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ABSTRACT

Even when they are known to be continuous, Poisson-process rate functions are sometimes specified as
piecewise constant. To better approximate the unknown continuous rate function, we fit a piecewise-
quadratic function. In addition to maintaining the rate’s integral over each time interval, at each interval’s
end point we match the rates and their first derivatives. For every interval with negative rates, we force
non-negativity by taking the maximum of zero and the quadratic-function value, modifying the quadratic to
maintain the integral value. These rate functions can be used alone or applied after one or more iterations
of I-SMOOTH, our existing algorithm designed for the same problem. We provide examples. Finally, we
discuss random-process generation from piecewise-quadratic rate functions.

1 INTRODUCTION

Because of both easy statistical estimation and easy random-variate generation, Poisson rate functions are
often specified as being piecewise constant. Often, however, the unknown rate function is known (or thought
to be) continuous. Schmeiser et al. (2003) first considered the problem of better estimating, given only
the piecewise-constant function, the unknown rate function. We follow their primary problem assumption,
which is to ignore the statistical quality of the piecewise-constant function, which depends upon the method
of estimation and the amount of real-world data used. That is, we take each interval’s constant rate as
given, and require the interval’s updated rate function to integrate to the constant. Being a rate function,
the updated function must also be non-negative at every point in time.

1.1 Problem statement

We take as given the piecewise-constant rate function: λi for the time interval (ti, ti+1] for i = 1,2, . . . ,k.
(Here and throughout, a piece and an interval are identical.) For simplicity, throughout we assume that
each time interval has length one, with ti = i, so the rate function ranges from time 0 to time k. Chen
and Schmeiser (2011, 2013) consider two contexts: finite horizon, where time ends at time k, and cyclic,
where times extends to infinity and λi applies to every time in (ti + jk, ti+1 + jk], where j = 0,1, .... Here,
we consider only the cyclic context, so the given piecewise-constant rate function is

λ (t) = λi

where j = bt/kc is the number of previous cycles and i = max{1,dt− jke} is the interval number.
The problem is to return a better rate function, which requires a definition of better. We have no

evaluation metric for general rate functions, which might be discontinuous or have times at which the first
or second derivatives do not exist. Therefore, our problem definition is ambiguous. Nevertheless, many
rate functions are an obvious improvement to a piecewise-constant function.
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1.2 Solution Approach

Our solution approach is to fit a piecewise-quadratic function to each interval i = 1,2, ...,k. To begin,
consider only the unit interval [0,1]. At time x, the rate is

q(x;a,b,c) = ax2 +bx+ c.

Define a = (a1,a2, ...,ak) and analogously b and c. Then the cyclic piecewise-quadratic rate function is

τ(t;a,b,c) = q(x;aix2 +bix+ ci),

where again j = bt/kc, i = max{1,dt− jke}, and x = t− jk− i+1 is the fractional time.
Thus, our specific problem is to determine values for the coefficients a, b, and c that lead to a better

rate function than the given piecewise-constant function. Lacking a definition of better, we fit the 3k
coefficients by matching the k integrals, matching rates at the k interval endpoints, and matching the rates’
first derivatives at the k endpoints. We consider this fitting problem in Section 3.

Because the fitted piecewise-quadratic function τ with coefficients a, b, and c might be negative at some
times t, a solution approach must somehow adjust the fitted piecewise-quadratic function. Our approach
is to replace each interval’s quadratic function with

q+(x;a+,b+,c+) = max{0,a+x2 +b+x+ c+},

which by definition forces non-negativity. The non-negative rate function is then

τ
+(t;a+,b+,c+) = q(x;a+i x2 +b+i x+ c+i ),

where j, i,and x are defined as before. When τ is entirely nonnegative, τ+ = τ . When τ has some negative
rates, however, including the maximum function requires updated values a+, b+, and c+ to maintain the
required integral for each interval i. Computation of a+, b+, and c+ is discussed in Section 4.

1.3 Organization of paper

Following a literature review in Section 2, Sections 3 and 4 contain details about fitting piecewise-quadratic
function τ and the corresponding non-negative rate function τ+. Numerical examples, with graphs, are
provided in Section 5. Finally, logic for Poisson random-process generation is presented in Section 6. In
the appendix, for each interval we match the integral and specified end-point rates, in case some future
research provides such end-point rates.

2 LITERATURE REVIEW

Chen and Schmeiser (2011, 2013) introduce the algorithm I-SMOOTH, which iteratively smooths any
piecewise-constant function by bisecting time intervals to obtain an updated piecewise-constant function
with twice as many pieces. At each iteration, each interval’s integral is maintained by increasing (decreasing)
the left half’s rate while decreasing (increasing) the right half’s rate. The amount of increase and decrease
is chosen to minimize the sum of second differences of the rates. At each iteration, negative rates are
avoided by limiting the increase and decrease to being no more than the current rate.

As defined in Chen and Schmeiser (2011, 2013), I-SMOOTH has no stopping rule. Rather, the user
can stop iterating whenever the improvement in quality of the resulting piecewise-constant rate function
has less benefit than the computational (time and storage) costs of doubling the number of intervals.

The final piecewise-constant rate function can be used directly for process generation or can be modified
as desired. As discussed in Schmeiser et al. (2003), each interval’s rate could be pivoted about its center to
obtain a better (but not continuous) piecewise-linear rate function while maintaining the interval’s integral.
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Alternatively, the two algorithms in Nicol and Leemis (2014a) could be used to obtain a continuous
piecewise-linear rate function.

The piecewise-linear algorithms in Nicol and Leemis (2014a) and our piecewise-quadratic algorithm can
be applied with no iterations of I-SMOOTH. Alternatively, since I-SMOOTH always returns a piecewise-
constant function, these algorithms can be used as an I-SMOOTH post-processor.

Nicol and Leemis (2014a) consider the same problem as this paper. Their piecewise-linear functions
are nonnegative and the rate’s integral over each time interval matches the corresponding given rate. They
develop two algorithms that maintain five desirable features: equal slopes for each time interval if the
specified rates have a constant difference, as few parameters as possible, time reversible, as smooth as
possible, and as few line segments as possible. Both algorithms begin by computing the rate pi at time
i, where i = 0, 1,. . . , k; the points (i, pi) are called knot points. For each time interval, the fitted linear
function is the line connecting the knot points at two ends of the interval if the line maintains the integral.
Otherwise, more line segments are created by adding knot points within the time interval. Algorithms 1
and 2 differ in the logic of setting the knot points at end points of time intervals and adding knot points
when necessary. The authors recommend their Algorithm 2 over their Algorithm 1.

When event-count data are available, Leemis (2004) considers point and interval estimators of the
cumulative rate function (that is, the expected number of events) at the interval endpoints. Our problem
differs in that we do not consider statistical properties; rather, we match the expected number of events
for each interval while providing a piecewise-quadratic (rather than a piecewise-constant) rate function.

Unlike our assumption of beginning with only the k piecewise-constant rates, other literature assumes
the richer situation of having the original Poisson event times. Examples include Kuhl and Wilson (2000,
2001) and Leemis (1991) and Arkin and Leemis (2000). Saltzman et al. (2012) generalize to multivariate
Poisson processes. Generalizing beyond Poisson processes, Liu (2013) models nonstationary non-Poisson
processes that have a given mean-value function but also allows the ratio of mean and variance to take
values other than one. Chen and Schmeiser (1992) consider process generation from trigonometric rate
functions using the inverse transformation.

3 FITTING PIECEWISE-QUADRATIC FUNCTIONS

As before, let the rate λi be the rate over the time interval (ti−1, ti] for i = 1,2, . . . ,k. We now consider
fitting quadratic functions to each interval while maintaining each interval’s rate integral, λi.

Ideally, we would identify an objective function subject to the k rate-integral constraints. Chen and
Schmeiser (2011,2013) use a sum of squared second differences to evaluate piecewise-constant rate functions
for piecewise-constant functions. For continuous rate functions, the analogous criterion is

z =
∫ tk

t0

[
d2τ(t)

dt2

]2

dt. (1)

For a piecewise-quadratic function over k unit intervals, the second derivative over the entire ith interval is
2ai; therefore z = 4∑

k
i=1 a2

i . So fitting a piecewise-quadratic function seems to be as easy as setting ai = 0,
bi = 0 and ci = λi for i = 1,2, ...,k. The flaw, of course, is that then the second derivatives do not exist at
the interval endpoints. Worse, the function is not continuous at the interval endpoints.

In the hierarchy of criteria, continuity seems highest, then first derivatives, and then higher-order
derivatives. We have 3k coefficients to determine, so in addition to matching the k intervals’ integrals,
we fit the piecewise-quadratic function to maintain continuity and first-derivative values at the k intervals’
endpoints. We define the fitting equations in Section 3.1 and and then numerically determine the parameter
values needed to compute the fit in Section 3.2.
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3.1 The fitting equations

The immediate problem is to determine values for the coefficients (ai,bi,ci) for i = 1,2, ...,k to maintain
the k integrals, match the k end-points’ function values, and match the k end-points’ first derivatives. We
write and solve 3k simultaneous linear equations that specify the 3k coefficient values.

Recall that we assume unit-length intervals, so ti = i for i = 1,2, . . . ,k. Also we assume the cyclic
context, where λ (t) = λ (t + jk), where j is an integer. If incrementing subscript i makes it larger than
k, then interpret it as i = 1. For fitting only, we assume that time t lies in [0,k], so j = 0. We ignore the
nonnegativity constraint, but do consider nonnegativity in Section 4.

For simplicity of computation, we write the piecewise-quadratic rate function in such a way that we
can think of every time interval as [0,1]. As before, let i = max{1,dte} denote the interval into which time
t falls, so that x = t− i+1 is the fractional time within that unit interval. Then, the ith interval’s quadratic
rate is q(x;ai,bi,ci).

There are three types of conditions: maintain the rate’s integral, maintain rate continuity, and maintain
continuity of the first derivatives. For every interval i = 1,2, . . . ,k maintaining the rate’s integral requires∫ 1

0 aix2 +bix+ cidx = λi, which simplifies to

ai/3+bi/2+ ci = λi; (2)

maintaining continuity requires aix2 +bix+ ci|x=1 = ai+1x2 +bi+1x+ ci+1|x=0, which simplifies to

ai +bi + ci = ci+1, (3)

and maintaining continuity of the first derivatives requires 2aix+bi|x=1 = 2ai+1x+bi+1|x=0, which simplifies
to

2ai +bi = bi+1. (4)

We then rewrite Equations (2) to (4) in matrix form as

MC = Λ, (5)

where C3k×1 = (a1,b1,c1, . . . ,ak,bk,ck)
T , Λ3k×1 = (λ1,0,0,λ2,0,0, · · · ,λk,0,0)T , and

M3k×3k =



S1 S2 0 0 · · · · · · 0
0 S1 S2 0 · · · · · · 0
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 0 · · · · · · 0 S1 S2
S2 0 · · · · · · 0 0 S1


with submatrices

S3×3
1 =

1/3 1/2 1
1 1 1
2 1 0

 , S3×3
2 =

0 0 0
0 0 −1
0 −1 0

 and 03×3 =

0 0 0
0 0 0
0 0 0

 .
The root of Equation (5) is

C = M−1
Λ.

Because M is a block-circulant matrix, its inverse matrix M−1 can be computed efficiently using methods
such as in De Mazancourt and Gerlic (1983).
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3.2 Numerical solutions

The 3k equations in Section 3.1 can be solved by matrix inversion for the unique piecewise-quadratic rate
function, τ . Here we numerically solve the 3k equations for k = 1,2, . . . ,7 by computing the matrix inverse.
From those solutions we estimate the asymptotic solutions, which can be used for k > 7. (The choice of
seven was be large enough to establish a pattern and approximate asymptotic results.)

For k = 1, trivially a1 = 0, b1 = 0, and c1 = λ1 which yields τ(t) = λ1. Examining the solutions
for k = 2,3, . . . ,7 quickly yields the form of the solutions for k > 1. The solutions for the second-order
coefficients are of the form

a(k)i = α
(k)
0 λi +

dk/2e

∑
j=1

α
(k)
j (λi− j +λi+ j),

with α0 negative, the α values oscillating in sign and decreasing in magnitude, and the sum of all λ

coefficients being zero. The solutions for the first-order coefficients are of the form

b(k)i =
dk/2e

∑
j=0

β
(k)
j (λi+ j−λi− j−1),

with β0 = −α0 and the β values oscillating in sign and decreasing in magnitude by roughly a factor of
four. The solutions for the constant coefficients are of the form

c(k)i =
dk/2e

∑
j=0

γ
(k)
j (λi+ j +λi− j−1),

with γ0 positive and the γ values oscillating in sign and decreasing in magnitude by about a factor of four.
The sum of λ coefficients is one.

In addition, as k increases α
(k)
j , β

(k)
j , and γ

(k)
j converge to their asymptotic counterparts quickly. In

particular, informal extrapolation suggests that a good approximation for k > 8 is

a(k)i =−2.196×λi +1.392× (λi−1 +λi+1)−0.367× (λi−2 +λi+2)+0.073× (λi−3 +λi+3),

b(k)i = 2.196× (λi−λi−1)−0.5852× (λi+1−λi−2)+0.1463× (λi+2−λi−3))

and

c(k)i = 0.6339× (λi +λi−1)−0.1697× (λi+1 +λi−2)+0.0458× (λi+2 +λi−3)−0.01× (λi+3 +λi−4).

Using these asymptotic approximations yields a piecewise-quadratic rate function in computing time
that grows linearly with k. More recently, we have solved analytically for all values of k.

4 MAINTAINING NONNEGATIVITY

From Section 3, we know the piecewise-quadratic function τ , which is specified with the 3k coefficients
(ai,bi,ci) for i = 1,2, ...,k. If the function values τ(t) are nonnegative for all times t, then the piecewise-
quadratic function τ can be used as a rate function.

If there are times for which τ(t) are negative, then our solution is to replace τ with τ+, where the ith
interval uses the rate function q+(x) = max{0,a+i x2 +b+i x+c+i } and x is the fractional time within the ith
interval. When convenient, we refer to (a+i ,b

+
i ,c

+
i ) as the updated values of (ai,bi,ci).
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4.1 Single-interval updating

Our objective is to choose updated coefficients to maintain each interval’s integral with minimal disturbance
of continuity and first derivatives. Fortunately, we can think of each interval separately, at least for now. And
we only need to consider intervals for which some rates are negative for its quadratic-function coefficients
(a,b,c). For the interval of interest, the left- and right-endpoint rates are q0 = c and q1 = a+b+ c.

In addition, define g0 and g1 to be the first-derivative values at the left and right endpoints. Before
updating, first derivatives are continuous across intervals. But after updating, the first-derivative values
might not match those of the adjacent intervals. When these first-derivative values differ between the
interval of interest and the adjacent interval, the value should be taken from the adjacent interval.

We need to consider four cases: (1) both q0 and q1 negative, (2) only q0 negative, (3) only q1 negative,
and (4) both q0 and q1 nonnegative. For every case, we maintain the integral condition. Therefore, for each
case we need to decide which two other conditions to maintain. For Case 4, continuity at both end points is
paramount, so the updated coefficients (a+,b+,c+) are chosen to satisfy c+ = q0 and a++b++c+ = q1. For
Case 3, maintaining the negative right-endpoint rate is unimportant, so the updated coefficients are chosen to
maintain the left-endpoint’s function value and first derivative; that is, c+ = q0 and b+ = g0. Analogously,
for Case 2 maintaining the negative left-endpoint rate is unimportant, so the updated coefficients are
chosen to maintain the right-endpoint’s function value and first derivative; that is, a++b++ c+ = q1 and
2a++b+ = g1. Because both endpoint rates are negative, conditions for Case 1 are less obvious; in light
of the lack of important conditions, we choose to maintain continuity, leading to the Case 4 update.

rate
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Figure 1: Plots of the original quadratic and max functions for the four cases

Figure 1 illustrates the four cases in Subfigures (a) to (d). In each subfigure, the original quadratic
function is plotted as the dashed curve and the updated max function is plotted as the solid curve. For Case
1, shown in Figure 1(a), the original quadratic function is −42x2 +42x−4 and the updated max function
is max{0,−39.3641x2 +39.3641x−4}. For Case 2, shown in Figure 1(b), the original quadratic function
is −12x2 +16x−2 and the updated max function is max{0,−12.6757x2 +17.3513x−2.6757}. For Case
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3, shown in Figure 1(c), the original quadratic function is 21x2−32x+10 and the updated max function
is max{0,−145.5505x2−32x+10}. For Case 4, shown in Figure 1(d), the original quadratic function is
18x2−18x+4 and the updated max function is max{0,19.4574x2−19.4574x+4}. In Cases 1, 2, and 4,
the difference between the values of a and a+ is small. Case 3, however, is interesting in that the values
differ greatly; in fact, the signs of a and a+ differ so the original quadratic function is convex but the
updated max function is concave.

We solve for the updated coefficients (a+,b+,c+) using the secant method (Conte and deBoor 1980).
The one-dimensional search seeks the value of a+ that returns the specified integral value λ . The search is
one dimensional because (for every case) specifying a value for a+ implies the values of b+ and c+. The
search uses a as the initial guess. Practical convergence requires only a few iterations.

4.2 Linking multiple intervals

The single-interval coefficient updating of Section 4.1 never changes nonnegative endpoint rates, so continuity
of the rate function τ+ is unaffected. Nevertheless, some care must be taken about the order of updating,
because in Case 4 the values of the endpoint first derivatives g0 and g1 change. To maintain first-derivative
continuity, first update Case 4 intervals, then Case 2 and 3 intervals, and finally Case 1 intervals.

5 NUMERICAL EXAMPLES

We use four examples to illustrate piecewise-quadratic rate-functions across multiple intervals. The first
example uses real-world call-center data, where negativity is not an issue, from Nicol and Leemis (2014a).
For the other three examples, we intentionally create extreme cases with negative rates in the original fitted
piecewise-quadratic function. For all four examples, we compare the piecewise-quadratic max rate function
with I-SMOOTH after seven iterations, which results in essentially the asymptotic I-SMOOTH function.

Each example is illustrated in a figure, with three subfigures showing (a) the given rates, (b) the
fitted max function (and, if different, the original piecewise-quadratic function), and (c) or (d) the fitted
piecewise-constant rate function computed via I-SMOOTH, respectively. For Example 1 only, Figure 2(c)
also shows the fitted piecewise-linear rate function via Algorithm 2 in Nicol and Leemis (2014a).

In Example 1, the call-center data from Nicol and Leemis (2014a), the thirteen rates are λ1 = 68.6, λ2 =
126.0, λ3 = 140.2, λ4 = 139.4, λ5 = 125.2, λ6 = 115.0, λ7 = 126.8, λ8 = 140.2, λ9 = 140.0, λ10 = 119.4,
λ11 = 100.6, λ12 = 70.4, and λ13 = 70.2, as plotted in Subfigure 2(a). Subfigures 2 (b) to (d) show the
fitted piecewise-quadratic, piecewise-linear from Algorithm 2 of Nicol and Leemis (2014), and I-SMOOTH
(after seven iterations, so 13×27 = 1664 intervals) piecewise-constant rate functions, respectively.

Maybe the most surprising observation is the similarity between the piecewise-quadratic and I-SMOOTH
rate functions. Differences are quite minor, such as in the first two peak rates around time 2 and time 4.
Although not shown here, after the first two or three iterations, the I-SMOOTH visual results change little.

Example 2, based on the six rates 12, 1, 0.2, 1, 11, and 1, is illustrated in Figure 3. The substantial
variation in the rates, with some being close to zero, forces negative values in the fitted piecewise-quadratic
function. As in Example 1, subfigures (a), (b), and (c) show the given rates, the piecewise-quadratic rates
and the I-SMOOTH (after seven iterations). Subfigure (b), however, now shows two functions, both the
original piecewise-quadratic function (dashed curve), which ignores negativity, and the updated rate function
(solid curve), which is the greater of zero and the updated quadratic function. Subfigure (b) shows that the
updated quadratics are lower than the original quadratics, which occurs because taking the maximum of
zero and the original quadratic always increases the integral.

Example 2 has been constructed to illustrate all four cases of Section 4.1. In particular, intervals 1
through 6 illustrate cases 0, 3, 1, 2, 0, 4 respectively. Here, we have used Case 0 to refer to intervals with
no negative rates and therefore no updated rate function. Despite negativity being a dominant issue in this
example, the differences between values of ai and a+i are not great.
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Figure 2: Example 1. Based on the call-center data from Nicol and Leemis (2014a), plots of the original
rates, piecewise-quadratic rates, piecewise-linear rates from Nicol and Leemis (2014a), and I-SMOOTH
(after seven iterations) piecewise-constant rates in subfigures (a) to (d), respectively.

Examples 3 and 4, also compare I-SMOOTH to taking the maximum of zero and a piecewise-quadratic
function. Figures 4 and 5 are the analogous to Example 2. The resulting rate functions again are similar.
In Example 3, however, the max function spreads the nonnegative rates over a longer time interval. The
reverse is true in Example 4.

6 POISSON PROCESS GENERATION

Piecewise-quadratic rate functions have the disadvantage, compared to piecewise-linear or piecewise-
constant rate functions, that random-variate generation is more complicated and slower. If thinning is used
then the penalty in complication and speed is minimal. To use the inverse transformation of the cumulative
rate function, however, involves inverting a cubic function.

We state here the inverse-transformation logic to generate the next time, t∗, given the previous time,
tp. In general, given any nonnegative Poisson rate function τ and time tp, the unique time t∗ of the next
event satisfies

∫ t∗
tp

τ(t)dt = y, where y is a mean-one independent exponential random variate. Klein and
Roberts (1984) state this approach for piecewise-linear rate functions.

In the logic below, we specialize the inverse-cdf algorithm to generate, given the previous-event time
tp, the next-event time t∗ from the cyclic piecewise-quadratic rate function τ(t,a,b,c).

If there are negative rates, the rate function becomes τ+(t,a+,b+,c+) = max{0,a+i x2 + b+i x+ c+i }.
When considering τ+ rather than τ , the primary difficulty remains the same: a cubic function needs to be
inverted. The integral of τ is piecewise cubic. In Step 5 below, the closed-form inversion logic (Abramowitz
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Figure 3: Example 2. Given the six rates 12, 1, 0.2, 1, 11, and 1, plots of (a) the original rates, (b) the
piecewise-quadratic and corresponding max with zero, and (c) I-SMOOTH (after seven iterations) rates.

and Stegun, 1972, page 17) is embedded in the function cubic0. Because rates are nonnegative, there is
a unique positive real root. Here we ignore negativity, which would require additional bookkeeping.

Given: The previous time, tp, and the rate-function parameters (ai,bi,ci) for i = 1,2, . . . ,k.
Generate: The next time, t∗.
Logic:

1. Generate an exponential random variate, y, with mean one.
(a) Generate an independent U(0,1) random number, u.
(b) Set y =− ln(1−u).

2. Compute the location, within the cycle, of the previous time, tp.
(a) The number of previous cycles: j = btp/kc.
(b) The interval number: i = max{1,dtp− j× ke}.
(c) The previous time within its interval: x = tp− j× k− (i−1).

3. Compute, for interval i, the rate integral and the integrals to the left
of and right of tp.
(a) s = ai/3+bi/2+ ci
(b) sl = x× (x× (x× (ai/3)+(bi/2))+ ci)
(c) sr = s− sl

4. Search for the interval i that contains the next event time, t∗.
If y≤ sr then

y = sl + y
Else
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(a) s = sr
(b) While y > s

i. Compute remaining exponential area: y = y− s.
ii. Move to the next interval: i = i+1. If i > k then j = j+1, i = 1.

iii. Compute the area of interval i: s = ai/3+bi/2+ ci.
EndWhile

EndIf
5. Solve for time x in interval i; return the corresponding event time t∗.

(a) call cubic0(ai,bi,ci,y,x)
(b) t∗ = j× k+(i−1)+ x
(c) return t∗

7 DISCUSSION

We model nonhomogeneous Poisson rate functions using the maximum of zero and a piecewise-quadratic
function. This suggestion provides an alternative, or a post processor, to the piecewise-constant rate function
obtained with the authors’ previous algorithm I-SMOOTH. I-SMOOTH has the advantage of minimizing a
stated objective function, but the disadvantage of doubling the number of intervals, and therefore doubling
the number of coefficients, at each iteration. In our examples, the obtained rate functions are similar.
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APPENDIX: FITTING WITH GIVEN ENDPOINT RATES

Another approach to fitting a piecewise-quadratic function is to provide desirable end-point rates between
all adjacent intervals. Various heuristics for such values are reasonable. For example, Nicol and Leemis
(2014a) use the average of the adjacent rates. Or maybe the asymptotic I-SMOOTH rates could be found.

Assume that the desirable end-points rates are known; call them τ1,τ2, . . . ,τk = τ0. For interval i, our
goal is to fit a quadratic function q(t) = ait2+bit +ci to satisfy three conditions: q(i−1) = τi−1, q(i) = τi,
and

∫ i
i−1 q(t)dt = λi. Fitting is easy because the quadratic coefficients (ai,bi,ci) are independent of other

intervals’ coefficient values.
Lemma 1 provides the coefficients for x in the unit interval.

Lemma 1 The unique quadratic function q(x) = ax2+bx+c that satisfies
∫ 1

0 q(x)dx=α , q(0) = β , q(1) = γ

is a = 3[β + γ−2α], b = 2[3α−2β − γ] and c = β .
To apply Lemma 1 to interval i, let x = t− i+ 1, the fractional part of time t. Then we fit q(x) =

aix2 +bix+ ci to satisfy q(0) = τi−1, q(1) = τi, and
∫ 1

0 q(x)dx = λi.

Result 1 For interval i, the unique quadratic function that satisfies q(0) = τi−1, q(1) = τi, and
∫ 1

0 q(x)dx = λi
is ci = τi−1, bi = 2[3λi− τi−2τi−1], and ai = 3[τi−1 + τi−2λi].
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Figure 4: Example 3. The original rates (2, 2, 10, 50, 10) and fitted rate functions by the piecewise-quadratic
and I-SMOOTH (after seven iterations) methods in subfigures (a) to (c), respectively.
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Figure 5: Example 4. The original rates (2,2,1,100,0.5) and fitted rate functions by the piecewise-quadratic
and I-SMOOTH (after seven iterations) methods in subfigures (a) to (c), respectively.

497


