
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

UNIFORMLY EFFICIENT SIMULATION FOR TAIL PROBABILITIES OF GAUSSIAN
RANDOM FIELDS

Gongjun Xu

School of Statistics
University of Minnesota

Minneapolis, MN 55455, USA

ABSTRACT

In this paper, we consider rare-event simulation of the tail probabilities of Gaussian random fields. In
particular, we design importance sampling estimators that are uniformly efficient for a family of Gaussian
random fields with different mean and variance functions.

1 INTRODUCTION

Consider a mean zero Gaussian random field { f (t) : t ∈ T} with unit variance living on a d-dimensional
compact set T ⊂ Rd , that is, for every finite subset of {t1, ..., tn} ⊂ T , ( f (t1), ..., f (tn)) is a mean zero
multivariate Gaussian random vector with identity covariance matrix. Let µ(t) ∈ R and σ(t) ∈ (0,∞) be
(deterministic) continuous functions. We are interested in the probability

wσ ,µ(b) = P
(

sup
t∈T
{σ(t) f (t)+µ(t)}> b

)
, as b→ ∞.

The mean and variance functions µ(t) and σ 2(t) are unspecified and known only to be in certain ranges.
In particular, we assume in this paper that for all t ∈ T , µ(t) ∈ [µl,µu] and σ2(t) ∈ [σ 2

l ,σ
2
u ].

The extremes of Gaussian random fields have wide applications in finance, spatial analysis, physical
oceanography, and many other disciplines (Adler, Müller, and Rozovskiı̆ 1996, Adler, Taylor, and Worsley
2010). Tail probabilities of the extremes have been extensively studied in the literature, with its focus mostly
on the development of approximations and bounds for the suprema (Borell 1975, Tsirelson, Ibragimov,
and Sudakov 1976, Piterbarg 1996, Sun 1993, Azais and Wschebor 2008, Adler and Taylor 2007). Tail
probabilities of other convex functions of Gaussian random process have also been studied. For instance,
Liu (2012) and Liu and Xu (2012b) derived the asymptotic approximations of the tail probabilities of the
exponential integrals of Gaussian random fields; see also Liu and Xu (2013).

Most of the sharp theoretical approximations developed in the literature hold only for constant variance
fields, which also need certain smoothness conditions of the Gaussian random fields (Adler and Taylor
2007, Adler, Blanchet, and Liu 2012). For the case of less smooth fields, the approximations involve
the unknown Pickands’ constants (Piterbarg 1996). Therefore, to evaluate the tail probabilities, rare-event
simulation serves as an appealing alternative from a computational point of view. In particular, the design
and the analysis do not require very sharp approximations of the tail probabilities. Importance sampling
based efficient simulation procedures have been proposed in the literature to estimate the tail probabilities.
Numerical methods for rare-event analysis of the suprema are studied in Adler, Blanchet, and Liu (2008)
and more thoroughly in Adler, Blanchet, and Liu (2012); see also Azaı̈s and Wschebor (2009), Li and Liu
(2013). Simulation study for the exponential integrals of the Gaussian random fields has been studied in
Liu and Xu (2012a), Liu and Xu (2013), Liu and Xu (2014).
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To design asymptotically efficient importance sampling estimator, one needs to construct a change of
measure that is tailored to a specific event and such a measure usually depends on the Gaussian random
fields mean and variance functions. However, in applications, one is often interested in estimating many
probabilities for a certain range of mean and variance parameter values. For instance, portfolio credit
risk management may require the estimation of the tail probabilities of extremes for a family of Gaussian
random fields. These problems motivate our study. We focus on the problem of simultaneous efficient
estimation of wσ ,µ(b) for all possible µ(t) ∈ [µl,µu] and σ2(t) ∈ [σ 2

l ,σ
2
u ].

The remainder of the paper is organized as follows. In Section 2 we introduce some notions of
efficiency and computational complexity under the setting of rare-event simulation. Section 3 provides the
construction of our importance sampling estimator and shows the main properties of our algorithm. Some
numerical simulations are conducted in Section 4 and detailed proofs of our main theorems are given in
Section 5.

2 Efficiency of Rare-event Simulation and Importance Sampling

We first introduce some general notions of rare-event simulations. Given that the tail probability wσ ,µ(b)
converges to zero, it is more meaningful to consider the relative error of a Monte Carlo estimator Lb with
respect to wσ ,µ(b). This is because a trivial estimator L∗b ≡ 0 has an error |L∗b−wσ ,µ(b)|= wσ ,µ(b)→ 0. In
the literature of rare-event simulation, one usually employs the concept of weak efficiency or logarithmic
efficiency as an efficiency criterion (Asmussen and Glynn 2007).
Definition 1 An estimator Lb is said to be weakly efficient or logarithmic efficient in estimating wσ ,µ(b)
if ELb = wσ ,µ(b) and

limsup
b→∞

Var(Lb)

wσ ,µ(b)2−ε
= 0, (1)

for all ε > 0.
Weak efficiency is a popular efficiency criterion in the rare-event simulation (Asmussen and Glynn

2007). Suppose that we want to estimate wσ ,µ(b) with certain relative accuracy, that is, to compute an
estimator Zb such that for some prescribed ε,δ > 0,

P
(∣∣Zb/wσ ,µ(b)−1

∣∣> ε
)
< δ . (2)

If a crude Monte Carlo simulation method is used, then it requires n=O(ε−2δ−1wσ ,µ(b)−1) i.i.d. replicates.
By the Borell-TIS lemma (Lemma 6), we know wσ ,µ(b) = exp{−(1+o(1))b2/(2supt∈T σ(t)2)}. Therefore
n has an exponential rate in b2. Suppose that a weakly efficient estimator of wσ ,µ(b) has been obtained,
denoted by Lb. Let {L( j)

b : j = 1, ...,n} be n i.i.d. copies of Lb. The averaged estimator

Zb =
1
n

n

∑
j=1

L( j)
b

has a relative mean squared error equal to Var1/2(Lb)/n1/2wσ ,µ(b). A direct application of Chebyshev’s
inequality yields

P(|Zb/wσ ,µ(b)−1| ≥ ε)≤ Var(Lb)

nε2w2
σ ,µ(b)

.

Thus, if Lb is a weakly efficient estimator, it suffices to simulate n = o(ε−2δ−1wσ ,µ(b)−ε ′) (for ε ′ > 0)
i.i.d. replicates of Lb to achieve the accuracy in (2). Compared with the crude Monte Carlo simulation,
weakly efficient estimators substantially reduce the computational cost.

534



Xu

To construct weakly efficient estimators, importance sampling is a commonly used method for the
variance reduction. In particular, we have

wσ ,µ(b) = E
[
1(supt∈T {σ(t) f (t)+µ(t)}>b)

]
= EQ

[ dP
dQ

1(supt∈T {σ(t) f (t)+µ(t)}>b)

]
,

where 1(·) denotes the indicator function, Q is a probability measure such that dP/dQ is well defined on the
set {supt∈T{σ(t) f (t)+µ(t)}> b}, and we use E and EQ to denote the expectations under the measures
P and Q, respectively. Then, the random variable defined by

Lσ ,µ,b =
dP
dQ

1(supt∈T {σ(t) f (t)+µ(t)}>b) (3)

is an unbiased estimator of wσ ,µ(b) under the measure Q. To have an efficient estimator, we want to choose
Q(·) to be a good approximation of P∗b (·) := P(·|supt∈T{σ(t) f (t)+µ(t)}> b), the conditional probability
distribution given supt∈T{σ(t) f (t)+µ(t)}> b.

The design of the new measure Q usually depends on the Gaussian random fields mean and variance
functions, µ and σ . As a consequence, the designed measure Q that gives a weakly efficient estimator
Lσ ,µ,b = dP

dQ 1(supt∈T {σ(t) f (t)+µ(t)}>b) for wσ ,µ(b) may not be efficient any more for estimating wσ ′,µ ′(b),
where σ ′(t) and µ ′(t) are two different variance and mean functions. That is, the corresponding importance
sampling estimator based on Q

Lσ ′,µ ′,b :=
dP
dQ

1(supt∈T {σ ′(t) f (t)+µ ′(t)}>b)

may not be a weakly efficient estimator for wσ ′,µ ′(b). See Section 3.1.1 for more details.
In applications, one is often interested in estimating many probabilities for a certain range of mean

and variance parameter values. This motivates us to construct an estimator L that is weakly efficient for
a family of functions µ and σ . In particular, in this paper we consider µ and σ satisfying the following
condition:

C1. Functions µ and σ are differentiable on the compact set T . For all t ∈ T , µ(t) ∈ [µl,µu] and
σ2(t) ∈ [σ 2

l ,σ
2
u ].

We introduce the following uniform efficiency criterion.
Definition 2 For all µ and σ satisfying condition C1, we say

Lσ ,µ,b =
dP
dQ

1(supt∈T {σ(t) f (t)+µ(t)}>b)

is uniformly weakly efficient if ELσ ,µ,b = wσ ,µ(b) and

limsup
b→∞

Var(Lσ ,µ,b)

wσ ,µ(b)2−ε
= 0 for all ε > 0 (4)

uniformly with respect to µ and σ .
In the literature, a similar uniform efficiency definition has been proposed in Glasserman and Juneja

(2008) to design an algorithm that is asymptotically efficient uniformly for a family of probability sets when
estimating the tail probabilities of sums of light tailed random variables. The random variable parameters
are assumed known in their case.
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3 Uniform Efficient Simulation Algorithm

3.1 Discrete case

We start with the case when T contains finite points. We assume T := {t1, · · · , tM}. We illustrate in Section
3.1.1 that a weakly efficient estimator may not be uniformly efficient. We then propose our procedure in
Section 3.1.2.

3.1.1 A non-uniformly efficient estimator

For known µ and σ , Adler, Blanchet, and Liu (2012) proposed the following simulation procedure.

1. Simulate a random variable τ ∈ {t1, · · · , tM} according to the following probability measure:

P(τb = ti) =
P(σ(ti) f (ti)+µ(ti)> b)

∑
M
j=1 P(σ(t j) f (t j)+µ(t j)> b)

. (5)

2. Given the realized τ , simulate f (τ) conditional on σ(τ) f (τ)+µ(τ)> b.
3. Given (τ, f (τ)), simulate the rest { f (t) : t 6= τ, t ∈ T} from the original conditional distribution

under P.

Let Q∗ be the measure with respect to the above sampling procedure. We have

dQ∗

dP
=

∑
M
i=1 I(σ(ti) f (ti)+µ(ti)>b)

∑
M
i=1 P(σ(ti) f (ti)+µ(ti)> b)

,

Adler, Blanchet, and Liu (2012) shows that Lσ ,µ,b =
dP

dQ∗ 1(supt∈T {σ(t) f (t)+µ(t)}>b) is an efficient estimator for
wσ ,µ(b).

For different mean and variance functions, µ ′ and σ ′, we show that

Lσ ′,µ ′,b :=
dP

dQ∗
1(supt∈T {σ ′(t) f (t)+µ ′(t)}>b)

may not be an weakly efficient estimator for wσ ′,µ ′(b). For simplicity we first consider a special case
when µ ′ = µ and the variance function σ ′ satisfying σ ′(t)≤ σ(t) and maxti∈T σ ′(ti)< maxti∈T σ(ti). Then,
under measure Q∗, if maxti∈T σ ′(ti) f (ti)+µ(ti)> b, σ(ti) f (ti)+µ(ti)> b always happens and the change
of measure is well defined. We have

EQ

[(
dP

dQ∗

)2

;maxti∈T σ
′(ti) f (ti)+µ(ti)> b

]

= EQ

(∑
M
i=1 P(σ(ti) f (ti)+µ(ti)> b)

∑
M
i=1 I(σ(ti) f (ti)+µ(ti)>b)

)2

;maxti∈T σ
′(ti) f (ti)+µ(ti)> b


= E

[
∑

M
i=1 P(σ(ti) f (ti)+µ(ti)> b)

∑
M
i=1 I(σ(ti) f (ti)+µ(ti)>b)

;maxti∈T σ
′(ti) f (ti)+µ(ti)> b

]

≥ 1
M

(
M

∑
i=1

P(σ(ti) f (ti)+µ(ti)> b)

)
×wσ ′,µ(b)

≥ 1
M

max
ti∈T

P(σ(ti) f (ti)+µ(ti)> b)×wσ ′,µ(b)

= exp
{
−(1+o(1))

b2

2maxti∈T σ(ti)2 − (1+o(1))
b2

2maxti∈T σ ′(ti)2

}
,
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where we used the approximation that

wσ ′,µ(b) = exp
{
−(1+o(1))

b2

2maxti∈T σ ′(ti)2

}
.

Then under the assumption that maxti∈T σ ′(ti)< maxti∈T σ(ti), we know for small ε ,

EQ
[(

dP
dQ∗

)2
;maxti∈T σ ′(ti) f (ti)+µ(ti)> b

]
wσ ′,µ(b)2−ε

→ ∞.

Therefore, the estimator Lσ ′,µ,b =
dP

dQ∗ 1(supt∈T {σ ′(t) f (t)+µ(t)}>b) is not weakly efficient for estimating wσ ′,µ(b).
On the other hand, for the case when maxti∈T σ ′(ti) > maxti∈T σ(ti), we can see that the change of

measure may not be well defined since if maxti∈T σ ′(ti) f (ti)+µ(ti)> b, maxti∈T σ(ti) f (ti)+µ(ti)> b may
not happen. Since for variance function such that σ(t) ∈ [σl,σu],∀t ∈ T , we can always construct σ ′

satisfying one of the two cases consider above. Then we have Lσ ′,µ ′,b := dP
dQ∗ 1(supt∈T {σ ′(t) f (t)+µ ′(t)}>b) is not

an uniformly efficient estimator for all mean and variance functions.

3.1.2 Proposed method

In this section we propose a new change of measure which gives an uniformly efficient estimator. We
describe the new measure Q in two ways. First, we specify the simulations of f from Q and then provide
its Radon-Nikodym derivative with respect to P. Under the measure Q, f (t) is generated according to the
following algorithm:
Algorithm 1 For the discrete set T = {t1, · · · , tM}, the algorithm is as follows:

1. Simulate a random variable ς with respect to some positive continuous density function g on
[σl,σu +δb]. Here we take δb = ab−1 for some a > 0.

2. Simulate a random variable τ uniformly over T = {t1, · · · , tM}.
3. Given the realized ς and τ , simulate f (τ) conditional on ς f (τ)+ν > b. Here ν is chosen as µu.
4. Given (τ, f (τ)), simulate the Gaussian process { f (t) : t 6= τ, t ∈ T} from the original conditional

distribution under P.

For the measure Q defined above, it is not hard to verify that P and Q are mutually absolutely continuous
with the Radon-Nikodym derivative being

dQ
dP

=
∫

σu+δb

σl

∑
M
i=1 I(ς f (ti)+ν > b)

MP(ς f (ti)+ν > b)
g(ς)dς .

This gives importance sampling estimator

Lσ ,µ,N(b) =
(∫

σu+δb

σl

∑
M
i=1 I(ς f (ti)+ν > b)

MP(ς f (ti)+ν > b)
g(ς)dς

)−1

I(supi:ti∈TN
σ(ti) f (ti)+µ(ti)>b).

We show the efficiency of the proposed importance sampling procedure. Note that under Q, if
maxti∈T σ(ti) f (ti)+ µ(ti) > b, ς f (ti)+ν > b holds for all ς > maxti∈T σ(ti) and therefore the change of
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measure is well defined. For all µ and σ satisfying C1, we have

EQ[Lσ ,µ,N(b)2]

= EQ

[(∫
σu+δb

σl

∑
M
i=1 I(ς f (ti)+ν > b)

MP(ς f (ti)+ν > b)
g(ς)dς

)−2

;maxti∈T σ(ti) f (ti)+µ(ti)> b

]

≤ M2EQ

[(∫ maxti∈T σ(ti)+δb

maxti∈T σ(ti)

g(ς)
P(ς f (ti)+ν > b)

dς

)−2

;maxti∈T σ(ti) f (ti)+µ(ti)> b

]

= O(1)M2EQ

[(∫ maxti∈T σ(ti)+δb

maxti∈T σ(ti)
be

(b−ν)2

2ς2 g(ς)dς

)−2

;maxti∈T σ(ti) f (ti)+µ(ti)> b

]

= O(1)M2e
−(1+o(1)) (b−ν)2

maxti∈T σ(ti)2 Q(maxti∈T σ(ti) f (ti)+µ(ti)> b)

= O(1)M2e
−(1+o(1)) (b−ν)2

maxti∈T σ(ti)2 .

Therefore, we have for all ε

limsup
b→∞

EQ[L2;maxti∈T σ(ti) f (ti)+µ(ti)> b]
wσ ,µ(b)2−ε

= 0

holds uniformly for all µ and σ satisfying C1. This gives the uniformly weak efficiency.
Remark 2 From the above derivation, we can see that for any positive continuous density function g and
any δb = ab−1,a > 0, the importance sampling estimator is uniformly weakly efficient.

The parameter δb in the algorithm is introduced to bound the second moment of the importance sampling
estimator. Otherwise, consider the case of constant variance σ ∈ [σl,σu] and zero mean µ = 0. Then for
σ taking the value of σu, the second moment of the corresponding estimator Lσu,N(b) is lower bounded by

EQ[Lσu,N(b)
2]

= E

[(∫
σu

σl

∑
M
i=1 I(ς f (ti)> b)

MP(ς f (ti)> b)
g(ς)dς

)−1

;max
i

σu f (ti)> b

]

≥ P(σl f (0)> b)P(max
i

σu f (ti)> b)E

[(∫
σu

σl

I(max
i

f (ti)> b/ς)g(ς)dς

)−1 ∣∣∣max
i

f (ti)> b/σu

]
.

However, the conditional expectation cannot be controlled and we have the estimator Lσu,N(b) is not efficient
for σ = σu.

To achieve stronger efficiency results, we may choose g minimizing the variance function of the
estimator. In addition, the parameter ν may also be randomly sampled from a distribution on [µl,µu]. We
leave these issues for future study.

3.2 Continuous case

Direct simulation of a continuous random field is typically not a feasible task, and the change of measure
proposed in the previous subsection is not directly applicable. Thus, we use a discrete object to approximate
the continuous fields for the implementation. The bias caused by the discretization must be well controlled
relative to wσ ,µ(b).

We create a regular lattice covering T in the following way. Let GN,d be a countable subset of Rd

GN,d =

{(
i1
N
,

i2
N
, ...,

id
N

)
: i1, ..., id ∈ Z

}
.
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That is, GN,d is a regular lattice on Rd . Furthermore, let

TN = GN,d ∩T, (6)

which is the sub-lattice intersecting with T . Since T is compact, TN is a finite set. We enumerate the
elements in TN = {t1, · · · , tM}, where M = O(Nd). Let

wσ ,µ,N(b) = P
(

sup
ti∈TN

σ(ti) f (ti)+µ(ti)> b
)
.

We use wσ ,µ,N(b) as a discrete approximation of wσ ,µ(b).
We estimate wσ ,µ,N(b) by importance sampling, which is based on the change of measure proposed in

the discrete case. In particular we define QN and PN as the discrete versions (on TN) of Q and P respectively.
Then dQN/dPN takes the form:

dQN

dPN
=
∫

σu+δb

σl

∑
M
i=1 I(ς f (ti)+ν > b)

MP(ς f (ti)+ν > b)
g(ς)dς . (7)

Note that here M depends on N and goes to infinity as N→ ∞. This gives importance sampling estimator

Lσ ,µ,N(b) =
(∫

σu+δb

σl

∑
M
i=1 I(ς f (ti)+ν > b)

MP(ς f (ti)+ν > b)
g(ς)dς

)−1

I(supi:ti∈TN
σ(ti) f (ti)+µ(ti)>b).

We have the next theorem to control the bias of the estimator Lσ ,µ,N(b).
Theorem 3 Suppose f is a Gaussian random field that is twice differentiable and the functions µ and σ satisfy
condition C1. For any ε0 > 0, there exists constant κ0 such that for any ε ∈ (0,1), if N > κ0ε−1−ε0b2+ε0 ,
then for b > 1, ∣∣wσ ,µ,N(b)−wσ ,µ(b)

∣∣
wσ ,µ(b)

< ε

uniformly for all µ and σ satisfying condition C1.
The next theorem controls the variance of the estimator Lσ ,µ,N(b), whose proof follows from a similar

argument as in the discrete case and we omit the details.
Theorem 4 Suppose f is a Gaussian random field that twice differentiable and the functions µ and σ

satisfy condition C1. If N is chosen as in Theorem 3, then for any ε ′ > 0, we have

limsup
b→∞

EQN L2
σ ,µ,b

w2−ε ′(b)
= 0

uniformly for all µ and σ satisfying C1.

We simulate n i.i.d. copies of Lσ ,µ,b via Algorithm 1, {L( j)
σ ,µ,b : j = 1, ...,n}, and the averaged estimator

is

Zb =
1
n

n

∑
j=1

L( j)
σ ,µ,b.

From the discussion in Section 2 and Theorems 3 and 4, in order to achieve an ε relative error with
probability at least 1−δ , we need to have n = O(ε−2δ−1w−ε ′(b)) for any ε ′ > 0. This holds for all possible
σ and µ satisfying condition C1.
Remark 5 In the main theorems, we assume the Gaussian random fields are twice differentiable. The
proposed efficient simulation algorithm can be generalized for non-differentiable Gaussian random fields
following similar mixture change of measures. A different discretization size may be chosen, and the
complexity analysis may be very different. An adaptive discretization procedure as in Li and Liu (2013)
may be applied here, and we leave this for future study.
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4 Simulation

We use a simple example to illustrate the performance of the proposed method. Consider i.i.d. standard
normal random variables { f (ti), i = 1, · · · ,100}. For simplicity, we take µ = 0 and σ constant. We want
to compute probabilities P(σ maxi f (ti) > b) for σ ∈ [0.3,1] and b = 3. This is equivalent to simulating
P(maxi f (ti) > b) for all b ∈ [3,10]. The following tables display the simulation results for σ = 0.3,0.6
and 1.

The estimated tail probabilities wσ (b) along with the estimated standard deviations sdQ(Lσ ,b) =√
VarQ(Lσ ,b) are shown in Table 1. All the results are based on 104 independent simulations. We also

give the theoretical values of the tail probabilities. We can see for different σ values, the estimates are
close to the true values.

In Table 2 we show the results from the algorithm in Section 3.1.1, where the change of measure is
constructed based on σ = 1. Compared with the proposed method, we can see that the estimate is more
efficient when σ value is equal to the design value 1 and less efficient for other σ values. In particular,
when σ = 0.3, it gives 0 estimate value.

Table 1: Estimates of wσ (b), sdQ(Lσ ,b), and sdQ(Lσ ,b)/wσ (b). All results are based on 104 independent
simulations and thus the standard errors of the estimates are sdQ(Lσ ,b)/100.

Est. sdQ(Lσ ,b) sdQ(Lσ ,b)/Est. Theoretical Value
σ = 0.3 7.55e-22 5.33e-21 7.05 7.62e-22
σ = 0.6 2.93e-05 1.33e-04 4.52 2.87e-05
σ = 1 1.26e-01 5.92e-01 4.69 1.26e-01

Table 2: Estimates based on the algorithm in Section 3.1.1.

Est. sdQ(L̃b) sdQ(L̃b)/Est.
σ = 0.3 0 0 NA
σ = 0.6 1.35e-05 1.35e-03 1.00e+02
σ = 1 1.26e-01 2.32e-02 1.84e-01

5 Proof of Theorem 3

The following lemma is known as the Borell-TIS lemma, which is proved independently by Borell (1975)
and Tsirelson, Ibragimov, and Sudakov (1976).

Lemma 6 (Borell-TIS) Let f (t), t ∈U , U is a parameter set, be a mean zero Gaussian random field. f
is almost surely bounded on U . Then, E[supU f (t)]< ∞, and

P
(

sup
t∈U

f (t)−E[sup
t∈U

f (t)]≥ b
)
≤ exp

(
− b2

2σ2
U

)
,

where σ2
U = supt∈U Var[ f (t)].

The Borell-TIS lemma provides a general bound of the tail probability. In most cases, E[supt f (t)] is
much smaller than b. Thus, for b that is sufficiently large, the tail probability can be further bounded by:

P
(

sup
t∈U

f (t)> b
)
≤ exp

(
− b2

4σ2
U

)
.

The following lemma provides an upper bound of the density function of supt∈T σ(t) f (t)+µ(t), whose
proof follows from Ehrhard’s Inequality (Ehrhard 1983); see also Chapter 4 in Bogachev (1998).
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Lemma 7 Under the conditions of Theorem 3, let F ′σ ,µ(x) be the probability density function of
supt∈T σ(t) f (t)+µ(t). Then, F ′σ ,µ(x) exists almost everywhere. Moreover, as x goes to infinity,

F ′σ ,µ(x) = (1+o(1))
{

sup
t∈T

σ(t)
}−1

xwσ ,µ (x) . (8)

For some A > 0, let

L =

{
sup
t∈T
| f (t)| ≤ A(1−b−2 logε)b, sup

t∈T
|∂ f (t)| ≤ A(1−b−2 logε)b

}
. (9)

Here ∂ denote the gradient and | · | is the L1 norm. Note that ∂ f (t) is a d-dimensional Gaussian random
field and the variance function of each component is bounded on T . Then by Lemma 6, there exists λ > 0
such that for A sufficiently large (independent of u and ε)

P(L c) ≤ P
(

sup
t∈T
| f (t)|> A(1−b−2 logε)b

)
+P
(

sup
t∈T
|∂ f (t)|> A(1−b−2 logε)b

)
≤ exp

(
−λA2(1−b−2 logε)2b2

)
= o(1)εwσ ,µ(b).

We need to control the estimation bias caused by the discretization. In particular, we have

|wσ ,µ(b)−wσ ,µ,N(b)| =

∣∣∣∣P(sup
t∈T

σ(t) f (t)+µ(t)> b
)
−P

(
sup

i:ti∈TN

σ(ti) f (ti)+µ(ti)> b
)∣∣∣∣

≤ P
(

sup
t∈T

σ(t) f (t)+µ(t)> b, sup
i:ti∈TN

σ(ti) f (ti)+µ(ti)< b,L
)
+o(1)εwσ ,µ(b).

On the set L , we know

sup
t∈T,|t−ti|<N−1

|σ(t) f (t)+µ(t)− (σ(ti) f (ti)+µ(ti))| ≤
1
N
{O(1)sup

t∈T
|∂ f (t)|+O(1)sup

t∈T
| f (t)|+O(1)}.

Together with Lemma 7, this implies that

|wσ ,µ(b)−wσ ,µ,N(b)| ≤
1
N
{O(1)sup

t∈T
|∂ f (t)|+O(1)sup

t∈T
| f (t)|+O(1)}×bwσ ,µ(b)+o(1)εwσ ,µ(b).

Thus it is sufficient to choose N = O(ε−1−ε0b2+ε0) so that

|wσ ,µ(b)−wσ ,µ,N(b)| ≤ εwσ ,µ(b).

This completes our proof.
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