is 0. (Q(μ)
x (·) denotes expectation with respect to Q(μ)

x .) It is straightforward to show that, for any
ν ,x > 0,

0 =
∂

∂ν
Q(0)

x R(0,ν , t) = Q(0)
x

[(
1

2
log

(
Xt

x

)
−νJt

)
R(0,ν , t)

]
. (6)

However, this does not hold for the right derivative at ν = 0+, because Q(0)
x logXt �= 0. Note also that

Q(0)
x

1

Xs
= ∞ ⇒ Q(0)

x

∫ t

0

1

Xs
ds = ∞.

In words, the expectation of the reciprocal of a two-dimensional squared Bessel process is infinite. The
expectation on the right of (6) is finite, because there Jt is multiplied by exp(−ν2Jt/2). If one forces ν = 0
on the right-hand side of (6) then one gets a result different from 0, since

Q(0)
x logXt = Q(0)

x log(
√

tZ1 +
√

x)2 + tZ2
2),

where Z1,Z2 are two independent standard normals. With t = 1 and x = 0.5, as in Figure 1, the last
expression equals 0.522. If one computes the rate of change of the observations in Figure 1 between ν = 0
and ν = .02, one gets about 0.45, just short of 0.522. Our explanation for this is that the simulated value
of Jt appears to understate its true value, implying that the estimation of

Q(0)
x (JtR(0,ν , t))

is also understated, at least for small ν .
Another way to look at this is to note that we have martingales {R(0,ν , t), t ≥ 0} that are indexed by

ν ≥ 0; hence, {R(0,ν ′, t)−R(0,ν , t), t ≥ 0} is also a martingale for every pair ν ,ν ′ ≥ 0. It can also be
verified that {

∂
∂ν

R(0,ν , t), t ≥ 0

}
is a martingale for any ν > 0. However,{

lim
ν→0+

∂
∂ν

R(0,ν , t), t ≥ 0

}

is not a martingale. The latter is simply

lim
ν→0+

∂
∂ν

R(0,ν , t) =
1

2
log

(
Xt

x

)
.

472



Dufresne, Vázquez-Abad and Chin

1.0 1.5 2.0 2.5 3.0

0.985

0.990

0.995

1.000

1.005

1.010

Figure 2: Simulation of the Radon Nikodym derivative for μ = 0.5 as a function of ν . The number of

steps used is n = 32.

This process is a local martingale, because

d logXt =
2√
Xt

dWt .

This is one of the rare instances where one meets a local martingale that is not a martingale in an applied
problem.

The integral Jt is computed as

Ĵt(n) =
1

n

�nt�
∑
j=1

1

X j
n

.

Moment matching cannot be used to improve this approximation of the integral, since its expectation under

Q(0)
x is infinite. If we use a larger value of n, i.e. a smaller time step size, then precision improves. For

instance, we ran the simulations with 512 steps per year, and found a bump with a maximum value of
1.026, reached around ν = 0.15. Nevertheless, the estimated derivative at ν = 0, with a step size of .001,
was 0.517 (recall the theoretical value 0.522 above).

A possible way out we explored is to use a three-dimensional squared Bessel process, rather than a
two-dimensional one. Figure 2 shows the results using μ = 0.5, which corresponds to δ = 3, with n = 32
steps. The other parameters of the model are the same as in Figure 1. A bump is also present, with a
positive slope near ν = 0, but it is less pronounced than for μ = 0. Once again the bump shrinks and moves
closer to ν = 0 when the number of steps is increased. Figure 3 shows what happens if a four-dimensional
BESQ is simulated. There is apparently no bump when δ = 4.

We have priced derivatives with μ = 0.5 and μ = 1.0. An obvious consequence is the larger number of
random numbers required. We have also observed numerical instabilities when ν < μ , that we are currently
investigating.

5 CONCLUSION

We have formulated a change of measure method for pricing derivatives in models that involve the square-
root process. A limitation of the method is that it does not apply if the dimension of the square-root process
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0.995
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Figure 3: Simulation of the Radon Nikodym derivative with μ = 1 as a function of ν . The number of steps

used are 32 (red), 64 (magenta) and 128 (blue).

is less than 2. The method is simple to code and produces very good results in a majority of cases. However,
there is a difficulty in that results may be inaccurate for some combinations of parameters, if the index (ν)
of the square-root process is close to 0, which is the same as the dimension (δ ) of the process being close
to 2 (how close depends on tand v0). There may be what we called a “bump” in computed Radon-Nikokym
derivatives. It is always possible to get rid of the bumb by increasing the number of time steps, but of
course this means longer execution times. Our understanding of this phenomenon is still incomplete. The
method needs refining, and we are working on a correction to the integral of 1 over X (“Jt” in this paper),
which would produce accurate results in all cases. In summary, the method has the advantage of simulating
the squared Bessel process without any discretization error, but the Radon-Nikodym derivative involves
integrals of the process, and those do give rise to discretization error.

In our numerical work we have used some of the formulas in Dufresne, Garrido, and Morales (2009),
that allow for the very fast computation of European put and call prices. For those options there is no need
to resort to the transition density function, as done in del Baño Rollin, Ferreiro-Castilla, and Utzet (2010)
and Glasserman and Kim (2011), since Fourier inversion works and is much more efficient numerically.

We have also confirmed the value of the quadratic-exponential scheme, by showing that it produces
results in agreement with “exact” option prices obtained by inverse Mellin transform.
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