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ABSTRACT 

Simulation has been widely used in modeling engineering systems. A metamodel is a surrogate model 
used to approximate a computationally expensive simulation model. Extensive research has investigated 
the performance of different metamodeling techniques in terms of accuracy and/or robustness and 
concluded no model outperforms others across diverse problem structures. Motivated by this finding, this 
research proposes a bi-criteria (accuracy and robustness) optimized ensemble framework to optimally 
identify the contributions from each metamodel (Kriging, Support Vector Regression and Radial Basis 
Function), where uncertainties are modeled for evaluating robustness. Twenty-eight functions from the 
literature are tested. It is observed for most problems, a Pareto Frontier is obtained, while for some 
problems only a single point is obtained. Seven geometrical and statistical metrics are introduced to 
explore the relationships between the function properties and the ensemble models. It is concluded that 
the bi-criteria optimized ensembles render not only accurate but also robust metamodels. 

1 INTRODUCTION 

The growing complexity of real-world systems drives research in developing simulation models to imitate 
the underlying functionality of the actual system (Banks et al. 2001). However, development of a 
simulation model requires expertise and is sometimes time consuming. A Metamodel, or a surrogate 
model, also known as a “model of the model” (Kleijnen 1995), is often built when the simulation is not 
computationally easily implemented. Metamodels can be used to approximate and thus replace the 
complex simulation model for engineering decisions. A comprehensive review of metamodeling 
applications in computer-based engineering design and design optimization can be found in previous 
references (Simpson et al. 1997; Wang and Shan 2007).  
 Researchers have conducted comprehensive comparisons of different metamodeling techniques. With 
respect to accuracy (see Section 3.1 for definition), they have concluded that none of the metamodels can 
perform uniformly well on diverse problems. Yet, to the best of our knowledge, the comparison studies 
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were conducted without considering various uncertainties (see Section 4.2 for definition and 
classification) on design variables and parameters. It is expected that the accuracy of metamodels may 
deteriorate with uncertainties existing in the system. In addition, adding uncertainties into the testing 
problems will introduce another evaluation metric: robustness, the quality of being robust (see Section 3.1 
for definition). Thus, in this research, twenty eight test functions from the literature are used for 
comparison study. For each function, uncertainties (from a Gaussian distribution) are purposely added, in 
order to exploit the robustness performance of metamodels. A robust model endeavors to uniformly 
behave well on each task it performs. In the case of metamodeling, the model is supposed to give 
uniformly accurate predictions across all sample points, rather than asymmetrically highly accurate 
predictions in some areas (or points) while poorly accurate predictions in some other areas (or points), 
which results in a high variability of the local prediction accuracy. Therefore, to develop a metamodel, 
global accuracy is no longer the only objective.  In this context, we must incorporate another evaluation 
metric which entitles the metamodel insensitivity to uncertainties. Thus, we are looking for a model that is 
both accurate and robust, in the sense that it maintains a harmonically balanced control on boosting 
accurate global predictions while preventing local exaggerators. This has practical meaning. Imagine we 
are developing a model for forecasting the hourly energy consumption for a building. Without 
consideration of a robustness control, we might build a prediction model with good global accuracy, but a 
number of local outliers which will deteriorate the decision making and make the system unreliable. 
Driven by this motivation, a bi-criteria (accuracy and robustness) ensemble optimization framework of 
three well-known metamodel techniques, namely Kriging (Matheron 1960), Support Vector Regression 
(SVR) (Drucker et al. 1996; Clarke, Griebsch, and Simpson 2005) and Radial Basis Function (RBF) (Dyn, 
Levin, and Rippa 1986) is developed. We observe that Pareto frontiers are obtained for most problems, 
while for a small subset of problems, the Pareto front converges to a single point, which is due to the 
dominant advantage of one metamodel over others. Moreover, to gain insight on single-point Pareto 
frontier, we introduce seven geometric and statistical properties describing the function. The relationships 
between the function properties and metamodel performance are then summarized. 
 This paper is organized as follows. In Section 2, background knowledge on metamodeling techniques, 
and ensemble are introduced. The Bi-objective optimization framework for ensemble weight selection is 
proposed in Section 3, in which accuracy and robustness are elaborated upon. In Section 4, comparison 
experiments are detailed with insights on the results provided. Conclusions and future research are 
discussed in Section 5. 

2 REVIEW ON METAMODELING TECHNIQUES 

Three metamodeling techniques are of interests in this research: Kriging, SVR and RBF, due to their 
extensive use in surrogate modeling. Each is reviewed in this section. In addition, research in developing 
an ensemble model (single criteria) is reviewed. 

2.1 Kriging 

Kriging (also known as Gaussian process regression) is an interpolation method that assumes that the 
simulation output may be modeled by a Gaussian process; it gives the best linear unbiased prediction of 
simulation output not yet observed. It generates the prediction in the form of a combination of a global 
model with local random noise: 
 , (1) 
where  is the input vector,  is the weight vector, and , is a stochastic process with zero mean and 
stationary covariance of 
 ,    (2) 
where  is the process variance,  is an n by n correlation matrix where n is the sample size of 
the training data.  is usually depicted by a Gaussian correlation function,  with 
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parameter . Kriging is one of the most intensively studied metamodels among the others because it is 
flexible with a number of correlation functions and regression functions (with polynomial degree of 0, 1 
or 2) to choose from. It is generally acknowledged that the Kriging model outperforms other metamodels 
on nonlinear problems but is not easy to develop due to the time consumed by Maximum Likelihood 
Estimation of the correlation parameters in  which is a multi-dimensional optimization problem 
(Simpson et al. 2001). In this study, we use deterministic Kriging. 

2.2 Support Vector Regression (SVR) 

Support vector regression is analogous to support vector classification, which tries to maximize the 
distance between two classes of data by selecting two hyperplanes in a way that they separate the training 
data with no points between them, the mathematical form of SVR is: 
  ,  (3) 
where  is the norm vector to the hyperplane and  determines the offset of the hyperplane from the 
origin. The goal is to find a hyperplane that separates the data points optimally without error and separates 
the closest points with the hyperplane as far as possible. Thus, it can be constructed as an optimization 
problem: 

Minimize:    

 subject to    . (4) 

According to the duality principle, the nonlinear regression problem is given by: 
 , (5) 
where  and  are two introduced dual variables, and  is a kernel function, e.g. Gaussian 
kernel. It is interesting to note that research has demonstrated SVR performs well on a number of 
problems, and even outperforms Kriging for some cases (Wang and Shan 2007). However, most studies 
have been empirical.   

2.3 Radial Basis Function (RBF) 

RBF is used to develop interpolation on scattered multivariate data. A RBF is a linear combination of a 
real-valued radially symmetric function, , based on distance from the origin, 
 , (6) 
where  is the unknown interpolation coefficient determined by the least-squares method, n is the 
number of sampling points and  is the Euclidean norm of the radial distance from design point  
to the sampling point . Fang et al. (2005) found RBF performs well on highly nonlinear problems.   

2.4 Single-Criteria Ensembles 

Ensemble is a technique of combining multiple models in order to create a stronger overall representation 
of the system studied. Acar and Rais-Rohani (2009) proposed an ensemble of surrogate models and 
demonstrate that the resulting hybrid model improves the prediction accuracy. 
In general, a weighted average surrogate model is (Bishop 1995):  
 , (7) 
where  is the ensemble response prediction by the weighted sum of each surrogate model 
response prediction ,  is the weight corresponding to the th surrogate, and  is the number of 
surrogate models. In addition, to achieve an unbiased estimator of the ensemble, the weights  must 
sum to one. 

It is expected that an outperforming surrogate is deemed to be assigned larger weight while an 
underperforming surrogate deserves smaller weight in an ensemble. The evaluation metrics on “goodness-
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of-fit” are considered to be a confident measurement of the model accuracy. Acar and Rais-Rohani (2009) 
proposed a weight selection approach by solving an optimization problem to identify the weight for each 
surrogate that would minimize a selected error metric (e.g., root mean square error). That is, 

Minimize:    
 subject to   , 
 , (8) 
where Err{} is the error metric of the built ensemble predicted response. We want to note that this 
framework used a single criteria (in this case, accuracy) to develop the ensemble. In the next section, we 
propose a bi-objective optimization problem that not only considers accuracy but also robustness in a 
weight selection mechanism. 

3 FRAMEWORK OF BI-CRITERIA OPTIMIZATION ON ENSEMBLE WEIGHT 
FACTORS SELECTION 

3.1 Metamodel Performance Criteria 

In a real-world engineering system, the impacts of uncertainties and noises may not be negligible. This 
requires a model (surrogate, ensemble) to perform not only accurately but also robustly.  Accuracy is 
defined as how well the metamodel predicts the unknown data, which is usually evaluated by an error 
measurement. Robustness measures how consistently a model performs over different problems (Li et al. 
2010), or how consistently a model performs over different design regions on one problem. The accuracy 
metrics reflect the degree of closeness of the metamodel measurement outputs  to true output y which is 
obtained from the deterministic input. One global measurement for accuracy is Normalized Root Mean 
Square Error (NRMSE) 

 . (9) 
Robustness considers the metamodel’s ability to consistently achieve similar accuracy over the whole 
design space, thus it could be evaluated by the standard deviation of local prediction error (SDPE): 
 ,  (10) 
where  is the absolute difference between the true output and prediction output at data point i, 
and n is the number of data points. Formulation of  Normalized SDPE is given in the next section. 

3.2 Bi-Criteria Optimization Framework 

Given NRMSE and NSDPE, a bi-objective optimization problem is introduced: 
Minimize:   (  , ), 

where 

 ( ), 

 , 

 subject to   , 
 ,  (11) 
where  is the number of metamodel techniques in the ensemble (in this study, =3, , =1 is 
Kriging; =2 is SVR; =3 is RBF),  is the true fitness value at point ;  and  are the maximum 
and minimum value of  over  sample points;  is the prediction at point  by metamodel ,  is the 
ensemble weight of metamodel . Note both objectives are normalized for comparison convenience 
among functions of various fitness magnitudes. 
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 We use a weighted sum to transform the multi-objective problem into a single objective function as in 
(Hwang and Masud 2012): 

Minimize:  , 
 subject to   ,   
 ,   (12) 
where  and  are importance weights for the two objectives. In this research, a sequential quadratic 
programming algorithm (SQP) (Nocedal and Wright 2006), an iterative method for nonlinear 
optimization, is used to solve this bi-criteria optimization problem.  
 

4 METAMODELING EXPERIMENTS 

4.1 Test Functions 

The test functions used in this research are composed of 28 black-box benchmark functions that are 
originally proposed for competition on real parameter single objective optimization (Liang and Suganthan 
2013). There are three main categories of black-box functions: 5 unimodal functions, 15 multimodal 
functions and 8 composition functions,  each of which has the range [-100,100]D, where D denotes the 
number of dimensions of the function. These three function categories have distinguishing characteristics, 
for example, a unimodal function has only one global optima (valley/peak), while a multimodal can have 
many local optima (valleys/peaks), and a composition function is composed from unimodal and 
multimodal functions.  

4.2 Design of Experiment 

4.2.1 Training, Validation and Test Data Generation 

Latin hypercube sampling (LHS) is a statistical sampling method used in construction of computer 
experiments for good uniformity and coverage from a multidimensional distribution (Eglajs and Audze 
1977). It is widely used because the sample size is not strictly determined by the number of dimensions of 
the underlying simulation model (Zhang et al. 2013). For fitting a quadratic polynomial model, the 
minimum number of sample points is , where d denotes the number of variables (Jin, 
Du, and Chen 2003; Shan and Wang 2005). We generate training data of two distinct dimensions of 
design variables, 5 and 10, with the sampling size varying from 21 to 66 respectively, using LHS. With 
comparative settings of different dimensions of the design variables, we are able to see if the 
dimensionality impacts the performance of the metamodels. In order to avoid over fitting, we implement a 
k-fold cross-validation process to the training data (Kohavi 1995). Here k=2, because we have a relatively 
small number of sampling data points. Test data is randomly generated with 1000 data points over the 
design space, which is treated as a testing data set for the metamodel performance evaluation.  

Given the test problems, we purposely add uncertainties to the inputs and the outputs of the functions. 
Specifically, parametric uncertainty (variability on each input variable) and residual uncertainty 
(variability on the outputs) are added in the black-box functions. For the parametric uncertainty, a random 
number within 10% of each design variable range of [-100,100], [-10, 10] is generated and added. For the 
residual uncertainty, we add a random number from a Normal distribution ~N (0, 2 ), where 2=10% 
times the logarithm of the difference between the maximum and minimum of the training output for each 
black-box problem. It is easily understood that with the existence of uncertainties, the same input may not 
generate the same output, thus 25 simulation replicates are conducted to mitigate the randomness. An 
average value of the 25 output replicates ( ) is taken as the output for training data while the input for 
training data takes its nominal value ( ), which is the exact value without noise contamination. And the 
same operation is applied to test data. 
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4.2.2 Parameter Tuning 

The grid search method (Chang and Lin 2011) is applied in this study to select the optimal parameters that 
give the minimum validation error, then the test data is applied to the optimally trained model to obtain its 
generalization error. For example, based on experiments, the degree of polynomial regression function for 
Kriging is selected as 0 for a Sphere function, while for Composition Function 1, it is 2. Table 1 
summarizes the parameter search space for each model.

Table 1: Parameter Search Space for Each Metamodel. 

Technique Parameters 

Kriging 
Regression function: polynomial (degree=0, 1, 2);  
Correlation function: cubic ( , exponential 
( ) and Gaussian. 

SVR SVR type: nu-SVR (nu=0,0.25,0.5,0.75,1); 
Kernel function: RBF; 

RBF RBF center: set as equal to input;  
Basis function: Gaussian or polyharmonicspline. 

 

4.3 Result Analysis 

In this section, the performance of the three metamodels simulated on 28 black-box problems under 
parametric and residual uncertainties is analyzed with statistical and graphical methods. An ensemble 
solely based on error minimization is first built and compared to the three metamodels in terms of 
accuracy. Then a bi-criteria ensemble is built for analysis on the relationship between accuracy and 
robustness, and between function properties and metamodel performance. 

4.3.1 Metamodels’ Performance Comparison using Accuracy 

In response to different distributions among the metamodels, a nonparametric statistics test is preferable 
as it has fewer restrictive assumptions about data levels and underlying probability distributions. The 
Friedman test (Friedman 1937), a non-parametric statistical test, is applied to detect differences in error 
measurements across the three metamodels and the ensemble.  
 It is observed that there is no significant difference on the model performance by statistically 
comparing the mean of each model’s NRMSE between the two different settings of dimensions, 5 and 10, 
thus we only report the results of testing problems from the 10 dimension problems. The average NRMSE 
and standard deviation of NRMSE across 28 functions, which provides a rough indication of accuracy and 
robustness, for Kriging, SVR, RBF and their ensemble are 0.106, 0.131, 2.726, and 0.086, and 0.465, 
0.055, 10.034 and 0.050, respectively. It is noticeable that RBF gives two outliers, function 8 and function 
20. From a geometric point of view, these two functions share one common characteristic: an almost flat 
response surface for most of the space with an abrupt altitude change within a small area. Moreover, the 
change in altitude is not uniformly spreading, but is an asymmetrical pattern centered from a point. By 
examining the fundamental modeling mechanism of RBF, which makes inferences based on radial 
symmetrical distance, the outliers can be explained. Specifically, RBF might be inaccurate  for a response 
surface with an asymmetrical shape. Thus, to effectively compare the three metamodels performance, we 
remove the outliers, which results in an average NRMSE of 0.110 that is comparable to Kriging and a 
standard deviation of NRMSE of 0.118 that is still inferior to the others. As a result, we need to keep in 
mind that RBF might not be a good choice for a robust model, especially when the response surface of the 
system is unknown. The Friedman’s test results indicate that the four groups of metamodels have 
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significant differences due to significant P-values given in Table 2. The Nemenyi’s test (Nemenyi 1963) 
further divides the four metamodels types into three groups labeled A, B, and C, in which Kriging and 
RBF have similar rankings, whereas ensemble is ranked first and SVR is ranked last, given by Table 3. 
These statistical tests to some extent demonstrate that Kriging and RBF generally perform better than 
SVR when all of the 28 functions are aggregately considered, while even so, the ensemble of the three 
metamodels performs even better than any stand-alone metamodel, which is indicated by the sum of ranks 
and mean of ranks values in the two-tailed test. Therefore, building an ensemble to take advantage of each 
metamodel’s strength and mitigate their weakness is an effective way to avoid biased and sub-optimal 
solutions. In a word, the comprehensive performance among all models could be summarized as: 
ensemble outperforms all, followed by Kriging, and RBF with two outliers, and the last is SVR.  
 However, the ensemble we obtained to this extent is built solely based on NRMSE minimization, 
which is not sufficient when uncertainties exist, so in the next section, a bi-criteria ensemble is built to 
further incorporate robustness.  

Table 2: Friedman’s Test on NRMSE. 

Q (Observed value) Q (Critical value) DF p-value (Two-tailed) alpha 
52.325 7.815 3 < 0.0001 0.05 

Table 3: Multiple Pairwise Comparisons Using Nemenyi’s Procedure/ Two-tailed Test on NRMSE. 

Sample Sum of ranks Mean of ranks Groups 
Ensemble 34.000 1.214 A     

RBF 71.500 2.554   B  
Kriging 71.500 2.554   B  

SVR 103.000 3.679     C 
 
4.3.2 Bi-Criteria Ensemble 

In this section, the case of dimension=10 is selected as an illustrative example. 28 bi-criteria ensembles 
are built from the optimization framework defined in Section 3. One hundred and one single objective 
optimization problems are solved by changing  (see (12)) from 0 to 1 with 0.01 step size. The Pareto 
optimality plots of most of black-box problems show that the two objectives are conflictive. 
 For clarification, we take one un-normalized unimodal black-box problem, Rotated High Conditioned 
Elliptic Function’s Pareto Frontier as an example, which is shown in Figure 1. The two end points in the 
Pareto frontier indicate when RMSE fully controls the optimization problem, it reaches its minimum, 
while SDPE reaches its maximum, and vice versa. The middle point reflects when RMSE and SDPE are 
of equal importance. To illustrate, see Figure 2, the sum of the two optimal solutions for each normalized 
objectives is plotted over all iterations, as the point is located in the lower middle of the curve, we can 
intuitively reconsider the two objectives as two costs, then to reach the minimum cost, we can plot the 
sum of the two objectives w.r.t. the solutions, then in this case, we find that the 51st solution gives the 
minimum cost.  

As we stated, most of the problems have a typical Pareto Frontier as Figure 1 shows, however, some 
of them do not, instead, their Pareto Frontier is a single point. The reason for this phenomenon is because 
for some of the black-box functions, one metamodel performs significantly better than others.  In each 
iteration of the optimization problem, it is assigned the full weight of 1 while the others are evicted from 
the ensemble. It is necessary to study these functions’ properties so we can gain some useful insights on 
the relationship between the response surface properties and metamodel performance. In the next Section, 
we employ some geometrical and statistical metrics to evaluate the properties of the black-box functions 
with a single-point Pareto frontier. 
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4.3.3 Properties of Black-box Functions with Single-point on Pareto Frontier 

In this section, 7 properties are introduced. The definitions are listed in Table 4. The response surface of 
each function is meshed by star-studded sampling points. Each dimension of sampling points are 
uniformly distributed within the range of [-100,100], with the interval of 1. “Gradient of Response 
Surface Point” denotes the first derivative of a function evaluated at a sampling point on the surface. This 
measures the change rate of bumpiness.  A single-point Pareto frontier is detected in 7 out of the 28 
functions  and its corresponding predictor metamodel is given in Table 5. 
 To intuitively understand the data given in Table 5, plots of the seven metrics for the 28 functions are 
provided in Figures 3-9.  
 

 
Figure 1: Pareto Frontier of Rotated High 
Conditioned Elliptic Function. 

 
Figure 2: Sum of RMSE & SDPE on Rotated High 
Conditioned Elliptic Function. 

 

Table 4: Definition and Calculation Methods of 7 Geometric and Statistical Properties. 

Properties Description 
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Mean Mean of absolute values of gradients on all response surface points generally 
evaluates how steep and rugged the surface is by looking into its rate of change 
on each point  

Median Median of absolute values of gradients on all response surface points finds the 
median value of all rates of change on each point 

Std. Standard deviation of absolute values of gradients on all response surface 
points evaluates the rate of the rate of change on each point 

Min Minimum of absolute values of gradients on all response surface points gives a 
lower bound of rate of change on each point 

Max Maximum of absolute values of gradients on all response surface points gives 
an upper bound of rate of change on each point 

  Std. of Function 
values 

Standard deviation of function values on all design points can evaluate how 
bumpy the surface is by looking into its each value’s deviation from the mean 

Biggest 
difference 

Averaged local biggest difference of function values can evaluates the average 
bumpiness by looking into the difference between  “valley” and “peak” on 
each local area 

 

It is noticeable that the single metamodel solution for the Pareto point is either Kriging (functions 3, 7, 8, 
20) or RBF (functions 4, 12, 19). This indicates that Kriging and RBF perform better than SVR in terms of 
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both accuracy and robustness on these functions. In addition, except for max of gradient of response 
surface point for Kriging, and std. of function values for RBF, all the rest of the plots show that the 
functions with a single Pareto point have relatively smaller values of the seven evaluation metrics. In fact, 
functions with higher values of evaluation metrics tend to be more complicated and changeful, and vice 
versa. Therefore, we can intuitively interpret the values of the evaluation metrics as a measure of a 
function’s complexity, i.e. the lower value indicates a simpler form of the response surface. Therefore, we 
can conclude that for a black-box problem with a relatively simple form of a response surface, there is a 
higher chance that one metamodel will overwhelmingly perform better than others and take full charge of 
the ensemble development. In another words, because the function is simple to predict, any metamodel can 
easily produce a good enough approximation, so the performance difference among all the metamodels is 
marginal. When dealing with a complicated response surface, it is difficult with only one metamodel to 
achieve a good approximation, and  the strength of all metamodels must be aggregated in order to derive a 
good approximation of the surface, so an ensemble built from all metamodels is naturally required. 

Table 5: Evaluation Metrics Statistics Summary for Black-box Functions with Single Pareto Point. 

Properties Gradient of Response Surface Point Std. of 
Function 
values 

Biggest 
difference 

Single 
Pareto Function 

Number Mean Median Std. Min Max 

3 0.0001  0.0000  0.0030  0.0000  0.1841  0.0148  0.0032  Kriging 
4 0.0030  0.0027  0.0024  0.0000  0.0109  0.1842  0.0596  RBF 
7 0.0004  0.0000  0.0056  0.0000  0.5441  0.0163  0.0049  Kriging 
8 0.0158  0.0142  0.0111  0.0000  0.2804  0.0399  0.1256  Kriging 

12 0.0018  0.0008  0.0027  0.0000  0.0158  0.1319  0.0308  RBF 
19 0.0021  0.0003  0.0043  0.0000  0.0272  0.1389  0.0415  RBF 
20 0.0134  0.0000  0.0395  0.0000  0.4541  0.0554  0.0804  Kriging 

 

 
Figure 3: Mean of Gradient of Response Surface. 

 
Figure 5: Min of Gradient of Response Surface. 

 
Figure 4: Max of Gradient of Response Surface. 

 
Figure 6: Biggest Difference. 
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Figure 7: Std. of Function Values. 

 
Figure 8: Std. of Gradient of Response Surface.

 
Figure 9: Median of Gradient of Response Surface. 

5 CONCLUSION 

A new approach on selecting weight factors for developing an ensemble of metamodels is proposed in 
this research. Based on earlier efforts, this approach treats the development of ensembles by extending a 
single objective optimization to a bi-criteria optimization problem, which is achieved by simultaneously 
optimizing on both accuracy and robustness. The addition of uncertainties is of practical rationale as in 
real world design engineering, noises and errors are inevitable. For a complete study, 28 black-box 
problems of distinct characteristics are set as test problems to evaluate the performance of each 
metamodel in terms of accuracy and robustness and to test our proposed approach. 
 When both accuracy and robustness are considered in selecting weight factors of the ensemble, 
different Pareto Frontiers are achieved. 21 out of the 28 functions have typical Pareto Frontiers where the 
two objectives present a conflictive relationship. However, 7 out of the 28 functions display a single 
Pareto point, which is because one metamodel overwhelmingly performs better than the others. Seven 
evaluation metrics are introduced to empirically analyze the single Pareto point phenomenon. The results 
show that functions with a single Pareto point are more likely to have a simpler form of response surface 
than others. 
 In summary, some of the key findings in this study are:   

� It’s not conclusive that any metamodel predicts better than others across diverse problems; 
� RBF performs poorly on problems with an asymmetrically distributed response surface, which 

indicates it is less robust than the other two models; 
� Kriging and RBF statistically perform better than SVR in terms of accuracy. An ensemble of 

three metamodels statistically performs better than any stand-alone metamodel. Therefore, it is 
recommended that if computationally permissible, an ensemble is built instead of a stand-alone 
metamodel, given that sufficient prior knowledge regarding each member of ensemble is fully 
understood by users; 

� A novel ensemble weight selection mechanism is successfully implemented, which renders not 
only accurate but also robust surrogate models, and provides us with new insights on the 
relationship between accuracy and robustness, given uncertain conditions; 
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� In most cases, accuracy and robustness have a conflictive relationship, of which the Pareto 
Frontier looks like the left half of a convex parabola. We suggest equal weight on both objectives 
for a balanced solution. 

 In future research, we plan to implement bi-criteria ensemble metamodel to replace an expensive 
simulation model of a real world problem, e.g., building energy consumption, in order to achieve an 
accurate and robust metamodel under uncertain conditions with unequal variance. Some algorithms that 
are more adaptive to a stochastic environment will be considered instead, e.g., stochastic Kriging. What’s 
more, relationship between the problem properties and metamodeling performance will also be further 
explored. According to the meta-learning concept (Vilalta and Drissi 2002), which studies how to 
properly select a model for a specific problem based on experience, it would be more efficient and 
effective if connections between the training data characteristics and metamodel performance can be 
established. 
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