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ABSTRACT

In this paper, we develop a new simulation algorithm that generates unbiased gradient estimators for the
steady-state workload of a stochastic fluid network, with respect to the throughput rate of each server.
Our algorithm is based on the perfect sampling algorithm developed in Blanchet and Chen (2014), and
the infinitesimal perturbation analysis (IPA) method. We illustrate the performance of our algorithm with
two multidimensional examples, including its formal application in the case of multidimensional reflected
Brownian motion.

1 INTRODUCTION

Stochastic fluid network is a class of queueing model that is good for telecommunication networks and data
processing systems where the main source of uncertainty in the network is the external inputs (see Kella and
Whitt 1996). One important performance measure for a stochastic fluid network is the workload process Y (t),
which is a vector consisting of the amount of outstanding workload at each server. Performance evaluation
of such systems involves computing the steady-state expectation E[Y ∗]. In many application settings, for
instance, the service capacity management problem as discussed in Dieker, Ghosh, and Squillante (2014)
, it is of interest to compute the sensitivity of E[Y ∗] with respect to some model parameters. However,
analytic characterization for the steady-state distribution of Y ∗ and the steady-state gradient remains an
open problem. As an alternative approach, Blanchet and Chen (2014) provides a Monte Carlo algorithm
that generates unbiased samples from the steady-state distribution of Y ∗. Based on their perfect sampling
algorithm, we develop a Monte Carlo algorithm to generate unbiased estimators for the steady-state workload
gradient with respect to the throughput rates, or equivalently, the service rates of the servers.

Our algorithm is a combination of the classic Infinitesimal Perturbation Analysis (IPA) and the Coupling
from the Past (CFTP) techniques. In detail, we apply IPA to define a stochastic process V coupled with Y (·)
such that its steady-state expectation E[V ∗] exists and equals the gradient. Then we show that the coalescence
time for Y , as defined and simulated in the CFTP perfect sampling algorithm, is also a coalescence time for
the process V . As a result, it is possible to generate exact samples from the joint steady-state distribution
(Y ∗,V ∗) and compute unbiased estimators for the gradient.

In the end, we show that V ∗ can be computed deterministically from the output sample path {Y ∗(t) :
−τ ≤ t ≤ 0} of the perfect sampling algorithm Blanchet and Chen (2014). The computation basically
involves a fixed number of matrix operation at each time step and does not requires generating extra random
numbers. Therefore, the gradient simulation algorithm inherits from the perfect simulation algorithm
Blanchet and Chen (2014) a polynomial complexity in term of the number of servers in the network.

A benchmark algorithm for unbiased steady-state gradient simulation is the regenerative algorithm (see
Glynn 2006 and the references therein). In our setting, the stochastic fluid network clearly has a regenerative
structure. However, it is difficult to specify a proper likelihood ratio, which is a key step in the regenerative
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algorithm, as a function of the throughput rate µ . In particular, we show in Section 4.1 that in a network
consisting of tandem servers, the sample path spaces of the workload process, corresponding to different
throughput rates µ and µ +(0,∆,0, ..,0)′, have empty intersection for any ∆ 6= 0. As a consequence, the
likelihood ratio can not be defined as a finite function of the throughput rate.

The rest of the paper is organized as following: in Section 2, we state our model assumptions, and
give a brief review on the IPA method; in Section 3, we give all the details of our gradient simulation
algorithm; in Section 4, we report the numerical results of our algorithm. In particular, in Section 4.2,
we apply our algorithm to discrete approximations of reflected Brownian motions (RBM). The numerical
results indicate that the gradient estimator of the discrete approximation process is a good approximation
for the steady-state gradient of the RBM. Of course, rigorous analysis is in need in future work to validate
the convergence result.

Throughout the paper we shall use boldface (Y) for vectors in Rd , and superscript i (Y i) for the the
i-th component of a vector.

2 PROBLEM SETTING AND PRELIMINARIES

2.1 Stochastic Fluid Network

Consider a stochastic fluid network (SFN) consisting of d servers. Jobs arrive to the servers according
to some renewal process N(·) with i.i.d. inter-arrival times {An}. In particular, we assume An be the
inter-arrival time between the n-th and (n+1)-th job. Suppose the n-th job brings W i

n units of workload
to server i. Let Wn = (W 1

n , ...,W
d
n )
′ be the vector of workload and we assume {Wn} forms a sequence of

i.i.d. random vectors in Rd . The sequences {Wn} and {An} are independent. Let ri be the constant service
rate of server i. Let Pi j be the proportion of workload that goes to server j after departure server i so that
∑ j Pi j ≤ 1. Then the d×d matrix R = (I−P)′ (Ri j = δ

j
i −Pji, δ

j
i = 1 if i = j, and = 0 otherwise) is called

the reflection matrix. The throughput rate of the network is µ = Rr.
The workload Yn = (Y 1

n , ...,Y
d
n ) is defined as the amount of workload observed by the n-th job upon

its arrival. The value of Yn+1 is totally determined by (Yn,Wn,An) and (R,µ) via the Skorokhod map. In
detail, define a process x(t) = Yn +Wn−µt and its corresponding reflected process

y(t) = Γ(x)(t) = x(t)+Rl(t),

where Γ is the Skorokhod map and l(t) is the minimal nondecreasing nonnegative cádlág process to keep
y(t) ≥ 0. For rigorous definition of the Skorokhod map, see for instance Harrison and Reiman (1981).
Then, Yn+1 = y(An) is determined by (Yn,Wn,An) and (R,µ). As result, we can write a Markov recursion
for the sequence {Yn}:

Yn+1 = φ(Yn,µ,Wn,An,R). (1)

In Harrison and Reiman (1981), it is proved that the Skorokhod map, Γ, is Lipschitz continuous in the
uniform norm. As a direct consequence, the recursion function φ is Lipschitz continuous in µ and y = Yn.
If the network is stable, its steady-steady distribution is of course sensitive to the throughput rate µ . In
many application setting, it is of interest to compute the gradient ∂E[Y∗]/∂ µ . Note that both E[Y∗] and µ

are d-dimensional vectors and therefore the gradient is a d-by-d matrix. Our goal is to develop a Monte
Carlo algorithm that generates i.i.d. sample of random matrix V ∗ such that E[V ∗] = ∂E[Y∗]/∂ µ , especially,
E[V ∗i j] = ∂E[Y ∗,i]/∂ µ j. For the algorithm to work, we shall impose the following assumptions on the
stochastic fluid network:
Assumption 1 R−1(E[W1]−µE[A1])< 0.
Assumption 2 The inter-arrival times A1 has an infinite support and a continuous distribution function.
Assumption 3 There exists θ > 0, θ ∈ Rd such that E[exp(θ ′W1)]< ∞.
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Remark: Assumption 1 ensures the existence of stationary distribution for the workload process and
Assumption 2 for the gradient process, which we shall define in a moment. Assumption 3 ensures the
perfect sampling algorithm Blanchet and Chen (2014) is applicable.

2.2 Infinitesimal Perturbation Analysis

Infinitesimal perturbation analysis (IPA) is a gradient simulation approach based on derivatives of the
random variables. In our case, the waiting time sequence {Yn} satisfies a recursion of the form:

Yn+1 = φ(Yn,µ). (2)

Here we omit the variables Wn, R and An in the function φ not only for simplicity, but also because in
the IPA algorithm only compute the sensitivity of φ(y,µ) with respect to the initial position y and the
throughput rate µ only, as we shall see in a moment.

Given Assumption 2, we can prove (in Proposition 1) that φ(y,µ) is continuously differentiable in a
neighborhood of (y,µ) with probability 1. Formally defining Vn =

dYn
dµ
∈ Rd×d and differentiating (2), we

get

Vn+1 =
dφ

dy
(Yn,µ)Vn +

dφ

dµ
(Yn,µ).

Now we substitute {Yn} with a stationary sequence {Y∗n} and define a stochastic process Vn in Rd×d

according to

Vn+1 =CnVn +Bn, where Cn =
dφ

dy
(Y∗n,µ) and Bn =

dφ

dµ
(Y∗n(µ),µ) ∈ Rd×d . (3)

According to Glasserman (1992), when the recursion function φ is Lipschitz continuous and

P
(

dφ

dy
(Y∗n,µ) = 0

)
> 0, (4)

the gradient process {Vn} is stable. In particular, the process {Vn} admits a unique stationary distribution
V ∗ and converges weakly to its stationary distribution, i.e. Vn⇒V ∗. Besides, V ∗ is an unbiased estimator
for dE[Y∗]

dµ
such that E[V ∗] = dE[Y∗]

dµ
.

3 EXACT GRADIENT SIMULATION ALGORITHM

In this section, we fit the IPA algorithm into a backwards framework and combine it with coupling from
the past (CFTP) technique to develop an unbiased Monte Carlo algorithm that generates exact samples
from the stationary distribution of V ∗.

3.1 Coalescence Time and Perfect Sampling

In Blanchet and Chen (2014), the authors developed a CFTP algorithm for SFN with renewal arrival process
and general workload distributions. The key steps of the algorithm is to construct a coupled dominating
process, simulate the stationary dominating process backwards in time until it hits the origin, and then
simulate the workload process forward starting from the origin. The first time, going backwards to the
past, when the dominating process hits the origin is called the coalescence time and let’s denote it by
τ . Given Assumption 1 and 2, E[τ] < ∞ . Let n(τ) be number of job arrivals from τ to time 0. Then,
the output of the CFTP algorithm is a stationary sequence of {Y∗k} for k = −n(τ),−n(τ)+ 1, ...,0 with
the corresponding sequence of inter-arrival times {Ak} and workload vectors {Wk}. As we shall prove
in Section 3.2, Bk−1 =Ck−1 = 0, whenever Y∗k = 0. In Blanchet and Chen (2014), it is proved that under
Assumption 1 and 2, P(Y∗k = 0) > 0. Therefore, (4) holds and the gradient sequence {Vk} is stable. Let
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{V ∗k } be the stationary sequence of the gradient process {Vk} coupled with the stationary sequence {Y∗k}
that is simulated by the CFTP algorithm. Then, as Y∗−n(τ) = 0 indicates B−n(τ)−1 =C−n(τ)−1 = 0,

V ∗0 =
−∞

∑
k=−1

Bk

−1

∏
i=k+1

Ci =
−n(τ)

∑
k=−1

Bk

−1

∏
i=k+1

Ci,

which becomes a finite summation. As we shall prove in Section 3.2, the matrix Bk and Ck has an explicit
expression in terms of (Y∗k ,Ak,Wk) and (µ,R) for all k ∈ {−n(τ), ...,−1}. As a result, V ∗0 can be computed
from the output sequence {Yk : k =−n(τ), ...,0} of the CFTP algorithm and is an unbiased estimation for
dE[Y∗]

dµ
.

Now we are ready to give the algorithm to compute V ∗0 :
Algorithm 1: Perfect Gradient Simulation
1. Input: A stationary sample path {(Y∗k ,Ak,Wk) : k =−n(τ),−n(τ)+1, ...,0} with Y∗−n(τ) = 0.
2. Initially set V = 0
3. For k = −n(τ) : −1, update V = V ·Ck +Bk. Here Ck =

dφ

dy (Y
∗
k ,µ) and Bk =

dφ

dµ
(Y∗k ,µ) are computed

according to (6).
4. Output V which follows the stationary distribution of V ∗.

3.2 Computation of the Gradient Recursion

The following results give explicit expressions for (Bk,Ck) in terms of (Yk,Ak,Wk) and (µ,R). Moreover,
they also show that Ck = 0 whenever Yk+1 = 0. First, let’s introduce some notation. Recall that the recursion
function φ is defined by the Skorokhod map Γ which has an expression Γ(x)(t) = x(t)+Rl(t). Let’s define
si = inf{s : li(s) > 0}. The following result is crucial to simplify the computation of the gradient matrix
(Bk,Ck)

Lemma 1 Let x(t) = Yk +Wk−µt, which is a linear function, and suppose Γ(x)(t) = x(t)+Rl(t). Then,
the process l(t) is piecewise linear and li(t) is strictly increasing on [si,∞).

Proof. As is proved in Harrison and Reiman (1981), the complimentary process l(t) is the unique solution
to a fixed point problem

li(t) = [ sup
s∈[0,t]

(−xi(s)−∑
j 6=i

Ri jl(s))]∨0. (5)

In our case, the function x(t) is a linear function and we can solve the fixed point equation (5) explicitly.
In particular, the solution l(t) is a piecewise linear function on [0,Ak]. Let {t0 = 0 < t1 < t2 < ... < tm =
tm+1 =≤ Ak} such that l(t) is linear on [tr, tr+1). Let lr be the linear coefficient of l(t) on [t,tr+1), then the
sequence of {(tr, lr)} is given by the following recursion:

li
r =

{
0 if yi(tr)> 0,
(µ i−∑ j 6=i Ri jl

j
r )∨0 if yi(tr) = 0,

and

tr+1 = tr + min
y j(tr)>0,µ j

r >0

(
y j(tr)

µ
j

r
,Ak

)
where µr = µ +Rlr.

Recall that si = inf{s : li(s) > 0} and let Ir = {i : 1 ≤ i ≤ d, li
r > 0}. Given the above recursion, we can

check the following facts by induction

1. yi(t) = 0 for all t > si.
2. Ir is increasing in r.
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3. Since l j
r ≥ 0 for all j and Ri j < 0 for all j 6= i, li

r is non-decreasing in r.

As we have showed, l(t) is piecewise linear, and therefore there exists ∆t > 0 such that dli(t) > 0 on
[si,si +∆t]. Then, the claim that li(t) is strictly increasing for t > si follows immediately after fact 3.

Given Lemma 1, we are ready to derive an explicit expression for (Bk,Ck) in terms of (Yk,Ak,Wk)
and (µ,R).
Proposition 1 With probability 1, Ck = E +RD, where E is the d× d identity matrix and the matrix D
can be solved from the linear system

Di j =

{
0 if i /∈ I,
−Ei j−∑r 6=i RirDr j if i ∈ I,

(6)

where
I = {1≤ i≤ d : [R−1(Yk+1−Yk−Wk +µAk)]

i > 0}
The matrix Bk = Ak ·Ck

Remark: Given Assumption 2 that the inter-arrival time Ak has continuous distribution function, with
probability 1, the value set function I is constant in a neighborhood of (y,µ), where Yk = y is the initial
value and µ is the throughput rate. Then, since the linear system (6) admits a unique solution for fixed
set I, we can conclude that Ck =

∂φ

∂y (y,µ) and Bk =
∂φ

∂ µ
(y,µ) is continuous in a neighborhood of (Yk,µ).

In other words, φ is continuously differentiable in a neighborhood of (Yk,µ) with probability 1 and this
justified the gradient recursion (3).

Proof. We shall apply the results on direction derivative of Skorokhod map in Mandelbaum and Ramanan
(2010) to compute the gradient matrix (Bk,Ck). According to Theorem 1.1. in Mandelbaum and Ramanan
(2010), Ck =C(Ak) where C(t) is a matrix-value function such that

C(t) = E +RD(t),

where D(t) is the unique solution to the system of equations

Di j(t) =


0 if t < ti

l ,

sups∈Φi(t)[−Ei j−∑r 6=i RirDr j(s)]∨0 if t ∈ [ti
l , t

i
u],

sups∈Φi(t)[−Ei j−∑r 6=i RirDr j(s)] if t > ti
u,

where ti
l = inf{t ≥ 0 : yi(t) = 0}, ti

u = inf{t ≥ 0 : li(t > 0)} and Φi(t) = {s∈ [0, t] : yi(s) = 0 and li(s) = li(t)}.
Since Ak is a continuous random variable, P(Ak = ti

l , for some 1≤ i≤ d) = 0 and hence {i : Ak ∈ [ti
l , t

i
u]}

is empty with probability 1. By definition, ti
u = si. Let’s define Ĩ = {i : Ak > ti

u}. Following the result in
Lemma 1, we can conclude that Φi(t) = {t} for all t ≥ si. As a result, Φi(Ak) = {Ak} for all i ∈ Ĩ. In
summary, we can simplify the system of equations and get

Di j(Ak) =

{
0 if i /∈ Ĩ,
−Ei j−∑r 6=i RirDr j(Ak) if i ∈ Ĩ.

By Lemma 1, dli(t) > 0 whenever li(t) > 0. By definition, l(Ak) = R−1(y(Ak)− x(Ak)) = R−1(Yk+1−
Yk−Wk +µAk). Therefore, the set Ĩ = I and (6) follows immediately.

Following a similar argument, we can have Bk = Ak ·E +RD̃ with

D̃i j =

{
0 if i /∈ I,
−AkEi j−∑r 6=i RirD̃r j if i ∈ I.

Therefore, we can conclude D̃ = Ak ·D and hence Bk = AkCk.
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Proposition 2 B−n(τ)−1 =C−n(τ)−1 = 0

Proof. Let y(t) = Γ(Y−n(τ)−1 +W−n(τ)−1− µ·)(t) and then Y−n(τ) = y(A−n(τ)). By Assumption 2,
A−n(τ) is a continuous random variable, therefore,

P(∃t < A−n(τ) such that y(s) = 0, for all s ∈ [t,A−n(τ)]) = 1.

In other words, dy(A−n(τ)−) = 0. As a result, if we let lτ = dl(A−n(τ)), we have

0 =−µ +Rlτ ⇒ lτ = R−1
µ.

From Assumption 1, we have R−1(E[W−n(τ)−1]−µE[A−n(τ)−1])< 0. Since R−1 has non-negative elements,
E[W−n(τ)−1]≥ 0 and E[A−n(τ)−1]> 0, we can conclude lτ = R−1µ > 0. Then, plug in I = {1,2, ...,d} in
(6) and we solve D =−R−1E. Therefore,

C−n(τ)−1 = E +RD = 0 and B−n(τ)−1 = A−n(τ)−1C−n(τ)−1 = 0,

as required.

4 NUMERICAL EXAMPLES

4.1 A System of Tandem Queues

We consider an example of a stochastic fluid network with 10 queues in tandem. In detail, Pi,i+1 = 1 for
i = 1,2, ...,9 and P10, j = 0 for all j = 1, ...,10, and W i = 0 for all 2≤ i≤ 10. We assume a Poisson arrival
process with rate λ = 1 and the job sizes are exponentially distributed with unit mean. The service-rate
vector r =

(
r1, ...,r10

)T are given by r = (1.55,1.5,1.45,1.4,1.35,1.3,1.25,1.2,1.15,1.1). We are inter-
ested in computing the steady-state gradient of the workload E[Y ∗,i] at server i with respect to the service
rate at server j , i.e. ∂E[Y ∗,i]/∂ r j, for all 1≤ i, j ≤ 10.

Remark: In this example, whenever Y ∗,1k > 0, we have Y ∗,ik = Y ∗,ik−1 + 0.05Ak−1 for i ≥ 2 and there-
fore (Y ∗,ik −Y ∗,ik−1) are all equal for all i ≥ 2. Since P(Y ∗,1k > 0) > 0, the event {Y ∗,1k > 0 and (Y ∗,ik −
Y ∗,ik−1) are all equal for all i≥ 2} happens infinitely often in a sample path of the workload process. Now,
given any δ 6= 0, if we change the service rate of Server 2 from µ2 to µ2+δ , as (0.05−δ )Ak−1 6= 0.05Ak−1,
the event {Y ∗,1k > 0 and (Y ∗,ik −Y ∗,ik−1) are all equal for all i≥ 2} will never happen. As a result, the sample
path space of the workload process corresponding to µ and µ +(0,δ ,0, ...,0)′ have empty intersection. As
a result, it is difficult to directly apply the benchmark regenerative algorithm as in Glynn (2006) .

For a network of tandem queues with exponentially distributed job size, it turns out, the true values of
E[Y ∗,i] has an explicit expression in r. See, for instance, Debicki, Dieker, and Rolski (2007) for reference.
In particular,

E[Y ∗,1] = 1/(r1−1) and E[Y ∗,i] = 1/(ri−1)−1/(ri−1−1). (7)

Given the expression (7), we can derive an explicit expression for the true value of the gradient as well:

∂E[Y ∗,i]
∂ r j =


− 1

(r j−1)2 if i = j,
1

(r j−1)2 if i = j+1,

0 otherwise.

To estimate the gradient matrix G = (∂E[Y ∗,i]/∂ r j), we implement Algorithm 1 to compute an unbiased
estimators V̂ for the gradient matrix V = (∂E[Y ∗,i]/∂ µ j) using 10000 stationary sample paths generated
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by the perfect sampling algorithm (Blanchet and Chen 2014). Recall that µ is the throughput rate of
the network and by definition µ = Rr. We then compute Ĝ = V̂ R as an unbiased estimator for G. The
simulation results and the true values of the gradients are reported in Table 1. To illustrate the validity of
Algorithm 1, we compare the absolute simulation error with the half-length of the estimated confidence
interval in Table 2 which shows that the simulation estimator lies in the 95% confidence interval. To test
the validity of simulated CI, we simulated 1000 independent 95% CI’s for G11. For each CI, we simulate
400 independent sample paths. Out of the 1000 simulated CI’s, 950 cover the true value -3.3058, which
indicates our estimator generated by Algorithm 1 is unbiased.

We do the implementation in Matlab. It took a few minutes in a laptop to generate 10000 independent
sample paths and compute the gradient matrix.

Table 1: Unbiased estimates of gradient matrix Gi j =
∂E[Y ∗,i]

∂ r j .

Simulation 1 2 3 4 5 6 7 8 9 10
1 -3.2723 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 3.2723 -3.9618 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 3.9618 -4.8906 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 4.8906 -6.2615 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 - 0.0000 0.0000 6.2615 -8.0683 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0000 0.0000 8.0683 -11.1009 0.0000 0.0000 0.0000 0.0000
7 0.0000 -0.0000 0.0000 0.0000 0.0000 11.1009 -15.8137 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 15.8137 -24.7289 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 24.7289 -45.1027 0.0000

10 0.000 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 45.1027 -99.8973
True Value 1 2 3 4 5 6 7 8 9 10

1 -3.3058 0 0 0 0 0 0 0 0 0
2 3.3058 -4.0000 0 0 0 0 0 0 0 0
3 0 4.0000 -4.9383 0 0 0 0 0 0 0
4 0 0 4.9383 -6.2500 0 0 0 0 0 0
5 0 0 0 6.2500 -8.1633 0 0 0 0 0
6 0 0 0 0 8.1633 -11.1111 0 0 0 0
7 0 0 0 0 0 11.1111 -16.0000 0 0 0
8 0 0 0 0 0 0 16.0000 -25.0000 0 0
9 0 0 0 0 0 0 0 25.0000 -44.4444 0

10 0 0 0 0 0 0 0 0 44.4444 -100.0000

4.2 A Symmetric Reflected Brownian Motion (RBM)

Reflected Brownian motion (RBM) is an important class of stochastic process in queueing theory as it is the
diffusion limit of a large family of queueing networks. For instance, in the Quality-and-Efficiency-Driven
(QED) regime, the queuing length process of a Generalize Jackson network will converge to a reflected
Brownian motion. Moreover, the stationary distribution of the pre-limit Generalized Jackson networks will
also weakly converge to the stationary distribution of the limit RBM (see Budhiraja and Lee 2009). However,
how to compute the stationary distribution of the RBM, either analytically or numerically, remains an open

Table 2: Simulation error and half length of 95% confidence interval for Gii =
∂E[Y ∗,i]

∂ ri .

1 2 3 4 5 6 7 8 9 10
error 0.0335 0.0382 0.0477 0.0115 0.0950 -0.0102 0.1863 0.2711 0.6582 -0.1027

95% CI 0.1275 0.1546 0.1883 0.2344 0.2977 0.4109 0.5783 0.8842 1.6334 3.5809

592



Chen

problem. In this section, we show that Algorithm 1 can be potentially applied to continuous stochastic
process such as a reflected Brownian motion via numerical examples.

Mathematically, a reflected Brownian motion Z(t) is the solution to a Skorokhod problem with Brownian
input process:

Z(t) = Γ(X)(t),

where Γ is the Skorokhod map with a given reflection matrix R and X(t) = µt +ΣB(t), where B(t) is a
standard multi-dimensional Brownian motion. For the numerical example, we consider a 2-dimensional
symmetric RBM with drift coefficient µ = [−1,−1], covariance rate matrix Σ2 = [1,0;0,1] and reflection
matrix R = [1,−0.2;−0.2,1]. In such a special symmetric case, the stationary mean E[Z∗,1] = E[Z∗,2] := m1
and has an explicit expression (see Dai and Harrison 1992):

m1(µ
1) =

1
−µ1 ·

1
2(1+ r)

,

where r =−R12 = 0.2. Note that the equation holds only in the symmetric case when µ2 = µ1, as a result
we can derive that the gradient ∂E[Z∗,1]/∂ µ1 and ∂E[Z∗,1]/∂ µ2 must satisfy the following relation:

∂E[Z∗,1]
∂ µ1 +

∂E[Z∗,1]
∂ µ2 = m′1(µ

1).

As a result, in this special 2-dimensional case, we can compute the true value m1 = 5/12 ≈ 0.4167 and
m′1(−1) = m1 = 0.4167.

Now we use Algorithm 1 to estimate the sensitivity of E[Z∗,1] with respect to the drift coefficient µ1 by
simple discretization. In detail, we replace the input Brownian motion X(t) by its discretized approximation
X̃n = X(n∆) with step size ∆ = 2−h. Let Z̃n be the reflected process with input X̃n and reflection matrix
R. Then, we can apply Algorithm 1 to the discretized process Z̃n to compute a gradient estimator V̂ h for
∂E[Z̃∗]/∂ µ . Table 3 reports the simulation results with different discretization step sizes. For each h, we

Table 3: Simulation estimator and 95% confidence interval for E[Z̃∗,1], ∂E[Z̃∗,1]/∂ µ1 and ∂E[Z̃∗,1]/∂ µ2

with step size equal to 2−h.

h E[Z̃∗,1] ∂E[Z̃∗,1]/∂ µ1 ∂E[Z̃∗,1]/∂ µ2

8 0.3842±0.0084 0.3540±0.0121 0.0627±0.0027
10 0.3986±0.0081 0.3521±0.0123 0.0621±0.0027
12 0.4174±0.0082 0.3599±0.0124 0.0615±0.0026

generate 10000 stationary sample paths to estimate the expectations and construct the 95% confidence interval.
One can check that the true value of E[Z∗,1] = 0.4167 and ∂E[Z̃∗,1]/∂ µ1(−1)+ ∂E[Z̃∗,1]/∂ µ2 = 0.4167
for the continuous reflected Brownian motion are both in the 95% intervals when h = 12. The numerical
results indicate that Algorithm 1 is potentially applicable for continuous processes via simple discretization.
Of course, rigorous proof is in need to validate the convergence and bound the convergence rate of the
discretization scheme.
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