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ABSTRACT

We consider a common type of robust performance analysis that is formulated as maximizing an expectation
among all probability models that are within some tolerance of a baseline model in the Kullback-Leibler
sense. The solution of such concave program is tractable and provides an upper bound which is robust
to model misspecification. However, this robust formulation fails to preserve some natural stochastic
structures, such as i.i.d. model assumptions, and as a consequence, the upper bounds might be pessimistic.
Unfortunately, the introduction of i.i.d. assumptions as constraints renders the underlying optimization
problem very challenging to solve. We illustrate these phenomena in the rare event setting, and propose a
large-deviations based approach for solving this challenging problem in an asymptotic sense for a natural
class of random walk problems.

1 INTRODUCTION

Robust performance analysis is concerned with the problem of evaluating the worst case performance
measure of interest (typically described as an expectation) among all plausible probability models, such as
those within certain tolerance of a baseline model which is believed to be reflective of reality. Taken literally,
this problem formulation can be challenging because it gives rise to an infinite dimensional optimization
problem (note that we mentioned “all models” within certain tolerance). When the tolerance region is
described in terms of Kullback-Leibler divergence (and other related notions; see, for example, Pardo
2005), this apparently daunting optimization problem is often tractable, and this tractability feature has
been exploited in a range of literature in recent years, for example in control theory (Iyengar 2005; Nilim
and El Ghaoui 2005; Petersen, James, and Dupuis 2000), distributionally robust optimization (Ben-Tal
et al. 2013), finance (Glasserman and Xu 2014), economics (Hansen and Sargent 2008) and queueing (Jain,
Lim, and Shanthikumar 2010).
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Tolerance regions based on the Kullback-Leibler divergence, however, fail to incorporate information
that is often quite natural to assume in common stochastic settings, and that should be added in terms of
constraints in the underlying robust performance analysis formulation. One such natural and important
constraint is the i.i.d. property, often arising in models involving random walk input. Failing to inform the
i.i.d. property even in simple situations involving random walk models can have important consequences
in terms of the accurate assessment of worst case performance measures of interest.

Unfortunately, however, a robust formulation in which the i.i.d. property is added as an extra constraint
on top of the Kullback-Leibler imposed tolerance gives rise to an optimization problem which is no longer
easy to handle.

The main contribution of this paper is to show that in the context of performance analysis associated a
class of large deviations events, such robust formulation gives rise to a problem for which asymptotically
optimal solutions can be constructed. We illustrate our ideas in the setting of i.i.d. random walks.

The rest of the paper is organized as follows. In Section 2 we provide a precise mathematical formulation
of the robust performance analysis problem with i.i.d. constraints and explain why the problem is very
challenging. In Section 3 we provide a strategy that allows to solve this challenging problem asymptotically
in a large deviations regime. Finally, we provide numerical examples which illustrate the performance of
our proposed solution and the impact of adding i.i.d. constraints in the robust formulation.

2 PROBLEM FORMULATION

Let {Xk : k≥ 0} be a sequence of zero mean i.i.d. random variables. Define S0 = 0 and put Sn = X1+ · · ·+Xn.
Let us use F (·) to denote the CDF (Cumulative Distribution Function) of Xi, that is, P(Xi ≤ x) = F (x) and
we use PF (·) to denote the product measure generated by F (·). We use Pn

F (·) to denote the projection of
PF (·) onto its n first coordinates. Simply put, Pn

F describes the joint distribution of the random variables
(X1, . . . ,Xn). The expectation operator associated to PF (·) and Pn

F (·) is denoted by EF (·) and En
F (·),

respectively. We define ψF (θ) = logE1
F exp(θX1) and assume that ψF (θ) < ∞ for θ in a neighborhood

of the origin.
Now, define An = {Sn/n ∈ A} for a closed set A which does not contain the mean of Xk. We are

concerned with the problem of estimating PF (An). Observe that PF (An)→ 0 as n→ ∞ because of the
law of large numbers. Moreover, because ψF (·) is finite in a neighborhood of the origin we have that
PF (An)≤ exp(−δn) for some δ > 0 for all n sufficiently large.

In contrast to standard rare event estimation problems, however, here we assume that F (·) is unknown.
Nevertheless, based on some evidence (for example based on data or expert knowledge) let us assume that we
have obtained a CDF G(·), which approximates F (·) in a suitable sense, for example in the Kullback-Leibler
sense which we shall review momentarily. Let us write PG (·) to denote the product measure associated
to G(·) and we use EG (·) for the expectation operator corresponding to PG (·). Similarly as before, Pn

G (·)
is the projection of PG (·) onto its n first coordinates and we use En

G (·) to denote the expectation operator
associated to Pn

G (·).
We assume that the likelihood ratio dPn

F/dPn
G is well defined and therefore the Kullback-Leibler

divergence of Pn
F with respect to Pn

G is defined via

R(Pn
F ||Pn

G) = En
F log

(
dPn

F
dPn

G

)
= nE1

F log
(

dP1
F

dP1
G
(X1)

)
= n

∫
log
(

dF
dG

(x)
)

dF (x) .

If dPn
F/dPn

G fails to exist (i.e. Pn
F is not absolutely continuous with respect to Pn

G), then the Kullback-Leibler
divergence is defined as infinity. It is elementary to verify that R(· ||Pn

G) is convex (actually R(·||·) is convex
in both of its arguments; Dupuis and Ellis 2011). The associated robust performance analysis problem
with Kullback-Leibler constraint consists in solving

max
Qn
{Qn (An) : R(Qn||Pn

G)≤ ηn}, (1)
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where ηn should be chosen to satisfy

ηn ≈ n
∫

log
(

dF
dG

(x)
)

dF (x) .

One might select ηn by estimating
∫

log(dF/dG(x))dF (x) using available data.
The optimization problem (1) is a concave mathematical program; the objective function to maximize

is linear (in particular concave) in the variable Qn and, as mentioned earlier, the constraint is convex.
Moreover, as we shall see in the body of the paper (see equations (5) and (6)), the optimal solution to
(1), Qn

∗ (·), can be characterized as a suitable mixture between Pn
G (·|An) and Pn

G (·|Ac
n). As the next result

shows, it turns out that Qn
∗ (An) might differ substantially from Pn

F (An) even if F is close to G in the
Kullback-Leibler sense, that is, even in cases in which ηn = o(n) as n→ ∞. In more detail, typically
we will have Pn

F (An) = exp(−nĪF (A)+o(n)), for some positive constant ĪF (A), whereas the next result
indicates that typically Qn

∗ (An)≥ δηn/n for some δ > 0 and large enough n. So, for example, if one builds
an approximation G to F from data, one would need an exponentially large sample size (in n) in order to
obtain an accurate estimate of the probability of interest using only the relative entropy constraint without
recognizing that the data might have come from an i.i.d. model.
Theorem 1 Suppose that ηn = o(n) and that ηn > δ > 0 for some δ > 0 uniformly over n. Assume also
that Pn

G (An) ∈ (exp(−n/δ ′) ,exp(−δ ′n)) for some δ ′ > 0 and all n sufficiently large. Then the optimal
value of (1), Qn

∗ (An), satisfies

Qn
∗ (An) =

ηn

− logPn
G (An)

(1+o(1))

as n→ ∞.
One of the main reasons for such a disparity, as we shall establish in the next section, is that the feasible

region (i.e. {Qn : R
(
Qn||Pn

G

)
≤ ηn}) fails to recognize that we are interested only in models for which the

i.i.d. property of the Xi’s is preserved. So, introducing the i.i.d. constraint transforms problem (1) into the
alternative form

max
H

{
Pn

H (An) =
∫
· · ·
∫

I
(

x1 + · · ·+ xn

n
∈ A
)

dH (x1) · · ·dH (xn) : n
∫

log
(

dH
dG

(x)
)

dH (x)≤ ηn

}
. (2)

Observe that the previous problem is not a concave program because the objective function to maximize
is no longer concave. Unfortunately, in general (2) is very challenging to solve. In the next secion we
explain how to use large deviations theory to solve problem (2) in an asymptotic sense. We finish this
section with a proof of our first theorem.

2.1 Proof of Theorem 1

To solve (1), we rewrite it in terms of the likelihood ratio between Qn and Gn, namely L = dQn/dPn
G, as

max En
G [L;An]

subject to En
G[L logL]≤ ηn,

(3)

where the maximization is over L ∈ L = {L≥ 0 : En
GL = 1} and consider the Lagrangian relaxation

max
L∈L

En
G[L;An]−α(En

G[L logL]−ηn). (4)

Our goal is to find α∗ ≥ 0 such that there is an L∗ that solves (3) and moreover that En
G[L
∗ logL∗] = ηn.

Then this L∗ will be optimal for (3) (c.f. Luenberger 1997, Theorem 1, p. 220).
First, note that when α = 0, the optimal solution to (4) is clearly L∗ = I(An)/Pn

G(An), where I (An)
denotes the indicator function of the set An, which yields the optimal value 1. But then En

G[L
∗ logL∗] =
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− logPn
G(An) = Ω(n) by our assumption in Theorem 1, and since we assume ηn = o(n) we cannot have

En
G[L
∗ logL∗] = ηn as n increases. Therefore the case α∗ = 0 is discriminated.

Now, given any fixed α > 0, it can be verified by a convexity argument that the solution to the
maximization (1) is given by

L∗ ∝ eI(An)/α = e1/α I(An); (5)

see, for example, Hansen and Sargent (2008). Now we write αn for α to highlight the role of n, and
introduce βn = 1/αn for convenience. We also write pn = Pn

G (An) and put qn = Pn
G

(
Ān
)
= 1− pn. Then

(5) can be written as

L∗ =

{
eβn

pneβn+qn
on An

1
pneβn+qn

on Ac
n
. (6)

We now proceed to find α∗n > 0, or β ∗n = 1/α∗n , such that

En
G[L
∗ logL∗] = ηn. (7)

Using the form of (6), (7) becomes

βn
pneβn

pneβn +qn
− log(pneβn +qn) = ηn. (8)

Since ηn > δ > 0 and pn→ 0 as n→ ∞, we must have that all βn satisfying (8) must also satisfy βn→ ∞

as n→ ∞. Otherwise the left hand side converges to zero on some subsequence while the right hand side
stays positively bounded away from zero. Now, we claim that limsup pneβn = 0. Let us proceed assuming
this claim for the moment and come back to this issue at the end of our proof. Then, by a Taylor series
expansion applied to the left hand side of (8), we have that

βn pneβn(1+o(1)) = ηn, (9)

which gives
logβn + log pn +βn +o(1) = logηn.

Heuristically, we must have

βn = logηn− log pn− logβn +o(1) = (logηn− log pn)(1+o(1)). (10)

To verify (10) rigorously, note that when we choose βn = log(ηn/pn), the left hand side of (9) becomes
ηn(log(ηn/pn))(1+o(1)) which is much more larger than ηn for n large enough. On the other hand, setting
βn = 0 gives the left hand side o(1). Therefore, by continuity there must be a solution to (9) in the range
[0, log(ηn/pn)]. Consequently, we have that

βn = logηn− log pn− logβn +o(1) = logηn− log pn + rn, (11)

where the remainder term rn satisfies |rn| ≤ log(log(ηn/pn))+o(1), or equivalently we obtain that rn =
o(log(ηn/pn)), and hence (10).

Iterating the first equality in (10) using (11), we get further that

βn = logηn− log pn− log(logηn− log pn + rn)+o(1) = logηn− log pn− log(logηn− log pn)+o(1).

Finally, the optimal value is

En
G[L;An] =

pneβn

pneβn +qn
∼ pneβn =

ηn

logηn− log pn
(1+o(1))∼ ηn

− log pn
.

Now we must verify that indeed limsup pneβn = 0. Assuming that limsup pneβn > 0, then βnk ≥ δnk
along a subsequence nk→ ∞ for δ > 0. But then we must have from (8) that ηnk ≥ δ ′nk for some δ ′ > 0,
contradicting our assumption that ηn = o(n). We therefore conclude the statement of our theorem.

598



Blanchet, Dolan, and Lam

3 OUR MAIN RESULT

3.1 A Large Deviations Rate Characterization

In order to prove our main result we shall impose additional technical conditions. We assume that ψG (·) is
steep in the sense that for all a ∈ (−∞,∞) there is θa such that ψ ′G (θa) = a. Under this assumption we
have that

Pn
G (An) = exp(−nĪG (A)+o(n)) ,

where
ĪG (A) = inf

x∈A
IG(x) = inf

x∈A
sup

θ

(θx−ψG (θ)) .

Similarly, for any CDF H, we define ψH (θ) = logE1
H exp(θX) and IH (x) = supθ (θx−ψH (θ)). Similarly

as for the definition of ĪG (A), we write ĪH (A) = infx∈A IH (x). Now we are ready to state our main result.
Theorem 2 Let int(A) denote the interior of the closed set A. Suppose that ĪH(A) = ĪH(int(A)) ∈ (0,∞)
for any H ∈P for some feasible set P . We have

lim
n→∞

1
n

log max
H∈P,Xi

i.i.d.∼ H
Pn

H(A) =− min
H∈P

ĪH(A).

Proof. The proof follows from a large deviations argument. First,

liminf
n→∞

1
n

log max
H∈P,Xi

i.i.d.∼ H
Pn

H(An) = liminf
n→∞

max
H∈P,Xi

i.i.d.∼ H

1
n

logPn
H(An)

≥ max
H∈P,Xi

i.i.d.∼ H
liminf

n→∞

1
n

logPn
H(An)

≥− min
H∈P

ĪH(int(A)) =− min
H∈P

ĪH(A).

Next, since A is closed, using Chebycheff inequality (as in the proof of Cramer’s theorem; see Dembo
and Zeitouni 1998, Remark (c), p. 27) gives

PH(An)≤ 2exp(−nĪH(A))

and hence
limsup

n→∞

1
n

log max
H∈P,Xi

i.i.d.∼ H
Pn

H(An)≤− min
H∈P

ĪH(A).

Combining the upper and lower bounds we get our conclusion.

The significance of the previous result is that the optimization problem that must be solved can now be
cast as a concave program and thus it is more tractable. In order to have a concrete class of examples, let
us focus on the case in which A = [a,∞). Really the key property that holds using this specific selection is
that we can identify a specific element a ∈ A such that IH (a) = ĪH (A). We consider the general problem
of finding the minimum rate function over a class of distributions, namely

inf
H∈P

IH(a) = inf
H∈P

sup
θ

{θa−ψH(θ)}. (12)

Lemma 1 If P is a convex set, then the optimization program (12) is convex.

Proof. The inner objective function in (12) is concave as a function of θ , since ψH(·) is convex. For
the outer objective function, note that ψH(θ) is concave in H, and so θa−ψH(θ) is convex in H. As the
maximum over a set of convex functions (indexed by θ ), the outer objective function supθ{θa−ψH(θ)}
is also convex as a function of H. Therefore both the inner and outer optimizations in (12) are convex
programs.
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3.2 Numerical Procedure

For our numerical procedure, in order to avoid the issue of optimization over infinite-dimensional variables,
we concentrate on the case of discrete H. Also we focus on A = [a,∞). For convenience, we write
p = (p1, . . . , pm) as the weights over support points {x1, . . . ,xm}. Moreover, we write

Z(p) = max
θ

{
θa− log

m

∑
i=1

pieθxi

}
(13)

as the outer objective function in (12). We concentrate on the case when a lies between mini=1,...,m xi
and maxi=1,...,m xi; if a > maxi=1,...,m xi, then the worst-case probability of interest max

PH∈P,Xi
i.i.d.∼ PH

Pn
H(An)

is trivially 0, whereas if a < mini=1,...,m xi then one can replace a by mini=1,...,m xi without changing the
probability of interest. In the case a ∈ [mini=1,...,m xi,maxi=1,...,m xi], the optimal solution for θ in (13) can
be solved simply by finding the root of

∑
m
i=1 pixieθxi

∑
m
i=1 pieθxi

= a.

We now focus on minp∈P Z(p). Suppose that P is a feasible region dictated by Kullback-Leibler
divergence constraint, i.e. P = {p≥ 0 : ∑

m
i=1 pi log(pi/p0

i )≤ η ,∑m
i=1 pi = 1} for some baseline distribution

p0 = (p0
1, . . . , p0

m). A particularly convenient procedure to approximate the optimal solution is to use
the conditional gradient (or Frank-Wolfe) method (Frank and Wolfe 1956). This lies on the stepwise
optimization, given the current solution pk = (pk

1, . . . , pk
m) at step k,

min
p∈P

∇Z(pk)(p−pk). (14)

This subroutine can be easily solved. In fact, we have

∇Z(pk) =

− d
d pi

(
log

m

∑
j=1

p jeθ kx j

)∣∣∣∣∣
pi=pk

i


i

=

(
− eθ kxi

∑
m
j=1 p jeθ kx j

)
i

by simple arithmetic or by the use of the envelope theorem, where θ k is the solution to

∑
m
i=1 pk

i xieθxi

∑
m
i=1 pk

i eθxi
= a.

For convenience, we let

ξi(pk) =− eθ kxi

∑
m
j=1 pk

je
θ kx j

be the i-th coordinate of ∇Z(pk). The solution to (14) is given by qk+1 = (qk+1
1 , . . . ,qk+1

m ), where

qk+1
i =

p0
i eβξi(pk)

∑
m
j=1 p0

j e
βξ j(pk)

and β < 0 satisfies the equation

∑
m
i=1 β p0

i ξi(pk)eβξi(pk)

∑
m
j=1 p0

j e
βξ j(pk)

− log
m

∑
j=1

p0
j e

βξ j(pk) = η .
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If there is no negative root to this equation, then qk+1 is plainly a degenerate mass on argmin{∇Z(pk)}.
Therefore, the iterative procedure is the following:

Iterative Procedure: Start from the baseline distribution p0 (or any other distribution). At each iteration k,
given pk, do the following:

1. Compute the root θ that solves
∑

m
i=1 pk

i xieθxi

∑
m
i=1 pk

i eθxi
= a.

2. Compute

ξi =−
eθxi

∑
m
j=1 pk

je
θx j

for i = 1, . . . ,m.

3. Compute, if any, the negative root of

∑
m
i=1 β p0

i ξieβξi

∑
m
j=1 p0

j e
βξ j

− log
m

∑
j=1

p0
j e

βξ j = η .

4. If there is a negative root β , then

qk+1
i =

p0
i eβξi

∑
m
j=1 p0

j e
βξ j

for i = 1, . . . ,m.

Otherwise qk+1
i = 1 if i = argmin{ξi}, and 0 for all other i’s.

5. Update pk+1 = (1− εk+1)pk + εk+1qk+1 for some step size εk+1.

There are several choices for the step size εk+1 in the above procedure. It can be a constant, or one can
use the so-called limited minimization rule or the Armijo rule (see Bertsekas 1999, p. 217). The latter two
choices guarantee convergence to the optimal solution, in the sense that every limit point of the sequence
pk+1, as computed by the procedure above with the chosen rule, will be optimal for minimizing Z(p)
(Bertsekas 1999, Proposition 2.2.1 and Section 2.2.2).

4 NUMERICAL EXPERIMENTS

We will apply our algorithm to the case of two standard discrete distributions with finite support, namely
the binomial distribution and a discrete distribution with random weights. We compare the outcome of
robust performance analysis with i.i.d. constraints and without i.i.d. constraints, respectively.

Figure 1 shows the log-probabilities of the event An = {Sn/n > a} with a = 8 associated with a binomial
model with parameters m = 10, p = 0.5 as n increases. The true model is assumed to be binomial with
m = 10, p = 0.55. This gives us η = .05, which is relatively low and chosen for illustrative purposes only.
In both optimizations, we simply used step size εk = k−

2
3 which resulted in empirical convergence of our

procedure.
Figure 2 shows the log-probabilities of the event An = {Sn/n > a} with a = 8 associated with a discrete

distribution with on the integer support of {1,2, . . . ,10} with the vector of weights

(.05, .12, .08, .13, .06, .04, .14, .13, .13, .12)

obtained by random assignment (truncated to two decimal places here). We simulated N = 300 i.i.d. repli-
cations from the model. We took the standpoint of a modeler who does not have access to the true model,
but instead uses maximum likelihood estimation (MLE) to estimate the weights and thus obtain a baseline
distribution. This gives us η ≈ .02, which is consistent for data-driven selection. As it can be seen, in both
cases the upper bound with i.i.d constraint provides a much tighter bound to the real model than otherwise.

601



Blanchet, Dolan, and Lam

3 4 5 6 7 8 9 10
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

n

lo
g

 P
(A

n
)

 

 

Upper Bound i.i.d constraints

Real Model

Base Model

Upper Bound no constraints

Figure 1: Binomial.
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Figure 2: Random Weights.
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