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ABSTRACT

Quantiles are often used in risk evaluation of complex systems. In some situations, as in regulations regarding
safety analyses of nuclear power plants, a confidence interval is required for the quantile of the simulation’s
output variable. In our current paper, we develop methods to construct confidence intervals for quantiles
when applying Latin hypercube sampling, a variance reduction technique that extends stratification for
sampling in higher dimensions. Our approaches employ the batching and sectioning methods when applying
replicated Latin hypercube sampling, with a single Latin hypercube sample in each batch, and samples
across batches are independent. We have established the asymptotic validity of the confidence intervals
developed in this paper. Moreover, we have proven that quantile estimators from a single Latin hypercube
sample and replicated Latin hypercube samples satisfy weak Bahadur representations. An advantage of
sectioning over batching is that the sectioning confidence interval typically has better coverage, which we
observe in numerical experiments.

1 INTRODUCTION

For a given constant 0 < p < 1, the p-quantile of a continuous random variable Y is the smallest constant
ξp such that P(Y ≤ ξp) = p. For example, the median is a special case of a quantile when p = 0.5. If Y has
cumulative distribution function (CDF) F , then the p-quantile ξp can be calculated as the inverse of the CDF
at value p, denoted as F−1(p). Quantiles have wide applications in risk assessment of complex systems.
For example, in financial portfolio management, quantiles are known as values at risk (VaRs), and analysts
often measure risk and capital adequacy in terms of 0.99-quantiles. Another important use of quantiles
occurs in safety analyses of nuclear power plants. The U.S. Nuclear Regulatory Commission requires plant
licensees to demonstrate that their facilities satisfy a 95/95 criterion (U.S. Nuclear Regulatory Commission
1989), which means that the licensee has to establish with at least 95% confidence that the 0.95-quantile of
the regulated output variable (for example, peak cladding temperature) falls below a mandated threshold.
Hence, not only do we want a point estimator of the 0.95-quantile, but also an upper one-sided 95%
confidence interval (CI) of the quantile so that if the upper confidence limit lies below the given threshold,
the 95/95 criterion is satisfied.

One simulation method to estimate a quantile is crude Monte Carlo (CMC). With CMC, a sample of n
independent and identically distributed (i.i.d.) outputs is generated, through which their CDF is estimated,
and then a point estimator of the quantile is obtained by inverting the CDF estimator (Section 2.3 in Serfling
1980). Let F ′ denote the derivative (when it exists) of F . If F ′(ξp)> 0, then the quantile estimator from
CMC obeys a central limit theorem (CLT) (Section 2.3.3 in Serfling 1980), from which an asymptotically
valid CI can be constructed if we have a consistent estimator of the CLT’s asymptotic variance. Section
2.6.2 in Serfling (1980) describes one approach, using a finite difference, for consistently estimating the
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asymptotic variance. Instead of utilizing a CLT to build a CI, an alternative method exploits a binomial
property to obtain an exact distribution-free CI based on order statistics (Section 2.6.1 of Serfling 1980).

In addition to CMC, there has been abundant work conducted to obtain more efficient quantile estimators
by applying variance-reduction techniques (VRTs); see Chapter 4 in Glasserman (2004) for an overview of
VRTs to estimate a mean. VRTs that have been used for quantile estimation include importance sampling
(IS) (Glynn 1996, Glasserman, Heidelberger, and Shahabuddin 2000, Liu and Yang 2012); control variates
(CV) (Hsu and Nelson 1990, Hesterberg and Nelson 1998); and correlation-induction methods, including
Latin hypercube sampling (LHS) and antithetic variates (AV) (Avramidis and Wilson 1998, Jin, Fu, and
Xiong 2003). However, the proof techniques employed to establish the validity of quantile CIs when
applying CMC do not work if VRTs are used. To address this issue, Chu and Nakayama (2012) develop a
general approach for building a CI when using several VRTs, including IS, CV, AV and combined IS and
stratified sampling. In this paper, we study LHS.

Latin hypercube sampling was developed by McKay, Conover, and Beckman (1979) as a way of
applying stratification in higher dimensions. Stein (1987) analyzes the asymptotic variance of the LHS
estimator of an expectation, and shows that it is no larger than its counterpart from CMC. Owen (1992)
proves a CLT holds for an LHS estimator of a mean of a bounded output, and Loh (1996) extends the CLT
for the LHS estimator of a mean when the output’s absolute third moment is finite. Avramidis and Wilson
(1998) use LHS to obtain a point estimator of a quantile, and prove it satisfies a CLT. Helton and Davis
(2003) survey the extensive literature on LHS, discuss its applications, and compare LHS and CMC.

However, the papers described above do not include methods to construct asymptotically valid CIs for
quantiles under LHS. Recently, Nakayama (2011, 2012) proposed approaches to estimate CIs for quantiles
by replicated LHS (rLHS). In this paper, we develop new methods for constructing CIs for quantiles through
rLHS that give better results than those in Nakayama (2011, 2012). In the new approaches, we generate
b≥ 2 independent LHS samples, each of size m, and we compute the rLHS quantile estimator by inverting
the CDF estimator from all n = bm observations. One method we consider is batching (Glasserman 2004,
p. 491), which treats each replicated LHS sample as a batch. The other is sectioning (Section III.5a in
Asmussen and Glynn 2007 and Nakayama 2014), which takes the batching CI and replaces the batching point
estimator with the overall point estimator throughout. Since quantile estimators are generally biased with
the bias vanishing as the sample size increases (Avramidis and Wilson 1998), one advantage of sectioning
over batching is that sectioning’s CI is centered at a typically less-biased point estimator, thus resulting in
the sectioning CI having better coverage. The CIs are asymptotically valid as m→∞ with b≥ 2 fixed. Our
proof of the asymptotic validity of the sectioning CI depends on showing that the quantile estimators from
single-sample LHS (ssLHS) and rLHS each satisfy so-called (weak) Bahadur representations (Bahadur
1966, Ghosh 1971), which we have established in Dong and Nakayama (2014).

Nakayama (2012) proposes batching and sectioning methods for a different type of rLHS, in which
the number r of independent LHS samples grows large; there are b ≥ 2 batches, each batch contains
independent r/b LHS samples, and each LHS sample has fixed size m. Thus, the total number of
observations is n = b[(r/b)m)] = rm. Because they have multiple replicated LHS per batch, we refer to
these as mrLHS methods. Nakayama (2012) establishes the asymptotic validity of batching and sectioning
for mrLHS as r→ ∞ with m and b≥ 2 fixed. Compared with that, the techniques in our paper have just
a single LHS sample in each batch, with LHS samples independent across the batches. Here each of the
b batches’ single LHS sample has size m, where m grows large, so the overall number of observations is
n = bm. We call these single replicated LHS (srLHS) methods, and we establish the asymptotic validity of
srLHS batching and sectioning as m→ ∞ with b≥ 2 fixed. For a fixed overall sample size n and number
b of batches, srLHS allows the size m of each LHS sample to be larger than for mrLHS with r > b, which
leads to srLHS reducing variance more. We present numerical results in Section 5 that demonstrate this.

The rest of the paper is organized as follows. In Section 2, methods for estimating a quantile and
constructing a quantile CI under CMC are reviewed. Section 3 describes how to generate outputs using
LHS. In Section 4, we present detailed steps of srLHS. In Section 5, we give numerical results of coverage
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experiments using different approaches to generate the outputs, including CMC, mrLHS and srLHS.
Section 6 provides concluding remarks and subsequent research topics. The formal mathematical proofs
are contained in Dong and Nakayama (2014).

2 BACKGROUND

Consider a random variable Y that can be expressed as

Y = g(U1,U2, . . . ,Ud) (1)

where g : ℜd→ℜ1 is a deterministic function and inputs U1,U2, . . . ,Ud are i.i.d. unif[0,1] random variables.
Let F be the CDF of Y , and define ξp = F−1(p)≡ inf{y : F(y)≥ p} as the p-quantile of F (or equivalently
of Y ). The goal is to estimate ξp and construct a 100(1−α)% CI for it through a sample of Y with size
n. The framework in (1) covers the special setting of

Y = c(X1,X2, . . . ,Xd) (2)

with c : ℜd → ℜ1 and X1,X2, . . . ,Xd being arbitrary input random variables that are independent but not
necessarily identically distributed. In this case, the random variables X1,X2, . . . ,Xd can be transformed
from i.i.d. unif[0,1] random variables U1,U2, . . . ,Ud through Xj = H−1

j (Uj) for j = 1,2, . . . ,d, where Hj is
the marginal CDF of Xj. Therefore, we have

Y = c(H−1(U1),H−1
2 (U2), . . . ,H−1

d (Ud)) = g(U1,U2, . . . ,Ud).

2.1 Constructing a Confidence Interval When Applying CMC

Let U = (U1,U2, . . . ,Ud) denote a vector of d i.i.d. unif[0,1] random variable inputs and u = (u1,u2, . . . ,ud)
be a realization of U. In the case of CMC, we first generate n i.i.d. input vectors Ui = (Ui,1,Ui,2, · · · ,Ui,d),
i = 1,2, . . . ,n, which are arranged as:

U1,1 U1,2 · · · U1,d
U2,1 U2,2 · · · U2,d

...
...

. . .
...

Un,1 Un,2 · · · Un,d

,

and then apply function g from (1) to each row to generate a sample of Y with size n:

Y1 = g(U1,1,U1,2, . . . ,U1,d),

Y2 = g(U2,1,U2,2, . . . ,U2,d),

...

Yn = g(Un,1,Un,2, . . . ,Un,d).

Define Fn to be the CMC estimator of the CDF F , where

Fn(y) =
1
n ∑

1≤i≤n
I(Yi ≤ y)

and I( ·) denotes the indicator function, which equals 1 (resp., 0) when its argument is true (resp., false).
The CMC point estimator of the p-quantile ξp = F−1(p) is given by

ξp,n = F−1
n (p). (3)
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An equivalent way to calculate F−1
n (p) is to sort the values Y1,Y2, . . . ,Yn in non-decreasing order. Let

Yn:1 ≤ Yn:2 ≤ ·· · ≤ Yn:n be the ordered statistics, and then ξp,n = Yn:dnpe, where dnpe is the smallest integer
that is greater than or equal to np.

Section 2.3.3 in Serfling (1980) proves that if F ′(ξp) > 0, where F ′ denotes the derivative (when it
exists) of F , then the CMC p-quantile estimator ξp,n satisfies a CLT

√
n

τp
(ξp,n−ξp)⇒ N(0,1)

as n→∞, where τp =
√

p(1− p)/F ′(ξp), N(a,b2) is a normal random variable with mean a and variance
b2, and ⇒ denotes convergence in distribution (e.g., see Section 1.2.4 of Serfling 1980). From the CLT,
an asymptotic 100(1−α)% confidence interval Cn,CMC can be constructed as follows:

Cn,CMC = [ξp,n± zα/2τp/
√

n],

where zα/2 is the 1−α/2 quantile of a standard normal distribution, i.e., zα/2 = Φ−1(1−α/2) with Φ the
CDF of a N(0,1) random variable.

For most cases, the value of F ′(ξp) is not known, so it has to be estimated as well. For CMC, the
statistic literature contains several consistent estimators for τp. For example, Bloch and Gastwirth (1968)
and Bofinger (1975) use a finite-difference method to estimate λp ≡ 1/F ′(ξp). By noting that

d
d p

F−1(p) = lim
h→0

[F−1(p+h)−F−1(p−h)]/(2h) =
1

F ′(F−1(p))
=

1
F ′(ξp)

= λp,

we obtain a natural estimator of λp as

λp,n =
F−1

n (p+hn)−F−1
n (p−hn)

2hn
, (4)

where hn > 0 is a user-specified bandwidth. Then an estimator of τp is τp,n =
√

p(1− p)λp,n, and when
hn → 0 and nhn → ∞ as n→ ∞, we have τp,n ⇒ τp as n→ ∞. Therefore, a two-sided 100(1−α)%
confidence interval for ξp is

Ĉn,CMC = [ξp,n± zα/2τp,n/
√

n],

which is asymptotically valid in the sense that P(ξp ∈ Ĉn,CMC)→ 1−α as n→ ∞.

2.2 Batching and Sectioning When Using CMC

The quality of the estimator τp,n depends on the choice of the bandwidth hn, but specifying an appropriate
value for hn is nontrivial in practice; e.g., see Bofinger (1975), Hall and Sheather (1988) and Chu and
Nakayama (2012). We instead consider alternative methods — batching and sectioning — that do not
attempt to consistently estimate τp. While these approaches still require the user to specify one parameter,
the number b of batches, selecting a reasonable choice for b appears simpler than determining a bandwidth
that works well.

In batching, the overall sample Y1,Y2, . . . ,Yn, of size n is first divided into b≥ 2 batches, each of which
contains a sample of size m = n/b. Let Yj,i = Y( j−1)m+i for j = 1,2, . . . ,b, and i = 1,2, . . . ,m, be the ith
output in the jth batch, and define a CDF estimator for each batch j, j = 1,2, . . . ,b, as

Fj,m(y) =
1
m ∑

1≤i≤m
I(Yj,i ≤ y).
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The corresponding p-quantile estimator for the jth batch is ξp, j,m = F−1
j,m(p). We define the CMC batching

p-quantile estimator as

ξ̄p,b,m =
1
b ∑

1≤ j≤b
ξp, j,m.

The sample variance of ξp, j,m, j = 1,2, . . . ,b, is

S2
b,m,batch =

1
b−1 ∑

1≤ j≤b
(ξp, j,m− ξ̄p,b,m)

2.

Define the critical value tb−1,α/2 = G−1(1−α/2), with G being the CDF of a Student t random variable
with b−1 degrees of freedom. The CMC batching two-sided 100(1−α)% confidence interval for ξp is
given by

Cb,m,batch = [ξ̄p,b,m± tb−1,α/2Sb,m,batch/
√

b].

Quantile estimators are generally biased, with the bias vanishing as the sample size grows large
(Avramidis and Wilson 1998). The bias of the CMC batching p-quantile estimator ξ̄p,b,m is determined by
the batch size m = n/b < n, so the batching CI is centered at an estimator that can have considerable bias.
Thus, the batching CI can suffer from poor coverage, especially when the overall sample size n is not very
large.

Similar to batching, sectioning addresses this issue by replacing the batching point estimator ξ̄p,b,m in
the batching CI with the overall quantile estimator ξp,n using all n outputs, as defined in (3). Asmussen
and Glynn (2007) (Section III.5a) develop sectioning for the CMC case and Nakayama (2014) extends it
for importance sampling and control variates. Define

S2
b,m,sec =

1
b−1 ∑

1≤ j≤b
(ξp, j,m−ξp,n)

2.

The CMC sectioning two-sided 100(1−α)% CI for ξp is then

Cb,m,sec = [ξp,n± tb−1,α/2Sb,m,sec/
√

b].

Both Cb,m,batch and Cb,m,sec are asymptotically valid CIs, i.e., P(ξp ∈C)→ 1−α as m→ ∞ with b≥ 2
fixed, where C ∈ {Cb,m,batch,Cb,m,sec}. But the sectioning CI usually has better coverage when the overall
sample size n = bm is small. For both batching and sectioning, Section III.5a of Asmussen and Glynn
(2007) suggests choosing the number of batches satisfying b≤ 30. Nakayama (2014) provides numerical
results for sectioning and batching with b = 10 and b = 20 when applying each of CMC, importance
sampling and control variates, and found that b = 10 resulted in significantly better coverage when n is
small, especially for p≈ 1.

3 LATIN HYPERCUBE SAMPLING

In this section, we describe the method to generate a single Latin hypercube sample, and establish important
properties of it as described in Theorem 1 below. Let

U1,1 U1,2 · · · U1,d
U2,1 U2,2 · · · U2,d

...
...

. . .
...

Us,1 Us,2 · · · Us,d

,
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be s× d i.i.d. unif[0,1] random variables. Choose d independent random permutations of (1,2, . . . ,s),
denoted as π1,π2, . . . ,πd , where π j = (π j(1),π j(2), . . . ,π j(s)). For i = 1,2, . . . ,s, and j = 1,2, . . . ,d, define

Vi, j =
π j(i)−1+Ui, j

s
,

which we arrange as
V1,1 V1,2 · · · V1,d
V2,1 V2,2 · · · V2,d

...
...

. . .
...

Vs,1 Vs,2 · · · Vs,d

. (5)

Then, by applying function g : ℜd →ℜ1 from (1) to each row of (5), we have

Ŷ1 = g(V1,1,V1,2, · · · ,V1,d),

Ŷ2 = g(V2,1,V2,2, · · · ,V2,d),

...

Ŷs = g(Vn,1,Vn,2, · · · ,Vn,d).

(6)

Outputs Ŷ1,Ŷ2, . . . ,Ŷs are called a Latin hypercube sample of size s. Because each row i in (5) has d i.i.d.
unif[0,1] random variables, we have Ŷi ∼ F for i = 1,2, . . . ,s. But since each column j in (5) uses the same
permutation π j, the rows in (5) are dependent, thus making Ŷ1,Ŷ2, . . . ,Ŷs dependent as well.

Compared with CMC, LHS yields smaller asymptotic variances for an expectation estimator (Stein
1987) and also for a quantile estimator (Avramidis and Wilson 1998). McKay, Conover, and Beckman
(1979) give an explicit form of the covariance among the outputs of a Latin hypercube sample. Under
the conditions given below, Avramidis and Wilson (1998) prove a CLT for a quantile estimator using a
single-sample Latin hypercube sample (ssLHS). In this paper, we further establish that the ssLHS quantile
estimator satisfies a weak Bahadur (1966) representation (Ghosh 1971), as stated in Theorem 1 below. A
Bahadur representation shows that a quantile estimator can be approximated as the true quantile plus a
linear transformation of a CDF estimator evaluated at the true quantile, with a remainder term that vanishes
at some rate as the sample size grows large.

To obtain our results, we first impose two continuity conditions from Avramidis and Wilson (1998):
CC1 The function g(·) in (1) has a finite set of discontinuities D .
CC2 There exists a neighborhood N (ξp) of ξp such that for each x∈N (ξp) and for each j = 1, . . . ,d,

there exists a finite set Q j(x) such that

P(g(U) = x|Uj = u j) = 0

for every u j ∈ [0,1]−Q j(x).
Define the ssLHS CDF estimator based on a single LHS sample of size s = n as

F̂n(y) =
1
n ∑

1≤i≤n
I(Ŷi ≤ y) (7)

and let ξ̂p,n = F̂−1
n (p) be the ssLHS p-quantile estimator. We then have the following result:

Theorem 1 Suppose continuity conditions CC1 and CC2 hold, CDF F has a bounded second derivative in
a neighborhood of ξp, and F ′(ξp)> 0. Then the ssLHS quantile estimator ξ̂p,n with sample size n satisfies
the weak Bahadur representation

ξ̂p,n = ξp−
F̂n(ξp)− p

F ′(ξp)
+ R̂n, with n1/2R̂n⇒ 0 as n→ ∞, (8)
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where F̂n(·) is defined in (7).
Chu and Nakayama (2012) establish a set of three technical conditions on any CDF estimator that

ensure the corresponding quantile estimator satisfies a weak Bahadur representation holds, and our proof of
Theorem 1 shows the three conditions hold for the ssLHS CDF estimator F̂n in (7). Establishing the three
conditions for F̂n is complicated by the fact that Ŷi, i = 1,2, . . . ,n, are dependent, and we prove Theorem 1
by modifying and extending some of the arguments that Avramidis and Wilson (1998) develop to prove the
ssLHS quantile estimator ξ̂p,n obeys a CLT. The full details are provided in Dong and Nakayama (2014).

4 CONFIDENCE INTERVAL ESTIMATION FOR A QUANTILE WHEN APPLYING LHS

Avramidis and Wilson (1998) prove that under the conditions in Theorem 1, the ssLHS quantile estimator
ξ̂p,n satisfies the CLT √

n
ηp

(ξ̂p,n−ξp)⇒ N(0,1) (9)

as n→ ∞, where 0 < ηp < ∞ is a constant. Define 0 < ψp < ∞ such that
√

n[F̂n(ξp)− p]⇒ N(0,ψ2
p) as

n→ ∞. Hence, by (8), we can see that
ηp = ψp/F ′(ξp). (10)

From the CLT (9), we can obtain an ssLHS CI for ξp as

Cn,ssLHS = [ξ̂p,n± zα/2ηp/
√

n].

However, the asymptotic variance η2
p in (9) is not known nor easily estimated (Glasserman 2004, p. 242),

making it difficult to construct a confidence interval directly using ssLHS. In this paper we instead develop
CIs for ξp using replicated LHS with batching or sectioning.

Let b ≥ 2 be the number of batches. For each batch, a single LHS sample of size m is generated
by letting s = m in Section 3, and LHS samples across batches are generated independently. The overall
sample size across all batches is n = bm. Because a single LHS sample is used in each batch, we refer to
this method as single rLHS method (srLHS) to distinguish it from the approach proposed by Nakayama
(2012), where the total number r of independent LHS samples across all batches grows large with a fixed
size m for each LHS sample and a fixed number b of batches. We refer to the latter as the multiple rLHS
(mrLHS) method, and batching and sectioning with mrLHS are asymptotically valid when r→ ∞ with b
and m fixed.

For srLHS, generate b independent Latin hypercube samples as in (6), each of which has size s = m, and
let Ỹj,i, i = 1,2, . . . ,m, be the m outputs in the jth batch, j = 1,2, . . . ,b. Since the batches are independent,
Ỹj,i and Ỹj′,i′ are independent for j 6= j′, but Ỹj,i and Ỹj,i′ are dependent since they are in the same batch j.
Then we define F̌b,m as the srLHS CDF estimator, with

F̌b,m(y) =
1
b ∑

1≤ j≤b

1
m ∑

1≤i≤m
I(Ỹj,i ≤ y), (11)

which is based on all n = bm outputs, and let

ξ̌p,b,m = F̌−1
b,m(p)

be the srLHS overall p-quantile estimator. Let F̃j,m be the CDF estimator from batch j, j = 1,2, . . . ,b, i.e.,
F̃j,m(y) = 1

m ∑1≤i≤m I(Ỹj,i≤ y). The corresponding p-quantile estimator from each batch j is ξ̃p, j,m = F̃−1
j,m(p).

Similar to the CMC batching method, define the srLHS batching p-quantile estimator

ξ́p,b,m =
1
b ∑

1≤ j≤b
ξ̃p, j,m.
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The sample variance of ξ̃p, j,m, j = 1,2, . . . ,b, is

Š2
b,m,batch =

1
b−1 ∑

1≤ j≤b
(ξ̃p, j,m− ξ́p,b,m)

2. (12)

The two-sided 100(1−α)% CI for ξp using srLHS batching is

Čb,m,batch = [ξ́p,b,m± tb−1,α/2Šb,m,batch/
√

b]. (13)

As with CMC, when the overall sample size n = bm is not very large, the srLHS batching p-quantile
estimator ξ́p,b,m can be significantly biased as the bias is determined by the batch size m = n/b < n. Hence,
the srLHS batching CI in (13) may suffer from poor coverage since it is centered at a poor point estimator.

We can again address this issue by applying sectioning. In this approach, the batching estimator ξ́p,b,m

is replaced with the overall quantile estimator ξ̌p,b,m = F̌−1
b,m(p) for F̌b,m defined in (11), and instead of (12),

we compute

Š2
b,m,sec =

1
b−1 ∑

1≤ j≤b
(ξ̃p, j,m− ξ̌p,b,m)

2.

Then the two-sided 100(1−α)% CI for ξp using srLHS sectioning is

Čb,m,sec = [ξ̌p,b,m± tb−1,α/2Šb,m,sec/
√

b]. (14)

Since the srLHS sectioning CI is centered at a typically less-biased point estimator than the srLHS batching
CI in (13), the srLHS sectioning CI should have better coverage when n = bm is small.

To establish the asymptotic validity of the srLHS sectioning method, we first prove that the srLHS
overall p-quantile estimator ξ̌p,b,m satisfies a weak Bahadur representation, which is given next. The result
is established by exploiting Theorem 1 and the independence of the LHS samples across batches.

Theorem 2 Under the same conditions as in Theorem 1, the srLHS overall quantile estimator ξ̌p,b,m based
on rLHS with b≥ 2 independent LHS samples, each of size m, satisfies

ξ̌p,b,m = ξp−
F̌b,m(ξp)− p

F ′(ξp)
+ Řb,m with n1/2Řb,m = b1/2m1/2Řb,m⇒ 0

as m→ ∞ with b≥ 2 fixed.
The next theorem further establishes the asymptotic validity of the srLHS batching and sectioning CIs.

Theorem 3 Under the same conditions as in Theorem 1,

P(ξp ∈C)→ 1−α

as m→ ∞ with b≥ 2 fixed, where C ∈ {Čb,m,batch,Čb,m,sec}.
The asymptotic validity of the srLHS batching CI can be established as follows. For each batch

j = 1,2, . . . ,b, its quantile estimator ξ̃p, j,m is approximately normally distributed since it is based on a
single LHS sample of size m→∞ and Avramidis and Wilson (1998) prove that ssLHS quantile estimators
satisfy a CLT. The independence of the batches then ensures the validity of the batching CI. The keys to
proving the asymptotic validity of the srLHS sectioning CI are the Bahadur representations in Theorems 1
and 2. These enable us to show that the srLHS batching point estimator ξ́p,b,m and the srLHS overall
quantile estimator ξ̌p,b,m are sufficiently close to allow replacing ξ́p,b,m in the batching CI with ξ̌p,b,m and
still retain an asymptotically valid CI. The full details are provided in Dong and Nakayama (2014).
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Figure 1: A stochastic activity network.

The main difference of our srLHS methods and the mrLHS approaches in Nakayama (2012) is that
the mrLHS techniques require the number of LHS samples per batch to grow to infinity with each LHS
sample size remaining fixed, while the srLHS methods require only one Latin hypercube sample that grows
large in each batch. If the total sample size n is fixed, the size of each independent LHS in srLHS can be
much bigger than that in mrLHS, and this can result in better variance reduction. The reason for this is that
Stein (1987) shows that a ssLHS estimator has asymptotic variance that decreases at rate c/m, where m is
the size of the single Latin hypercube sample and c is a constant. Thus, the larger LHS sample sizes in
srLHS result in smaller variance. We will compare these two approaches through numerical experiments
in Section 5.

5 NUMERICAL RESULTS

The asymptotic validity of the confidence intervals estimated by the batching and sectioning methods is
tested on a stochastic activity network (SAN), which has been previously studied in Hsu and Nelson (1990).
The network models the completion time of a project consisting of a group of activities with precedence
constraints and random durations. Let d = 5 be the number of activities in the project, whose graph is
shown in Figure 1. There are three paths in the network, and the completion time of the project is the
longest one. For 1 ≤ j ≤ d, let A j be the duration of the jth activity of the project. All A j, 1 ≤ j ≤ d,
follow an exponential distribution with mean 1, and are mutually independent. The network has q = 3
paths, denoted as B1 = {1,2}, B2 = {1,3,5}, B3 = {4,5}. Let Y = max1≤`≤q ∑ j∈B`

A j be the output of
the experiment, i.e., the completion time of the project. Our experiments estimate the p-quantile of Y for
p = 0.8 and p = 0.95 and construct nominal 90% confidence intervals using either batching or sectioning.

We used b = 10 independent batches in our experiment. (Experiments in Nakayama 2014 with b = 10
and b = 20 using CMC, importance sampling and control variates showed b = 20 often results in poorer
coverage than b = 10 for the same overall sample size n, especially when n is small or p≈ 1.) We compare
three simulation approaches to generate outputs: CMC (Section 2.2), mrLHS (Nakayama 2012), and srLHS
(Section 4). In srLHS, we generate a single LHS sample of size m for each of the b batches, so the total
size across all batches is n = bm. We varied the total sample size n = 4k×100 for k = 0,1,2,3. As the total
size n grows large, the size of each LHS m grows large since b is fixed. In the experiments with mrLHS, we
fixed the size of each LHS at m = 10, so as n grows large, the number of LHS samples in each batch grows
large but the size of each LHS sample remains unchanged at m = 10. Thus, when n = 100, the srLHS and
mrLHS approaches are identical, but they differ as n increases. The CDF of the project-completion time
Y is (Hsu and Nelson 1990)

F(y) = 1+(3−3y− y2/2)e−y +(−3−3y+ y2/2)e−2y− e−3y (15)

for y ≥ 0. Its density F ′(y) is positive and its second derivative is bounded. Using (15) we numerically
calculate the true 0.8-quantile and 0.95-quantile as ξ0.8 = 4.7145 and ξ0.95 = 6.6645, and use them in the
coverage experiments. We ran 103 independent replications to estimate the coverage P(ξp ∈C) of a CI C.

From the results in Table 1, we see that the srLHS method has the smallest average half-width,
followed by the mrLHS approach, and then CMC. When n = 100, the performance of srLHS and mrLHS
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Table 1: Coverages (and average half-widths) of batching and sectioning methods for nominal 90% CIs
using CMC, mrLHS (b = 10, m = 10) and srLHS (b = 10, m = n/b) are given.

p = 0.8
n CMC mrLHS srLHS

Batching Sectioning Batching Sectioning Batching Sectioning
100 0.644 0.885 0.534 0.886 0.559 0.915

(0.477) (0.517) (0.337) (0.383) (0.340) (0.386)
400 0.835 0.910 0.807 0.897 0.745 0.903

(0.260) (0.267) (0.189) (0.197) (0.159) (0.168)
1600 0.887 0.898 0.900 0.919 0.871 0.903

(0.134) (0.136) (0.097) (0.099) (0.081) (0.083)
6400 0.892 0.896 0.904 0.903 0.895 0.903

(0.067) (0.068) (0.049) (0.049) (0.041) (0.041)
p = 0.95

n CMC mrLHS srLHS
Batching Sectioning Batching Sectioning Batching Sectioning

100 0.887 0.893 0.912 0.883 0.882 0.881
(0.926) (0.952) (0.825) (0.852) (0.834) (0.862)

400 0.699 0.901 0.667 0.889 0.638 0.880
(0.461) (0.500) (0.402) (0.436) (0.347) (0.382)

1600 0.823 0.887 0.844 0.901 0.814 0.902
(0.253) (0.260) (0.222) (0.229) (0.176) (0.184)

6400 0.878 0.886 0.874 0.894 0.867 0.901
(0.128) (0.129) (0.114) (0.115) (0.088) (0.089)

are comparable as the two techniques are identical in this case, and as n grows, the advantage of srLHS
over mrLHS starts to show and increases with n. For example, when n = 400, for the case of p = 0.95,
the average half width from srLHS with sectioning is about 12% smaller than that from mrLHS; when
n = 1600, the improvement is approximately 20%, and when n = 6400, the difference is roughly 23%. The
widening gap of srLHS over mrLHS results from the LHS sample size in srLHS growing as n increases,
whereas the LHS sample size in mrLHS remains fixed. We also notice that in general, sectioning leads to
better coverage than batching, which occurs because the sectioning CI is centered at a less-biased point
estimator. The coverage of all three approaches under both batching and sectioning converge to about 90%
when the overall sample size n gets large.

6 CONCLUDING REMARKS

In this paper, we develop methods to construct CIs for quantiles when applying rLHS. We employ batching
and sectioning to build the CIs. Because of the bias of quantile estimators, the sectioning CI typically
has better coverage than the batching CI since the former is centered at a less-biased point estimator. The
proposed srLHS methods improve on previous mrLHS methods of batching and sectioning with multiple
replicated Latin hypercube samples by Nakayama (2012), and use only one Latin hypercube sample in
each batch. To establish the asymptotic validity of the srLHS methods, we have proven weak Bahadur
representations hold for quantile estimators for both a single Latin hypercube sample and replicated Latin
hypercube samples, where the sizes of the LHS samples increase.

The asymptotic regimes of srLHS and mrLHS differ: srLHS has the batch size m→∞ with the number
b ≥ 2 of batches fixed, whereas mrLHS requires the number r of independent LHS samples to satisfy
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r→ ∞, with fixed batch size m and fixed number b of batches. Thus, the asymptotic validity of srLHS
covers the setting of large LHS sample sizes, whereas mrLHS only allows fixed LHS sample sizes but
the number of LHS samples increases. As a consequence, for a given overall sample size, srLHS permits
larger LHS sample sizes than mrLHS, which results in srLHS reducing variance more, as we observed in
the numerical results.

We are currently investigating methods for constructing a CI for a quantile when applying ssLHS.
One approach for doing this is to develop a consistent estimator for the asymptotic variance η2

p in the
ssLHS CLT in (9) by separately estimating the numerator and denominator in (10). We can consistently
estimate λp = 1/F ′(ξp) via a finite difference as in (4) using the results of Chu and Nakayama (2012).
The square of the numerator ψp in (10) is the asymptotic variance of the ssLHS CDF estimator evaluated
at ξp. Owen (1992) develops a consistent estimator for the variance of an ssLHS estimator of a mean, and
we are working on extending this to estimate ψ2

p.
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