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ABSTRACT

We develop an algorithm that generates samples from a given probability distribution on a manifold embedded
in a Euclidean space based only on the ability to evaluate the mapping defined by the parametrization of
the manifold. In particular, we do not assume the ability to evaluate the derivatives of the mapping and
the ability to tell whether a given point in the ambient space belongs to the manifold or not. The new
approach is useful when the manifold is analytically intractable and highly nonlinear—for example, in
studying complex regulatory networks in systems biology where the mapping is typically defined by the
solution of a system of ordinary differential equations.

1 INTRODUCTION

Suppose that we are interested in studying a manifold M parametrized by a mapping f : A ⊆ Rm→ Rn

where m≤ n, i.e., M = f (A)⊂Rn. We are interested in the case where we only have limited information
regarding the behavior of f : we assume that we can only evaluate f and the evaluation is computationally
expensive. More specifically, we do not have the ability to determine whether a given point y in the ambient
space Rn belongs to M , and we cannot evaluate the derivatives of f exactly. A naive approach would
be evaluating f on randomly sampled points {x1,x2, . . .} in the parameter space A ⊆ Rm, and study the
manifold with the points { f (x1), f (x2), . . .} ⊂M . This approach can be inefficient if f is a non-linear
function which maps the vast majority of the parameters in A into a small region of the manifold, and most
of the interesting behavior of the manifold is explained by a small region of A. In such cases, it would be
useful if one can generate samples from a given density (with respect to the natural area measure inherited
from Rn) on the manifold M instead of the parameter space. Figure 1 illustrates this point. Consider, for
instance, the manifold

M = {(e−θ1t1 + e−θ2t1 ,e−θ1t2 + e−θ2t2 ,e−θ1t3 + e−θ2t3) : 0≤ θ2 < θ1 ≤ 100} (1)

with t1 = 1, t2 = 2, t3 = 4. The left plot of Figure 1 shows the samples obtained by first generating θ1 and
θ2 from the uniform distribution on the parameter space [0,100]× [0,100]∩{(θ1,θ2) : θ1 > θ2}, and then
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mapping into the manifold M . The right plot was generated from the uniform distribution on M . (The
exact meaning of the uniform distribution on a manifold will be discussed in Section 2.) The left plot
shows that most of the points in the parameter space are mapped into a very small region in M , and hence,
one’s understanding of the manifold based on such samples can be limited and even misleading. One can
get much better understanding of the manifold by studying uniform samples as we can see from the right
plot of Figure 1. We will get back to this example in Section 3.
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Figure 1: Uniform in parameter vs. uniform on manifold.

In general, uniform samples from a given set can be obtained by constructing a random walk that is
confined to the set and simulating the Markov chain associated with the random walk for a sufficiently
long time to produce samples from its equilibrium distribution. Designing such a random walk, however,
typically requires extra information beyond the ability to evaluate f —such as membership inquiry whether
a point of interest belongs to the manifold. Hence, it is not obvious how to carry out such strategies in
our context. Another approach is to take advantage of the analytic information of the parametrization. The
area formula in geometric measure theory tells us that one can generate uniform samples from a manifold
by generating samples from the density proportional to the m-dimensional Jacobian of f in the parameter
space and then mapping the samples to the manifold. However, to generate samples directly from such a
density, one needs to get a handle on the global properties of the derivatives of f which is not available
in many contexts. An obvious approach is, again, to resort on Markov chain Monte Carlo, but it requires
multiple evaluation of the derivatives of f to generate a single approximate sample. In this paper, we
introduce an iterative algorithm that can generate samples from a given density on a manifold based only
on the ability to evaluate f and the target density.

The motivation behind the developments in this paper was to devise an efficient tool for studying
biological networks. For example, enzymatic regulatory networks are often modeled with systems of
ordinary differential equations. Given a network topology of the regulatory network, the associated
differential equations can be considered as a mapping from a set of coefficients (of the system of differential
equations) to the solution of the differential equations. Systems biologists can learn about the possible
behaviors that can be acheived by the regulatory network with a given network topology by studying the
manifold defined by the associated mapping; see, for example, Ma et al. (2009). However, since the
analytic solutions of such differential equations are rarely available, one has to resort on (computationally
expensive) numerical solutions to evaluate such mappings, and the derivatives are hard to compute accurately.
Moreover, such mappings are often highly non-linear so that uniform sampling in the parameter space
results in the samples that are concentrated in a small region on the manifold. Because of these difficulties,
traditional sampling methods can be inefficient in this context. On the other hand, the new algorithm
suggested in this paper is much easier to apply in studying such manifolds because it only requires the
ability to evaluate the mapping.

The remainder of this paper is organized as follows: Section 2 discusses the main idea and introduces
an iterative algorithm. Section 3 illustrates how the algorithm works with several examples.
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2 SAMPLING FROM MANIFOLDS WITHOUT DERIVATIVES

In this section, we introduce an algorithm that generates uniform samples from a manifold M , f (A)⊂Rn

based only on the ability to evaluate f . (The algorithm can be easily generalized to sample from a given
(non-uniform) probability density on the manifold; we will discuss such an extension later in this section.)
More specifically, we assume that f is a one-to-one mapping with sufficient regularity, so that the image f (A)
is an m-dimensional manifold embedded in Rn. We wish to generate uniform samples from the manifold:
that is, we aim for sampling from the uniform density with respect to the m-dimensional Hausdorff measure

H m(B) = lim
δ→0

inf
B⊆∪Si,

diam(Si)≤δ

∑αm

(
diam(Si)

2

)m

(2)

where the infimum is over all countable coverings {Si ⊆Rn : i ∈ I} of B, diam(Si), sup{|x−y| : x,y ∈ Si},
and αm is the volume of the m-dimensional unit ball. This is a natural extension of Lebesgue measure,
and if m = n, H m coincides with the m-dimensional Lebesgue measure.

As Diaconis, Holmes, and Shahshahani (2013) pointed out, the area formula (see, for example, Federer
1996, Section 3.2.5) dictates how one should sample from the uniform distribution with respect to the
Hausdorff measure.
Result (Area Formula) If f : Rm→ Rn is Lipschitz and m≤ n,∫

A
g( f (x))Jm f (x)λ m(dx) =

∫
Rn

g(y)(#{A∩ f−1(y)}) H m(dy) (3)

where λ m is the m-dimensional Lebesgue measure, A is λ m-measurable, g : Rn→ R is Borel, #S denotes
the cardinality of the set S, and Jk f is the k-dimensional Jacobian of f . In this special case where k = m≤ n,
the k-dimensional Jacobian is equal to

Jm f (x) =
√

det
(
D f (x)T D f (x)

)
,

where D f (x) is the differential of f at x.
It should be noted that the Lipschitz continuity of f implies that Jm f is well-defined almost everywhere

with respect to λ m by the Rademacher theorem (see, for example, Federer 1996, Section 3.1.6). In theory,
formula (3) gives a complete answer to the question of how to generate uniform samples from the manifolds:
generate samples x1,x2, . . .in parameter space from the density proportional to Jm f and then apply f to
x1,x2, . . . to get the uniform samples from the manifold. While this strategy is not viable as such in our
context (since it requires explicit knowledge of the derivatives of f ), one might consider a procedure that
evaluates f at low discrepancy points such as Latin hypercube design points in parameter space, and then
approximates the Jacobian via finite difference and interpolating those points. Once a good approximation
of the Jacobian is obtained in this way, one can proceed with standard random number generation techniques
such as acceptance-rejection or Markov chain Monte Carlo to generate approximate samples from H m.
However, this procedure suffers from the same difficulty as naive uniform sampling in parameter space: it
can be inefficient when most of the parameter space is mapped into a small region of the manifold and the
rest of the manifold is covered by a small region of the parameter space.

Before introducing our approach, we would like to point out that our setting is different from the
traditional setting under which algorithms based on random walks—such as hit-and-run (Boneh and Golan
1979, Smith 1984) and shake-and-bake (Boender et al. 1991)—were developed. In such settings, the
manifold is typically a convex set or the boundary of a convex set and the set is specified by a set of
constraints (eg. a polytope given by a system of linear inequalities), and hence it is easy to tell whether a
given point in Rn (the ambient space in which the manifold is embedded) is an element of the manifold.
In our setting, on the other hand, the manifold is not necessarily a convex set or the boundary of a convex
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set and we don’t have a direct way to answer the membership inquiry. In fact, such question—whether
a certain region in the ambient space is covered by the manifold or not—is one of the very questions we
would like to address by sampling from the manifold.

The main idea of our approach is to approximate the uniform distribution by starting with a number
of random samples and repeatedly perturbing the pre-image of the samples in the parameter space and
resampling the perturbed samples on the manifold M . This approach is based on two observations: first,
given a set of points on the manifold, one can discard samples that are in concentrated regions and duplicate
ones that are in sparse regions so that the remaining samples are distributed more uniformly, and such a
procedure can be implemented based only on the Euclidean distances between the points in the ambient
space Rn; second, while constructing a perturbation directly on the manifold is hard, we can perturb the
pre-images of the samples in the parameter space based on the information we have learned about the
mapping f so far. Our algorithm starts with N initial samples x1,x2, · · · ,xN generated in the parameter
space and iterates the resampling step and the perturbation step to update the samples. The algorithm
returns the image f (x1), f (x2), · · · , f (xN) of the current samples—or equivalently, the empirical distribution
ηN , 1

N ∑
N
i=1 δ f (xi) of the samples—when the procedure gets close enough to the equilibrium. For large

enough N, the returned empirical measure ηN is expected to be a good approximation of the uniform
distribution.

In the resampling step, we resample (with replacement) from the current samples with higher probability
from the sparse region and with lower probability from the dense region so that the resulting samples cover
the support of the original samples (approximately) uniformly. The precise choice of the probability of
resampling each point can be determined by viewing this step as applying Boltzmann-Gibbs transformation
ΨG associated with the potential G to the empirical distribution of the current samples, where G is inversely
proportional to the density of the current samples. Let P be the space of probability measures on Rn. The
Boltzmann-Gibbs transformation ΨG : P →P associated with the potential G : Rn→ R+ is defined as
follows:

ΨG(η)(dy),
1

ηG
G(y)η(dy),

where ηG denotes
∫
Rn G(y)η(dy) as usual. Note that if η(dy) = p(y)H m(dy) and G(y) = 1/p(y), then

ΨG(η)(dy) = H m(dy). That is, if the distribution η has density p with respect to the Hausdorff measure,
then the Boltzmann-Gibbs transformation associated with the potential G which is inversely proportional
to the density p gives the uniform distribution with respect to the Hausdorff measure. In our setting, we of
course do not have an exact expression for the density p(y) of the current samples. Instead, we can use the
empirical distribution η̃(dy) = 1

N ∑
N
i=1 δ f (xi) (where δy denotes the Dirac measure) as an approximation of η ,

and the estimate p̃ of the density p constructed from the samples f (x1), · · · , f (xN) as an approximation of p.
Then, for G̃(y) = 1/ p̃(y), we expect ΨG̃(η̃)(dy)≈H m(dy) on the regions where M is “well-supported”
by the current samples. In this case, the Boltzmann-Gibbs transformation of the empirical distribution
can be approximated by resampling from the samples f (x1), · · · , f (xN) with probability proportional to(
1/p̃( f (x1)), · · · ,1/ p̃( f (xN))

)
.

Note that it is straightforward to extend this idea to non-uniform target distributions. Given a density
r(y), one can set G(y) , r(y)/p(y) instead of 1/p(y) so that ΨG(η)(dy) = r(y)H m(dy). For empirical
distribution η̃ , we can approximate ΨG̃(η̃)(dy)≈ r(y)H m(dy) by resampling from f (x1), · · · , f (xN) with
probability proportional to

(
r( f (x1))/ p̃( f (x1)), · · · ,r( f (xN))/p̃( f (xN))

)
.

In the perturbation step we attempt to explore new points {x′1, · · · ,x′N} in the manifold by perturbing
the pre-images {x1, · · · ,xN} of the current samples { f (x1), · · · , f (xN)} in the parameter space. In view of
the traditional random walk type approaches, one may consider choosing a line l through the current point
x, and picking a point y uniformly from the intersection M ∩ l of the manifold as the next step. However,
this strategy is not operable in our context because we don’t have the ability to tell whether a point in the
ambient space Rn belongs to the manifold M , and hence we can not even tell if a point belongs to such an
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intersection. Instead, we can perturb the samples in the parameter space. However, a naive choice of the
perturbation such as uniform or normal distribution centered at the current location in the parameter space
may lead to a distribution far from uniform when mapped into the manifold M because of the non-linearity
of the mapping f . Our aim in this step is to perturb the current samples and explore the parameter space in
a way that the new samples are from a smoothed distribution of the current empirical distribution, so that
if η̃ is close to uniform, then the empirical distribution of the perturbed points are still close to the uniform
distribution. If we can identify the density q(x) from which x1, · · · ,xN are generated, we can perturb each
sample xi using diffusion; see Botev, Grotowski, and Kroese (2010) for detailed exposition of the idea of
using diffusion in density estimation problem. Note that q(x) solves the Fokker-Planck equation associated
with the following diffusion process

dX(t) =
√

1/q(X(t))dW (t);

X(0) = xi.

Therefore, if xi is distributed according to q then X(t) = xi +
∫ t

0

√
1/q(X(s))dW (s) is also expected to be

from q for t > 0. To approximate such a diffusion, we first approximate q with current samples {x1, · · · ,xN},
and discretize the SDE, for example, with Euler scheme:

X̃(t +h)− X̃(t) =
√

1/q̃(X̃(t))(W (t +h)−W (t));

X̃(0) = xi

where q̃ is the approximation of q. Then we can simulate the discrete process X̃ up to time T to get
x′i = X̃(T ), whose distribution is close to xi.

In both resampling and perturbation steps, we need to approximate the density from samples. We
suggest computing the approximate density at each sample xi as follows:

1. Find the k-th nearest neighbor of xi. Let r be the distance from the current sample to the k-th
nearest neighbor;

2. Set the density at the current sample equal to k/N
αmrm ,

where αm is the volume of the m-dimensional unit ball. Note that due to the resampling, two or more
samples can share the same location before the perturbation. If the k-nearest neighbor distance is 0, we
first find the sample x′j whose distance r′ from xi is strictly positive, then count the number k′ of samples

within the distance r′, and set q̃ equal to k′/N
αm(r′)m . Although unlikely for large N, there is a strictly positive

probability that all N samples get concentrated in one point after resampling. To deal with this, we introduce
a maximum MN � 1 which is sufficiently large and MN →∞ as N→∞, and set q̃(x) = MN if the estimate
is greater than MN . For x /∈ {x1, . . . ,xN}, we set q̃(x) = q̃(x j) where j = argmink=1,...,N ‖xk−x‖2. This is a
variant of k-nearest neighbor density estimation (see, for example, Terrell and Scott 1992.)

The resampling and perturbation steps are repeated until the algorithm converges to the uniform
distribution. To determine such convergence, one can monitor the distribution of the density estimate
p̃( f (x j)) computed from the k-nearest neighbor distances for reasonably large k. For example, one can stop
when p̃( f (x j))/∑

N
i=0 p̃( f (xi))−1/N is concentrated around 0 and the average k-nearest neighbor distance

stops expanding. The whole procedure described so far in this section is summarized in Algorithm 1.
We expect that this procedure is convergent (i.e., stable) under general conditions; but in case the

parameter space A is a nice compact set such as a hypercube, it is easy to see that the algorithm has to
be convergent by viewing the procedure as a Markov chain evolving on the state space AN ⊆ Rm×N . Let
x(k), (x1(k),x2(k), · · · ,xN(k))∈ AN denote the N samples generated in kth iteration. Then, by construction,
the density estimate q̃ in the kth perturbation step is bounded from above and below uniformly w.r.t. the
configuration x(k−1) of the previous samples, and hence, the conditional density of x(k) (given x(k−1))
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should be bounded from below uniformly w.r.t. x(k−1). This implies that the Markov chain x is uniformly
ergodic, and hence, the algorithm converges at an exponential rate for any fixed N. We also expect that the
Algorithm 1 generates samples from the correct distribution (for large N). Consider an idealized version
of the algorithm. Let η0 be an initial distribution with density p0 on the manifold, and suppose that the
support of η0 covers the entire manifold. Now, recursively define ηk+1 , Ψ1/pk(ηk) where pk is the density
of ηk with respect to the Hausdorff measure H m. Then, pk’s are constant for k ≥ 1; that is, ηk’s are
uniform distributions with respect to the Hausdorff measure. For large N, the resampling step is a good
approximation of the Boltzmann-Gibbs transformation Ψ1/p, and the perturbation step changes the resulting
distribution little. Therefore, the empirical measure ηN

k of samples generated in the kth iteration becomes
good approximation of ηk, which is the uniform distribution. Note that the idealized version achieves
the uniform distribution instantly (in a single iteration). This suggests that we can expect a very quick
convergence in case ηN

0 supports the manifold reasonably well. Such quick convergence behaviors can
be observed in Example 1 and 2 in Section 3. On the other hand, Example 3 in Section 3 illustrates that
even in the unfortunate cases where the initial samples do not cover the manifold well, our algorithm can
explore and discover the hidden part of the manifold efficiently. The theoretical analysis of the convergence
of the algorithm and the identification of general conditions for the convergence and the reliable stopping
criterion are the major directions for future research.

Algorithm 1 Resample-Perturb Iterative Algorithm

Generate N samples x1, · · · ,xN ∈ A from an initial distribution p0
while ηN is not uniform or changes significantly do
{x′1, · · · ,x′N}← RESAMPLE({x1, · · · ,xN})
{x1, · · · ,xN}← PERTURB({x′1, · · · ,x′N})
ηN ← 1

N ∑
N
i=1 δ f (xi)

end while
return ηN

function RESAMPLE({x1, · · · ,xN})
Gi← 1/APPROXDENSITY( f (xi); f (x1),··· , f (xN))

∑
N
j=1 1/APPROXDENSITY( f (x j); f (x1),··· , f (xN))

, i = 1, · · · ,N
for i = 1 : N do

Sample x′i from P = (G1, · · · ,GN) (i.e, P(x′i = x j) = G j)
end for
return {x′1, · · · ,x′N}

end function

function PERTURB({x′1, · · · ,x′N})
h← T/M
for i = 1 : N do

xi← x′i
for j = 1 : M do

Z ∼ N(0, I)
xi← xi +

√
h/APPROXDENSITY(xi;x′1, · · · ,x′N)Z

end for
end for
return {x1, · · · ,xN}

end function
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Figure 2: (Uniform Samples From Torus) Comparison of the 10,000 samples from Algorithm 1, area
formula, and uniform distribution in parameter space.

3 EXAMPLES

In this section, we examine our algorithm with a few simple examples. For all three examples, we have
used k = 5 for number of nearest neighbors, T = 0.05 for the perturbation size, n = 30 for the number of
time discretization steps for the diffusion approximation.
Example 1 (Uniform Samples from Torus) Diaconis, Holmes, and Shahshahani (2013) show how to sample
from a torus using the area formula (3). Consider a torus

M = {((R+ r cosθ)cosψ,(R+ r cosθ)sinψ,r sinθ) : 0≤ θ ,ψ < 2π}

where 0 < r < R. The major radius R is the distance from the center of the tube to the center of the torus,
and the minor radius r is the radius of the tube. An obvious parametrization of M and its 2-dimensional
Jacobian are

f (θ ,ψ) = ((R+ r cosθ)cosψ,(R+ r cosθ)sinψ,r sinθ), J2 f (θ ,ψ) = r(R+ r cosθ).

In view of the area formula (3), one can generate (exactly) uniform samples on M by generating samples on
[0,2π]× [0,2π] from the density g(θ ,ψ)∝ R+r cosθ . This can be easily done for example, by generating ψ

580



Rhee, Zhou, and Qiu

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350

400

 

 

Algorithm 1

Exact Marginal Density

Figure 3: (Uniform Samples From Torus) Histogram from 10,000 samples of θ ’s generated by Algorithm
1. Red line shows the exact target marginal density computed from the area formula.

from the uniform distribution on [0,2π], and (independently) generating θ from the density 1
2πR(R+r cosθ),

via acceptance rejection; see Diaconis, Holmes, and Shahshahani (2013) for more detail. Figure 2 compares
the samples produced in three different ways for R = 1 and r = 0.9. The upper plot shows the samples
projected on x− y plane, and the lower plot shows the pre-image of the samples in the parameter space.
The two plots on the left show the samples from Algorithm 1 after two iterations. Similarly, the plots in
the middle were produced with the 10,000 samples generated by the area formula (as described above),
and the right plots show 10,000 samples generated by uniformly sampling in the parameter space, i.e.,
θ ∼U [0,2π] and ψ ∼U [0,2π]. We can see that the samples in the upper right plot are more concentrated
as they get closer to the center of the torus when compared to the other plots. Figure 3 shows the histogram
of θ generated by Algorithm 1, and the exact marginal density of g(θ ,ψ) = 1

4π2R(R+ r cosθ).
Example 2 (Non-uniform Density on Torus) In this example, we consider the same manifold M as in
Example 1, but we sample from a non-uniform distribution. Suppose that we are interested in the shape
of M in the proximity of a given point, say (0,1,0), and hence, we want to sample more frequently from
the closer parts of the manifold to the point, and less frequently from farther parts of the manifold. For
the purpose, we choose a density proportional to the reciprocal of the squared distance from (0,1,0). That
is, we sample from P(dx) = r(x)H 2(dx) where r(x,y,z) ∝ 1/(x2 +(y−1)2 + z2). Again, in view of the
area formula, one can sample from P by sampling from a density proportional to

r( f (θ ,ψ))g(θ ,ψ) ∝
R+ r cosθ

((R+ r cosθ)cosψ)2 +((R+ r cosθ)sinψ−1)2 +(r sinθ −2)2 .

Figure 4 and 5 compare the samples produced by Algorithm 1 (after two iterations), exact samples generated
by the area formula, and the samples generated uniformly in the parameter space.
Example 3 (Exponential Model) Here we consider a manifold

M = {(e−θ1t1 + e−θ2t1 ,e−θ1t2 + e−θ2t2 ,e−θ1t3 + e−θ2t3) : 0≤ θ2 < θ1 ≤ 100}

where 0 < t1 < t2 < t3. The first derivative

D f (θ1,θ2) =

 −t1 exp(−θ1t1) −t1 exp(−θ2t1)
−t2 exp(−θ1t2) −t2 exp(−θ2t2)
−t3 exp(−θ1t3) −t3 exp(−θ2t3)

 , (4)
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Figure 4: (Non-Uniform Density on Torus) Comparison of the 10,000 samples from Algorithm 1, area
formula, and uniform distribution in parameter space.

and the 2-dimensional Jacobian
J2 f (θ1,θ2) =

√
α12 +α13 +α23 (5)

where
αi j = t2

i t2
j exp{−2(θ1t j +θ2ti)}{exp(θ1−θ2)(t j− ti)−1}2. (6)

Figure 6 shows the result for t1 = 1, t2 = 2, t3 = 4 with 5,000 samples. The left plot was produced by
Algorithm 1, (the upper plot shows the samples projected on a plane perpendicular to the vector (1,−1,0),
and the lower plot shows the pre-image of the samples in the parameter space); the plots in the middle
show the 5,000 samples generated by the area formula; the right plots show 5,000 samples generated by
uniformly sampling in the parameter space, i.e., θ1,θ2 ∼Unif

(
[0,100]× [0,100]∩{θ1 > θ2}

)
. The samples

generated uniformly in the parameter space are concentrated in a small part of the boundary of the manifold.
The Algorithm 1 was started with initial samples distributed uniformly in the parameter space, and the
final samples were obtained after 10 iterations. The progression of the algorithm is illustrated in Figure 8.
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Figure 5: (Non-Uniform Density on Torus) Histograms from 10,000 samples generated by Algorithm 1,
and the exact area formula.
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Figure 6: (Exponential Model) Comparison of the 5,000 samples from Algorithm 1, area formula, and
uniform distribution in parameter space.
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Figure 7: (Exponential Model) Histograms from 5,000 samples generated by Algorithm 1, and the exact
area formula.
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Figure 8: (Exponential Model) The progression of Algorithm 1.
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