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ABSTRACT

A key challenge for an efficient splitting technique is defining the importance function. If the rare event set
consists of multiple separated subsets this challenge becomes bigger since the most likely path to the rare
event set may be very different from the most likely path to an intermediate level. We propose to mitigate
this problem of path deviation by estimating the subset probabilities separately using a modified splitting
technique. We compare the proposed separated splitting technique with a standard splitting technique by
estimating the probability of entering either of two separated intervals on the real line. The squared relative
error of the estimator is shown to be significantly higher when using standard splitting than when using
separated splitting. We show that this difference increases if the rare event probability becomes smaller,
illustrating the advantage of the separated splitting technique.

1 INTRODUCTION

Efficient estimation of very low probabilities is desired in many application areas like telecommunication
networks and power grid reliability (de Boer 2000; Wang et al. 2011). Monte Carlo simulation is a robust
and popular technique in case the model does not allow an exact derivation, but Crude Monte Carlo may
require prohibitively many samples to be practically feasible. To reduce the computational burden, rare
event simulation techniques have been developed (Rubino and Tuffin 2009), and (importance) splitting is a
well-known variant. A splitting technique aims to reduce the squared relative error by replicating (splitting)
trajectories as soon as the rare event is presumed more likely to occur (L’Ecuyer, Demers, and Tuffin 2006;
Glasserman et al. 1999; Villén-Altamirano and Villén-Altamirano 2006).

The efficiency of a splitting technique depends strongly on the choice of the importance function. The
optimal importance function strictly increases with the probability of reaching the rare event set from the
current state. In this paper we assume no knowledge of this probability except that the underlying Markov
process is (the discretization of) a continuous stochastic process. In a simple case with a one-dimensional
state space and an interval as the rare event set, any importance function that measures the proximity of
the current state to the interval is optimal. In many other cases however, the choice for the importance
function is much more difficult.

For example, a challenge arises when the rare event set is disconnected; that is, it consists of multiple
nonempty, separated subsets. Such a rare event set is plausible in a reliability assessment of a multiple
component system for which various combinations of component behavior may lead to a system failure
(Grainger and Stevenson 1994, Billinton and Li 1994). One example involves the reliability estimation of
an electrical power grid with nodal power injections modeled as stochastic processes (Wadman, Crommelin,
and Frank 2013). Then if at any grid node the injection is very different from that at an adjacent node,
the current through the connection in between may exceed its allowed maximum. Hence there could be
various combinations of power injections leading to the rare event of a grid fault, and they could involve
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opposite extremes of power injections. In case of a disconnected rare event set, an importance function
based on the proximity to the complete rare event set may lead to poor results: the algorithm may replicate
sample paths near a subset that has only little or even negligible contribution to the rare event probability.
Therefore the importance function may be far from optimal as the simulation focuses on areas where the
rare event probability is hardly increased or even decreased.

In this paper we assume that we have a partition of the rare event set into subsets that are (or at least might
be) separated from each other. We propose to estimate the rare event subset probabilities separately. We
use a modified splitting technique to estimate each subset probability, taking care that sample paths hitting
multiple sets are not counted multiple times. Standard splitting framework and notation are introduced
in Section 2. We discuss some properties of the optimal importance function in Section 3. In Section
3.1 we show a one-dimensional problem where the choice for the importance function is clear, and we
describe a technique to calibrate the levels using a pilot run. In Section 3.2, we discuss the challenge of a
disconnected rare event set, and we describe how to estimate each subset probability separately. We present
the numerical results of an experiment in Section 4, after which conclusions are given in Section 5.

2 SETTINGS AND NOTATION

2.1 Rare Event Simulation

We consider the class of rare events where a discrete-time Markov chain {Xt , t ≥ 0} with state space X
enters the rare event set B⊂X before stopping time ζ . We define

τB = inf{t > 0 : Xt ∈ B}

as the first entrance time in B and x0 /∈ B as the initial state. We want to estimate the rare event probability

γ := P(τB < ζ |X0 = x0).

Two typical choices for ζ are a fixed finite time ζ = T and stopping time ζ = τA := inf{t > 0 : ∃ 0≤ s <
t s.t. Xs /∈ A and Xt ∈ A}, the first time the chain reenters A, where A ⊂ X is some set that contains x0.
The Crude Monte Carlo (CMC) estimator

γ̃n :=
1
n

n

∑
i=1

1{τB<ζ in sample i}

for γ is unbiased but its squared relative error

SRE(γ̃n) :=
Var γ̃n

γ2 =
γ(1− γ)

γ2n
=

1− γ

γn
(1)

diverges to infinity as O(1/γ) when γ → 0. Therefore, to estimate a very small probability using CMC
simulation, one will need a number of samples that may be computationally too intensive in practice.

2.2 Importance Splitting

Any splitting technique starts by defining an importance function h : X 7→ R that assigns an importance
value to each chain state. We assume that A and B are determined in terms of this importance function:

A = {x ∈ X : h(x)≤ 0} and B = {x ∈ X : h(x)≥ 1}.

The interval [0,1] is divided into m subintervals with thresholds 0 = l0 < l1 < · · · < lm = 1. We define
Tk = inf{t > 0 : h(Xt)≥ lk} as the first time of hitting the k-th level and Dk = {Tk < ζ} as the event that
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the k-th level is hit during [0,ζ ]. Obviously, P(D0) = 1, and P(Dm) = γ is the value of interest. As
Dm ⊂ Dm−1 ⊂ ·· · ⊂ D0, we decompose

γ =
m

∏
k=1

P(Dk|Dk−1)

in m conditional probabilities pk := P(Dk|Dk−1), which we will estimate separately. Generating independent
sample paths from the conditional distribution of the entrance state (Tk−1,XTk−1) given Dk−1 would give
us an estimate for pk. However, as we do not know this distribution for levels k > 1, we use its empirical
distribution, obtained from samples of the previous level. In this way, we proceed recursively, and at each
level k we estimate pk by the proportion p̂k of sample paths for which Dk occurs (see Figure 1). Then the
product

γ̂ :=
m

∏
k=1

p̂k

is an unbiased estimator for γ for several variants of the splitting technique, for example Fixed Splitting,
Fixed Effort and Fixed Number of Successes. Proofs that the estimator is unbiased for these three variants
can be found in Dean and Dupuis (2009), Del Moral and Garnier (2005) and Amrein and Künsch (2011),
respectively. Fixed Splitting determines the number of splittings per level hit in advance. A disadvantage of
this technique is that, especially when the number of levels and the thresholds are far from optimally chosen,
paths may hit the next level many times or never. The former situation results in a high computational
burden, the latter situation in a useless estimate γ̂ = 0. Fixed Effort attempts to overcome these issues by
fixing the total number of samples per level. Unfortunately, as the realized number of hits may differ from
the expected number of hits, the same issues of path explosion and extinction, although to a lesser extent,
may persist. Fixed Number of Successes (FNS) fixes the number of hits rk for all levels k, repeating the
simulation at one level until rk hits are observed. This technique avoids the issues of path explosion and
extinction by adjusting the computational effort. We use the FNS splitting technique in the rest of this
paper.
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Figure 1: A minimal example of a splitting simulation with p̂1 = 1, p̂2 = p̂3 = 1/2.
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3 FINDING A SUITABLE IMPORTANCE FUNCTION

Finding a suitable importance function is crucial to reduce the variance of the splitting estimator (Garvels
2000, L’Ecuyer, Demers, and Tuffin 2006). The importance function should ‘reward good behavior’ by
splitting trajectories that are more likely to hit the rare event set. Glasserman et al. (1998) show that the
levels should be chosen in a way consistent with the most likely path to the rare event set. Ideally, this path
should coincide with the most likely path to any intermediate level. In case ζ = τA is a stopping time as
defined in Section 2.1, Garvels, Van Ommeren, and Kroese (2002) propose to use the importance function

g(h∗(x)), (2)

with g : [0,1] 7→ R some strictly increasing function and

h∗(x) := P(τB < ζ |X0 = x). (3)

As knowing h∗(x) would defeat the point of using simulation, the lesson is to find an importance function
that is close to (2). Some results on the efficiency of splitting can be derived under the assumption that
the probability of hitting the next level does not depend on the current entrance state

P
(
Dk|Dk−1,(Tk−1,XTk−1)

)
= pk ∀ (Tk−1,XTk−1). (4)

Under this assumption and using the optimal choice for m and pk Amrein and Künsch (2011) show that
the squared relative error of the FNS estimator is proportional to

SRE(γ̂) ∝
(logγ)2

n
.

Hence the SRE(γ̂) diverges as O((logγ)2) when γ→ 0. This squared logarithmic divergence rate is slower
than the divergence rate of the CMC squared relative error in (1). Splitting estimators outperfom the CMC
estimator in this sense. Furthermore, under assumption (4) the authors show that p̂1, . . . , p̂m are independent
and derive the bound

SRE(γ̂)≤−1+
m

∏
k=1

rk−1
rk−2

(5)

for the squared relative error of the FNS splitting estimator. That is, the accuracy of the estimator can be
controlled by choosing the number of hits rk sufficiently large for all k. In Section 4 we will check if the
simulation results of an experiment fulfill bound (5). As the validity of this bound is a necessary condition
for (4) to hold, this check will serve as a test for the quality of the chosen importance function.

3.1 A Simple Case with a Connected Rare Event Set

Consider the one-dimensional case X = R, Xt the discretization of a continuous stochastic process and
B = [b,∞) an interval for some b > x0. Then γ = P(τB < ζ |X0 = x0) is a barrier crossing probability and it
is fair to assume that P(τB < ζ |X0 = x) increases in x as long as x < b, since for the continuous counterpart
of Xt this is certainly true. Therefore, we may assume that the normalized proximity function

hp(x) := 1− (b− x)/(b− x0) (6)

is of the form (2) even though g and h∗ are not explicitly known. Stated in terms of Glasserman et al.
(1998), the most likely path to the rare event set will automatically coincide with the most likely path to
any intermediate level in this simple case.
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The remaining challenge is to find a suitable partition of the interval [0,1] into level thresholds. Amrein
and Künsch (2011) propose a pilot run to obtain a rough idea of the optimal number and height of the
thresholds for a subsequent final run. That is, they suggest a splitting simulation with a large number of
levels and a moderate number of level hits such that the computational intensity is small compared to
that of the final run. The authors showed that the optimal value for pk in terms of variance reduction is
popt := 0.2032. Therefore, a pilot estimate of pk close to one suggests to merge level k with a adjacent
level, whereas a pilot estimate close to zero suggests to divide the level into multiple levels.

Along these lines we now describe such a calibration procedure in more detail. That is, we search for
m, and for all k = 1, . . . ,m−1 we search for the threshold lk such that

p(lk) = pm−k
opt ,

where p(l) is the conditional probability of the rare event given that the importance function has exceeded l.
Assuming no knowledge of h∗, we perform a pilot run using many levels, say 20, and equidistant thresholds
lpilot
k = k/20. As this will yield information on p(l) only at the pilot threshold values l = lpilot

i , we assume
a power law relationship for p(l) between each pair of subsequent pilot thresholds:

p(α∆l) = p(∆l)α , (7)

for α > 0. For example, if the top level probability p̂pilot
m = p2

opt, then (7) suggests to set the penultimate
threshold lm−1 twice as close to the top as the penultimate pilot threshold lpilot

19 . Hence, we approximate
p(l) by the log-linear interpolation p∗(l) of the estimators

20

∏
i=k+1

p̂pilot
i

for p
(

lpilot
k

)
, as shown in Figure 2. Then we simply solve the obtained piecewise linear equation

log p∗(lk) = (m− k) log popt,

for lk. The number of levels is automatically found by computing lm−1, lm−2, . . . , li where i is the last index
such that li > 0. After re indexing we have found the levels 0 = l0 < · · ·< lm = 1 that we use for the final
run.

lpilot
18 lpilot

19
1

p̂pilot
m−1 p̂pilot

m

p̂pilot
m

1

l

p∗
(l
)

lm−3 lm−2 lm−1

p3
opt

p2
opt

popt

1

Figure 2: An updated set of thresholds l0, . . . , lm is found by a log-linear interpolation of the estimates of
reaching the rare event set from the pilot thresholds.
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3.2 A Disconnected Rare Event Set

Now we consider a possibly multidimensional state space X , and a rare event set B that can be partitioned
into two nonempty, separated subsets B1 and B2. By an induction argument the rest of this section can be
generalized to a partition into more than two subsets. As an extension of (6), an intuitive choice for the
importance function is the maximum

h12(x) := max
i=1,2

hi(x) (8)

of the normalized proximities of x to each subset:

hi(x) := 1− d(x,Bi)

d(x0,Bi)
. (9)

Here d(v,V ) denotes the distance between point v ∈ X and set V ⊂ X . However, as we assume no prior
knowledge of h∗(x), it could be that the most likely path to an intermediate level approaches B2, whereas
the most likely path to B does not and instead goes directly to B1. If Xt is the discrete counterpart of a
continuous stochastic process, we may expect that this deviation between the most likely paths to different
level sets becomes smaller as the distance between B1 and B2 goes to zero.

Therefore, we propose not to estimate the rare event probability γ = P(τB < ζ |X0 = x0) using h12 in
(8) for disconnected B. Instead, we write γ = γ1 + γ2 with

γ1 := P(τB1 < ζ |X0 = x0),

γ2 := P(τB2 < ζ ∪ τB1 ≥ ζ |X0 = x0).

We can interpret this as the rare event being partitioned into a part where B1 is hit in due time (and maybe
B2 as well), and a part where B2 is hit in due time while B1 is never hit during [0,ζ ]. We propose to
separately estimate γ1 and γ2 using two independent splitting simulations. To obtain an unbiased estimator
for γ1 we simply choose h1 in (9) as importance function (see Figure 3). To obtain an unbiased estimator for
γ2 we choose h2 in (9) as importance function and a modified splitting framework rewarding sample paths
approaching B2 while killing those that hit B1 (see Figure 4). We call these two runs together the separated
splitting technique, as opposed to the single standard splitting technique using importance function h12 in
(8).

More precisely, to estimate γ2 we start from a standard splitting setup for P(τB2 < ζ |X0 = x0) as
described in subsection 2.2. We set lk, Tk and Dk for all k as before, but we modify the levels by defining

D̄k := Dk∩{τB1 ≥ Tk} ∀ k = 0, . . . ,m,

D̄m+1 := Dm∩{τB1 ≥ ζ}.

So to enter level k, we additionally require the chain not to have entered B1 in the mean time. Further, the
occurrence of the additional level D̄m+1 requires that after entering B2 in due time, the chain should not
have entered B1 during the remaining time domain [Tm,ζ ]. Note that D̄m+1 is exactly the rare event, and
since again D̄0 ⊃ D̄1 ⊃ ·· · ⊃ D̄m ⊃ D̄m+1 we can write

γ2 = P(D̄m+1) =
m+1

∏
k=1

P(D̄k|D̄k−1).

We may now resume the standard splitting technique as described in subsection 2.2 using Dk = D̄k for all
k. Therefore, an unbiased estimator for γ2 is given by

γ̂2 :=
m+1

∏
k=1

p̂k,
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B1

B2

x0

Figure 3: Illustration of splitting sample paths
to estimate γ1 = P(τB1 < ζ |X0 = x0), ignoring
B2. Squares correspond to subpaths for which
the rare event does occur, triangles correspond
to subpaths for which it does not.

B2

B1

x0

Figure 4: Illustration of splitting sample paths
to estimate γ2 = P(τB2 < ζ ∪ τB1 ≥ ζ |X0 = x0),
killing paths that enter B1. Squares correspond
to subpaths for which the rare event does occur,
triangles correspond to subpaths for which it does
not.

where for all levels k p̂k is the proportion of sample paths for which D̄k occurs. We conclude that γ̂1+ γ̂2 is
an unbiased estimator for γ . Furthermore, if assumption (4) holds we can compute bounds for the squared
relative errors SRE(γ̂1) and SRE(γ̂2) using (5). Then a bound for γ̂1 + γ̂2 follows immediately, since

SRE(γ̂1 + γ̂2) =
Var γ̂1 +Var γ̂2

(γ1 + γ2)2 ≤ Var γ̂1

γ2
1

+
Var γ̂2

γ2
2

= SRE(γ̂1)+SRE(γ̂2). (10)

We used independence of γ̂1 and γ̂2 in the first equality.

4 EXPERIMENT

We compare the proposed separated splitting technique using importance functions h1 and h2 in (9) with the
standard splitting technique using importance function h12 in (8). The state spaceX =R is one-dimensional
and the rare event set B = B1∪B2 consists of two separate intervals B1 = [b1,∞) and B2 = (−∞,b2], b1 > b2.
We assume that {Xt , t ≥ 0} is a modification of an Ornstein-Uhlenbeck process, where we change the sign
of the long-term mean whenever the process passes zero:

X(t) = θ(µ sgn(Xt)−Xt)dt +σdW (t). (11)

The drift of this stochastic differential equation corresponds to the potential

V (x) =−
∫

θ(µ sgn(x)− x)dx =
θ

2
(x−µ sgn(x))2. (12)

Figure 5 shows that the double well potential (12) is just the original Ornstein-Uhlenbeck potential, mirrored
in the y-axis. We substitute µ sgn(Xt) for µ in the exact solution of the Ornstein-Uhlenbeck process (Gillespie
1996) to obtain a discretization of (11):

Xi+1 = Xie−θ∆ +µ sgn(Xi)
(

1− e−θ∆

)
+σ

√
1− e−2θ∆

2θ
Zi,
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b2 x0 =−µ 0 µ b1
x

V
(x
)

Figure 5: The double well potential (12) of the modified OU process in (11).

with Xi = X(i∆) with time step size ∆, and Zi ∼ N(0,1) i.i.d. standard normal for all i. We choose
parameter values θ = σ = 1, µ =−x0 = 2, b1 = 4, b2 =−6, ∆ = 0.001 and a deterministic stopping time
ζ = T = 10. We will estimate the rare event probability γ := P(τB < T |X0 = x0). Obviously γ = γ1 + γ2,
with γ1 := P(τB1 < T |X0 = x0) and γ2 = P(τB2 < T ∪ τB1 ≥ T |X0 = x0). Figure 5 shows that the process
starts in the left well and initially has equal probability of going right or left. To arrive at B1 the process
should overcome the potential barrier V (0) = 2 at x = 0. In spite of this barrier, CMC estimates in Table
1 show that γ1� γ2, relating to the fact that V (b1)<V (b2). We regard these CMC estimates as reference
values for splitting estimates.

We use both the standard splitting technique and the separated splitting technique to estimate γ . We
choose the levels as described in Section 3.1 and use rk = r = 100 hits per level. The standard splitting
estimator for γ is denoted γ̂12, whereas the separated splitting technique computes estimators γ̂1 for γ1 and
γ̂2 for γ2, yielding γ̂1+ γ̂2 for γ . We investigate both techniques by comparing their estimates with the CMC
estimates. After repeating both simulations 1000 times we check if the squared relative errors SRE(γ̂12),
SRE(γ̂1) and SRE(γ̂2) are indeed bounded by (5), which should hold under assumption (4).

Table 2 shows that the squared relative error SRE(γ̂12) of the standard splitting estimator is more than
twice as high as the bound suggested by (5). This suggests that condition (4) under which this bound is
derived does not hold, that is, hitting the next level does depend on the entrance state. Table 3 confirms
this: more than two third of the first level hits occurred at the left side, whereas hits at the third and fourth
level only occurred by exceeding the right side threshold. So hitting the next level clearly depends on the
side at which paths crossed the previous threshold, i.e. on the entrance state, whereby (4) cannot hold
when using the standard splitting technique.

Separated splitting is not affected by this problem, and indeed the squared relative errors SRE(γ̂1)
and SRE(γ̂2) do fulfill bound (5) in Table 2. Using (10) we find the bound 0.041+ 0.096 = 0.137 for
SRE(γ̂1 + γ̂2). Assuming normality one can show that the implied conservative 95% confidence interval
for γ overlaps with the narrow CMC confidence interval. However, one can show that the conservative
confidence interval implied by the standard splitting technique is a significant underestimation.

Table 1: CMC estimates γ̃n for the subset probabilities, using n = 107 samples.

Probability CMC estimate γ̃n SRE(γ̃n)

γ = γ1 + γ2 3.50×10−3 2.85×10−5

γ1 3.50×10−3 2.85×10−5

γ2 2.50×10−6 4.00×10−2
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We repeat the experiment for higher barriers by increasing µ , i.e. for smaller rare event probabilities.
Table 4 shows that for barrier height V (0) = 2.42, SRE(γ̂12) is 3 times as high as bound (5) suggests.
Table 5 and 6 show that SRE(γ̂12) exceeds the theoretical bound (5) by a factor up to 15 for even higher
barriers. This illustrates that the accuracy of the splitting estimate may be much lower than expected when
one does not assess separated rare event subsets in separated splitting simulations.

Table 2: Standard splitting estimator γ̂12 for γ and separated splitting estimator γ̂1 + γ̂2 for γ . The squared
relative error SRE(γ̂12) exceeds bound (5), whereas SRE(γ̂1) and SRE(γ̂2) do not.

Value SRE(·) Bound for SRE(·)
γ̂12 2.48×10−3 0.069 0.031
γ̂1 3.58×10−3 0.034 0.041
γ̂2 1.52×10−6 0.066 0.096

Table 3: Efficiency loss using standard splitting: at the first level a significant number of successful sample
paths approached the left interval ‘in vain’, since no sample path entered the left interval at the final level.

Level Hits on left side Hits on right side
1 67 (at x =−3.92) 133 (at x = 0.88)
2 68 (at x =−4.78) 192 (at x = 2.17)
3 60 (at x =−5.63) 100 (at x = 3.44)
4 60 (at x =−6).00 100 (at x = 4).00

Table 4: Experiment as in Table 2, but now µ = x0 = 2.2, thus raising the barrier height to V (0) = 2.42,
and b1 = 4.4, b2 = −6.6. The squared relative error SRE(γ̂12) exceeds bound (5), whereas SRE(γ̂1) and
SRE(γ̂2) do not.

Value SRE(·) Bound for SRE(·)
γ̂12 5.28×10−4 0.120 0.041
γ̂1 8.75×10−4 0.043 0.052
γ̂2 6.18×10−8 0.095 0.118

Table 5: Experiment as in Table 2, but now µ = x0 = 2.5, further raising the barrier height to V (0) = 3.125,
and b1 = 5, b2 =−6.5. The squared relative error SRE(γ̂12) exceeds bound (5) by a factor 5.

Value SRE(·) Bound for SRE(·)
γ̂12 2.56×10−5 0.43 0.085
γ̂1 3.91×10−5 0.076 0.074
γ̂2 1.79×10−6 0.071 0.096

Table 6: Experiment as in Table 2, but now µ = x0 = 3, further raising the barrier height to V (0) = 4.5,
and b1 = 6, b2 =−7.2. The squared relative error SRE(γ̂12) exceeds bound (5) by a factor 15.

Value SRE(·) Bound for SRE(·)
γ̂12 3.89×10−7 1.42 0.096
γ̂1 2.16×10−7 0.121 0.107
γ̂2 3.01×10−7 0.078 0.107
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Finally, we should note that SRE(γ̂1) is exceeding its bound as well in these last two experiments,
although only to a moderate extent. To explain this, we point out that bound (5) is based on the product
of the inequality

SRE(p̂k)≤
1

rk−2
(13)

over all levels k, where rk is the number of hits at level k. The simulation results show that every transgression
of the bound by SRE(γ̂1) corresponds to violation of (13) for the level for which Xt has to traverse the
interval [0,µ]. For large µ , the drift −∇V (Xt) of Xt rapidly changes at left side of this interval (see Figure
5). Hence even for a small time step the probability that Xt enters the next level depends sensitively on the
entrance state of the previous level, whereby we cannot assume (4) anymore. Nevertheless, the overshoot
of SRE(γ̂1) is a factor 1.03 and 1.14, respectively, which is small compared to that of SRE(γ̂12) of a factor
5 and 15, respectively.

5 CONCLUSION

Estimating the probability of a rare event set consisting of multiple separated subsets by use of a splitting
technique is challenging since the most likely path to the rare event set may be very different from the most
likely path to an intermediate level. We proposed a separated splitting technique to mitigate the difficulties
posed by this path deviation by estimating the probability of hitting each subset individually. For each
subset, a modified splitting simulation replicates sample paths that approach this subset, while killing those
that enter a subset that is already addressed in a previous simulation.

We compared the separated splitting technique with a standard splitting technique by estimating the
probability of entering either of two separated intervals on the real line. Choosing a stochastic process with
a potential barrier close to one of the intervals, we show that the standard splitting technique replicates
sample paths that approach the subset that is not reached in the end. This efficiency loss — quantified as
the squared relative error of the estimator — is observed to be significantly higher when using standard
splitting than when using separated splitting. This difference is shown to become more severe for smaller
rare event probabilities, illustrating the advantage of the separated splitting technique.
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Amrein, M., and H. R. Künsch. 2011. “A Variant of Importance Splitting for Rare Event Estimation: Fixed
Number of Successes”. ACM Transactions on Modeling and Computer Simulation 21 (2): Article 13.

Billinton, R., and W. Li. 1994. Reliability assessment of electrical power systems using Monte Carlo
methods. Springer.

de Boer, P.-T. 2000. Analysis and efficient simulation of queueing models of telecommunication systems.
Ph. D. thesis.

Dean, T., and P. Dupuis. 2009. “Splitting for rare event simulation: A large deviation approach to design
and analysis”. Stochastic Processes and Their Applications 119 (2): 562–587.

Del Moral, P., and J. Garnier. 2005. “Genealogical particle analysis of rare events”. The Annals of Applied
Probability 15 (4): 2496–2534.

Garvels, M. 2000. The Splitting Method in Rare Event Simulation. Ph. D. thesis, Universiteit Twente.
Garvels, M. J., J.-K. C. Van Ommeren, and D. P. Kroese. 2002. “On the importance function in splitting

simulation”. European Transactions on Telecommunications 13 (4): 363–371.
Gillespie, D. T. 1996. “Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral”.

Physical Review E 54 (2): 2084–2091.
Glasserman, P., P. Heidelberger, P. Shahabuddin, and T. Zajic. 1998. “A large deviations perspective on the

efficiency of multilevel splitting”. IEEE Transactions on Automatic Control 43 (12): 1666–1679.
Glasserman, P., P. Heidelberger, P. Shahabuddin, and T. Zajic. 1999. “Multilevel Splitting for Estimating

Rare Event Probabilities”. Operations Research 47 (4): 585–600.

531



Wadman, Crommelin, and Frank

Grainger, J. J., and W. D. Stevenson. 1994. Power system analysis. McGraw-Hill.
L’Ecuyer, P., V. Demers, and B. Tuffin. 2006. “Splitting for rare-event simulation”. In Proceedings of the

2006 Winter Simulation Conference, edited by L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M.
Nicol, and R. M. Fujimoto, 137–148. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Rubino, G., and B. Tuffin. 2009. Rare event simulation using Monte Carlo methods. John Wiley & Sons.
Villén-Altamirano, M., and J. Villén-Altamirano. 2006. “On the efficiency of RESTART for multidimensional

state systems”. ACM Transactions on Modeling and Computer Simulation 16 (3): 251–279.
Wadman, W., D. Crommelin, and J. Frank. 2013. “Applying a splitting technique to estimate electrical grid

reliability”. In Proceedings of the 2013 Winter Simulation Conference, edited by R. Pasupathy, S.-H.
Kim, A. Tolk, R. Hill, and M. E. Kuhl, 577–588. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Wang, S.-P., A. Chen, C.-W. Liu, C.-H. Chen, and J. Shortle. 2011. “Rare-event splitting simulation for
analysis of power system blackouts”. In Proceedings of the 2011 IEEE Power and Energy Society
General Meeting, Paper 678. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

AUTHOR BIOGRAPHIES

WANDER WADMAN is a PhD student in the Scientific Computing group at CWI Amsterdam. He received
a master’s degree in Applied Mathematics at Delft University of Technology. His PhD topic is the stochastic
modeling of electric power systems, and his research interests include stochastic modeling of dynamical
systems, power flow problems and Monte Carlo methods with a focus on rare event simulation. E-mail:
w.wadman@cwi.nl, homepage: www.cwi.nl/∼wadman/.

DAAN CROMMELIN is leader of the Scientific Computing research group at CWI Amsterdam and a
professor at the Korteweg-de Vries Institute for Mathematics of the University of Amsterdam. He received
his PhD from Utrecht University in 2003 and worked as a postdoc at New York University’s Courant Insti-
tute, before joining CWI in 2006. His research interests include stochastic and computational methods for
multiscale dynamical systems, rare event simulation, statistical inference, applications in atmosphereocean-
climate science and energy networks. E-mail: daan.crommelin@cwi.nl, homepage: www.cwi.nl/∼dtc.

JASON FRANK is professor of Numerical Analysis at Utrecht University. He received his PhD in
numerical analysis from Delft University of Technology. From 2000 to 2013 we was employed by CWI
Amsterdam as researcher and (from 2007) leader of the research group Computational Dynamics. From
2010 to 2013 he held the chair of Numerical Analysis and Dynamical Systems at the University of
Amsterdam. His research addresses geometric numerical methods for partial differential equations, with
applications in geophysical fluid dynamics and nonlinear waves. E-mail: j.e.frank@uu.nl, homepage:
www.staff.science.uu.nl/∼frank011/.

532


