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ABSTRACT

Sequest is a fully sequential procedure that delivers improved point and confidence-interval (CI) estimators
for a designated steady-state quantile by exploiting a combination of ideas from batching and sectioning.
Sequest incorporates effective methods to do the following: (a) eliminate bias in the sectioning-based point
estimator that is caused by initialization of the simulation or an inadequate simulation run length (sample
size); and (b) adjust the CI half-length for the effects of skewness or correlation in the batching-based point
estimators of the designated quantile. Sequest delivers a CI designed to satisfy user-specified requirements
concerning both the CI’s coverage probability and its absolute or relative precision. We found that Sequest
exhibited good small- and large-sample properties in a preliminary evaluation of the procedure’s performance
on a suite of test problems that includes some problems designed to “stress test” the procedure.

1 INTRODUCTION

Simulation is perhaps the most widely used tool in the fields of industrial and systems engineering, operations
research, and the management sciences. Steady-state simulations play a fundamental role in system design,
and they are particularly appropriate for evaluating long-run system performance or risk. For example, let Xi
denote the loss in the value of a financial portfolio over the ith time interval of a fixed length (say, two weeks
or even one trading day) so that Xi > 0 represents the magnitude of the loss while Xi ≤ 0 indicates a gain
of magnitude |Xi|=−Xi over the ith time interval for i = 1,2, . . . (Glasserman 2004). For all cut-off values
x ∈R, we let F(x)≡ Pr{Xi ≤ x} and f (x) = F ′(x) respectively denote the cumulative distribution function
(c.d.f.) and the probability density function (p.d.f.) of Xi for i = 1,2, . . . . With this setup, for 0 < p < 1 the
100p% Value at Risk (VaR) for the portfolio is usually defined in standard statistical terminology as the
p-quantile xp ≡ F−1(p)≡ inf{x : F(x)≥ p}, so that if we take p = 0.99, then the probability is 99% that
the loss Xi in the ith time interval will not exceed x0.99.

Similarly, if in a call center simulation Xi denotes the waiting time spent on hold before the ith
caller reaches a service representative, then call-center management may seek convincing evidence that
the p = 0.9 quantile x0.9 of call-waiting time does not exceed a critical threshold x∗. If we take x∗ = 3
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minutes, then convincing evidence that 90% of all callers wait at most 3 minutes on hold might be that a
simulation-generated one-sided upper 95% confidence interval (CI) for x0.90 does not include 3 minutes.

In the development of effective steady-state simulation analysis procedures, the main obstacle is
that generally the associated output processes do not even approximately satisfy the basic assumptions
underlying conventional statistical methods. In particular, successive responses are rarely independent and
identically distributed (i.i.d.) normal random variables—for example, consecutive waiting times in a heavily
congested queueing simulation with the empty-and-idle initial condition; and similar considerations apply
to successive losses or gains in the value of a financial portfolio over an extended time horizon. When the
data are identically distributed but stochastically dependent (e.g., correlated), the point estimation of xp is
straightforward: sort the observations in order X(1) ≤ ·· · ≤ X(n) to yield the estimator x̂p = X(dnpe), where
d·e denotes the ceiling function. If the {Xi} are also independent and f (xp)> 0, then valid large-sample
CIs for xp can also be easily computed. In this situation, the variate

√
n(x̂p−xp) is asymptotically normal

with mean zero and variance p(1− p)/[ f (xp)]
2 (Serfling 1980, Section 2.3.3); thus for 0 < α < 1, an

asymptotically valid 100(1−α)% CI for xp has the form x̂p± z1−α/2
[
V̂ar(x̂p)

]1/2, where V̂ar(x̂p) is a
suitable estimator of Var(x̂p) and z1−α/2 is the (1−α/2) quantile of the standard normal distribution.
When the {Xi} are dependent and subject to initialization bias, then the problem of computing point and CI
estimators of xp that are free of initialization bias and asymptotically reliable becomes much more difficult.

If the Xi are dependent and possibly contaminated by an initial transient, then the quantile xp can be
estimated using the data observed on a single run using any of the methods described in Bekki et al. (2010),
Chen and Kelton (2006, 2008), Iglehart (1976), Jain and Chlamtac (1985), Jin, Fu, and Xiong (2003),
Raatikainen (1987, 1990), and Seila (1982a, 1982b). The relatively sparse simulation literature on this
problem reflects the following difficulties: (a) lack of an adequate theoretical basis for some of the existing
methods; (b) lack of effective guidelines for using the methods in practice; (c) poor performance of the
estimators in industrial-strength applications; and (d) excessive computational or storage requirements.

In this paper we develop Sequest, a fully sequential procedure that delivers improved point and CI
estimators for a designated steady-state quantile based on a combination of ideas from batching (Tafazzoli
and Wilson 2011) and sectioning (Asmussen and Glynn 2007, Section III.5a). Sequest incorporates effective
methods to do the following: (a) eliminate bias in the sectioning-based point estimator that is caused by
initialization of the simulation or an inadequate simulation run length (sample size); and (b) adjust the CI
half-length for the effects of skewness or correlation in the batching-based point estimators of the designated
quantile. Sequest delivers a CI designed to satisfy user-specified requirements concerning both the CI’s
coverage probability and its absolute or relative precision. The remainder of this article is organized as
follows. In Section 2, we summarize the basic assumptions underlying the design of Sequest. Section 3
provides an overview of Sequest and a formal algorithmic statement of the procedure. Section 4 contains
a summary of the results of a preliminary experimental performance evaluation of Sequest. Section 5
contains concluding remarks and an outline of the next steps in our work on Sequest. The slides for the
oral presentation of this article are available online via www.ise.ncsu.edu/jwilson/wsc14sequest.pdf.

2 BASIC ASSUMPTIONS OF SEQUEST

To lay a sufficiently broad foundation for building point and CI estimators of the steady-state p-quantile xp,
we assume the stationary simulation output process {Xi : i = 0,1, . . .} can be expressed as a (measurable,
possibly nonlinear) function of a sequence of “shocks” {εi : i ∈ Z} that are i.i.d. random variables,

Xi = X(. . . ,εi−2,εi−1,εi) for i = 0,1, . . . , (1)

so the {εi} may be regarded as the stream of random numbers driving the simulation, and the function
X(·) represents the operations performed by the simulation model on its probabilistic inputs up to time i so
as to generate the corresponding output response Xi. We assume that in a nonempty open interval D(xp)

663



Alexopoulos, Goldsman, Mokashi, Nie, Sun, Tien, and Wilson

containing the desired quantile xp, the random variable Xi has a p.d.f. f (x) with derivative f ′(x) such that

f (xp)> 0 and sup
{

f (x)+ | f ′(x)| : x ∈D(xp)
}
< ∞ . (2)

We also assume that {Xi : i = 0,1, . . .} satisfies the geometric-moment contraction (GMC) condition—i.e.,
there exist constants ψ > 0, C > 0, and r ∈ (0,1) such that for the independent input processes {ε j : j ∈ Z}
and {ε∗j : j ∈ Z} each consisting of i.i.d. variates, we have

E
[∣∣X(. . . ,ε−2,ε−1,ε0,ε1,ε2, . . . ,εi)−X(. . . ,ε∗−2,ε

∗
−1,ε

∗
0 ,ε1,ε2, . . . ,εi)

∣∣ψ ]≤Cri for i≥ 0 . (3)

The GMC condition (3) requires that if two paired replications of the simulation model associated with the
function X(·) are initialized independently but use common random numbers after the simulation starting
time, then the difference Xi−X∗i between the matching output responses generated by the two simulations
at time i will converge to zero in the mean of order ψ as the time index i→ ∞. If the GMC condition
(3) holds, then the difference Xi−X∗i also converges in probability to zero as i→ ∞ (Bickel and Doksum
2007).

As noted by Wu (2005), condition (3) is easier to check than the usual strong mixing condition. The setup
(1)–(3) applies to finite-order moving-average and autoregressive processes; and the latter class of processes
forms the basis for the autoregressive method of steady-state simulation analysis (Law 2014). Moreover,
conditions (1)–(3) are satisfied by a rich diversity of widely used linear and nonlinear processes, including
conditional heteroscedastic (ARCH) processes, random coefficient autoregressive (RCA) processes, and
threshold autoregressive (TAR) processes, as well as a broad class of Markov chains (Alexopoulos, Goldsman,
and Wilson 2012).

Let {X1, . . . ,Xn} denote a data set from which we wish to build point and CI estimators of xp
using the Sequest procedure applied to b nonoverlapping batches each of size m. For j = 1, . . . ,b, we
sort the jth batch of observations {X( j−1)m+1, . . . ,Xjm} in ascending order to obtain the order statistics
Xj,(1) ≤ Xj,(2) ≤ ·· · ≤ Xj,(m) ; and the associated batch quantile estimator (BQE) based on the jth batch of
size m is

x̂p( j,m) = Xj,(dmpe) . (4)

Similarly from the entire data set {X1, . . . ,Xn} and its associated order statistics X(1) ≤ ·· · ≤ X(n), we
compute the overall point estimator of xp,

x̃p(n) = X(dnpe) . (5)

Using (4) and (5), we also compute a modified estimator of the variance of the BQEs,

S̃ 2
x̂p
(b,m)≡ b−1

b

∑
j=1

[
x̂p( j,m)− x̃p(n)

]2
. (6)

Under the assumptions (1)–(3), it is straightforward to extend the analysis presented in Section 2 of
Alexopoulos, Goldsman, and Wilson (2012) to show that as m→ ∞ with b fixed, an asymptotically valid
100(1−α)% CI for xp has the form

x̃p(n)± t1−α/2,b−1S̃x̂p(b,m)
/√

b, (7)

where tq,ν is the q-quantile of Student’s t distribution with ν degrees of freedom. For Markov processes,
the validity of the CI (7) can be established under geometric ergodicity (Muñoz 2010).

Equation (7) provides the foundation on which Sequest is built. In particular, Sequest is designed to
achieve the following:
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• Determine a data truncation point w (i.e., the end of the warm-up period) beyond which the truncated
sample statistics (4)–(6) are approximately free of initialization bias;

• Adjust the CI half-length t1−α/2,b−1S̃x̂p(b,m)/
√

b to compensate for any skewness or correlation in
the batch quantile estimators

{
x̂p( j,m) : j = 1, . . . ,b

}
; and

• Determine sufficiently large values of the truncation point w, the batch size m, the batch count b,
and the total sample size n = w+bm so that the user-specified precision and coverage probability
are achieved by the final CI estimator of xp.

3 OVERVIEW OF SEQUEST

Sequest is an adaptation to steady-state quantile estimation of Skart, a sequential procedure for estimating
steady-state means (Tafazzoli and Wilson 2011). The name Sequest is an abbreviation of the phrase
“Sequential quantile estimation technique”; moreover, sequest is a now-obsolete English word with the
meaning “to follow” (Simpson and Weiner 1989). The name Sequest seems appropriate because the
procedure is designed to “follow” a simulation-generated process as closely as possible so as to deliver
sufficiently precise and reliable point and CI estimators of user-specified quantiles of that process. Sequest
addresses the start-up problem by iteratively applying the randomness test of von Neumann (1941) to
BQEs with increasing sizes for each batch; and when the randomness test is finally passed, the warm-
up period is taken to be the initial batch. Sequest addresses the nonnormality problem by exploiting a
Cornish–Fisher expansion for the classical Student’s t-ratio based on a random sample from a nonnormal
(skewed) distribution; and analysis of this expansion leads to a modified t-ratio that incorporates terms due
to Johnson (1978) and Willink (2005) so as to compensate for any skewness in the final set of “warmed up”
(truncated) BQEs. Sequest addresses the correlation problem by using a first-order autoregressive model of
the truncated BQEs to compensate for any residual correlation between those BQEs. To achieve the user-
specified precision in the final CI for xp, Sequest may request additional simulation-generated observations;
and several iterations of Sequest may be performed until a CI satisfying the precision requirement is finally
delivered. A formal algorithmic statement of Sequest is given below.

Algorithmic Statement of Sequest

[0] Set the initial sample size n← 4096, batch size m← 64, and batch count b← 64. Set the initial
absolute tolerance on the sample variance of the BQEs, εa ← 10−10, and the associated relative
tolerance, εr← 10−5. Set the tolerance on the skewness adjustment, εs← 10−3. Set the randomness
test size, αran← 0.25. Set the parameters η← 2.82888 and θ ← 2 of the upper-bound function on
absolute skewness of the BQEs,

B∗(p) = exp
(
−η |p−0.5|θ ) for p ∈ (0,1).

Finally, set the upper bound on the number of iterations of the skewness-reducing batch-size
adjustment step, u∗ ← 5.

[1] From the initial time series {Xi : i = 1, . . . ,n}, form b batches of size m to compute the BQEs (4).
Compute the sample mean and sample variance of the BQEs,

xp(b,m)← 1
b

b

∑
j=1

x̂p( j,m) and S2
x̂p
(b,m)← 1

b−1

b

∑
j=1

[
x̂p( j,m)− xp(b,m)

]2
. (8)

[a] If
Sx̂p(b,m)≤min{εa,εr|xp(b,m)|} ,

then go to step [1b]; otherwise go to step [2].
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[b] Update the batch size and the total sample size according to m← 2m and n← 2n; obtain the
required additional observations by restarting the simulation if necessary; update the BQEs (4)
and the sample statistics (8); and return to step [1a].

[2] Apply von Neumann’s test for randomness to the current set of BQEs {x̂p( j,m) : j = 1, . . . ,b} by
computing the test statistic

Cb← 1−
∑

b−1
j=1[x̂p( j,m)− x̂p( j+1,m)]2

2(b−1)S2
x̂p
(b,m)

. (9)

[a] If

|Cb| ≤ z1−αran/2

√
(b−2)/(b2−1) ,

then go to step [3]; otherwise proceed to step [2b].
[b] Update the batch size and sample size according to m← 2m and n← 2n; obtain the required

additional observations by restarting the simulation if necessary; update the BQEs (4), the
sample statistics (8), and the randomness test statistic (9); and return to step [2a].

[3] Set the length of the warm-up period according to w←m. Initialize the skewness-reduction iteration
counter, u← 0.

[a] Update the total sample size,
n← w+bm ,

and obtain the additional observations by restarting the simulation if necessary. Skip the first w
observations in the overall time series of length n so that we have the “warmed-up” (truncated)
time series of length n′ ← n−w,

{Yi = Xw+i : i = 1, . . . ,n′} . (10)

For j = 1, . . . ,b, define the jth “warmed-up” batch by

{Y( j−1)m+i : i = 1, . . . ,m}, (11)

with associated order statistics

Yj,(1) ≤ Yi,(2) ≤ ·· · ≤ Yj,(m) (12)

so that the jth “warmed-up” BQE is

ŷp( j,m)← Yj,(dmpe) . (13)

Compute the sample mean yp(b,m) and sample variance S2
ŷp
(b,m) of the BQEs in (13).

Compute the sample skewness of the BQEs,

B̂ŷp(b,m)← b
(b−1)(b−2)

b

∑
j=1

[
ŷp( j,m)− yp(b,m)

Sŷp(b,m)

]3

.

[b] If ∣∣B̂ŷp(b,m)
∣∣≤B∗(p) or u = u∗ ,

then go to step [4]; otherwise increase the batch size according to

m←
⌈

m ·mid
{√

2,
[
B̂ŷp(b,m)|

/
B∗(p)

]2
,16
}⌉

,
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where mid{u1,u2,u3} ≡ u(2), and return to step [3a].

[4] Update the batch count, batch size, and total sample size according to

b← b/2, m← 2m, and n← w+bm ;

and obtain the required additional observations by restarting the simulation if necessary.

[5] Update the warmed-up BQEs (13), their sample mean yp(b,m), sample variance S2
ŷp
(b,m), and

sample skewness B̂ŷp(b,m); then compute the sample lag-one correlation of the BQEs,

ϕ̂ ŷp(b,m)← 1
b−1

b−1

∑
j=1

[ŷp( j,m)− yp(b,m)][ŷp( j+1,m)− yp(b,m)]

S2
ŷp
(b,m)

,

and the associated correlation adjustment

A←max
{[

1+ ϕ̂ ŷp(b,m)
]/[

1− ϕ̂ ŷp(b,m)
]
, 1
}

that will be applied to the half-length of the CI estimator for xp.
From the warmed-up time series (10), compute the associated the order statistics Y(1) ≤Y(2) ≤ ·· · ≤
Y(n′); then compute the overall sectioning-based point estimator ỹp(n′) of xp as follows:

ỹp(n′)← Y(dn′pe) . (14)

From the updated sample skewness B̂ŷp(b,m) compute the associated skewness-adjustment param-
eter,

β ← B̂ŷp(b,m)
/(

6
√

b
)
,

and define the skewness-adjustment function

G(ζ ) =


ζ , if |β | ≤ εs ,

3
√

1+6β (ζ −β )−1
2β

, if |β |> εs ,

for all real ζ , where 3
√

ζ ≡ sign(ζ ) 3
√
|ζ | (Tafazzoli and Wilson 2011). Compute the modified

sample variance of the BQEs,

S̃ 2
ŷp
(b,m)← 1

b

b

∑
j=1

[ŷp( j,m)− ỹp(n′)]2

based on the overall quantile point estimator (14).

[6] Compute the “half-length” of the bias-, correlation-, and skewness-adjusted 100(1−α)% CI for
the p-quantile xp,

H←max
{

G(t1−α/2,b−1),G(tα/2,b−1)
}[

AS̃ 2
ŷp
(b,m)

/
b
]1/2

,

and the associated CI,
ỹp(n′) ± H . (15)

If no precision level is specified, then deliver the CI (15) and stop; otherwise proceed to step [7].
[7] Apply the appropriate absolute- or relative-precision stopping rule.
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[a] If the half-length H of the current CI (15) satisfies the user-specified precision requirement

H ≤ H∗ , (16)

where

H∗ =
{

r∗
∣∣ỹp(n′)

∣∣ , for a relative precision level r∗ ,
h∗ , for an absolute precision level h∗ ,

(17)

then deliver the CI (15) and stop; otherwise proceed to step [7b].
[b] For the fixed batch count b, estimate the batch size m required to satisfy (16)–(17),

m←
⌈

m ·mid
{

1.02,(H/H∗)2,2
}⌉

.

Update the length of the warmed-up time series to n′ ← bm. Obtain the required additional
observations by restarting the simulation if necessary, and return to step [5].

4 EXPERIMENTAL PERFORMANCE EVALUATION OF SEQUEST

4.1 First-Order Autoregressive (AR(1)) Process

Table 1 shows the results of applying Sequest to a first-order autoregressive (AR(1)) process with the
initial condition X0 = 0, the autoregressive parameter ρ = 0.995, and the steady-state mean µX = 100. This
process is generated via the relation Xi = µX +ρ(Xi−1−µX)+ εi, for i = 1,2, . . ., where {εi : i = 1,2, . . .}
are i.i.d. N(0,σ 2

ε ) with σ2
ε = 1. We applied Sequest to 1000 replications of this process.

Table 1: Performance of Sequest-delivered point and 95% CI estimators of the p-quantile xp of
the AR(1) process described in Section 4.1 based on 1000 replications.

No CI Precision Requirement

p xp Avg. ỹp(n′)
∣∣Bias

[
ỹp(n′)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Coverage m n

0.3 94.7494 94.7606 0.0112 1.4025 1.4801 94.30% 5139 167014
0.5 100 100.0280 0.0290 1.4646 1.4642 94.60% 4107 133468
0.7 105.2506 105.2467 0.0039 1.5552 1.4777 94.90% 3866 125638
0.9 112.8316 112.7742 0.0574 1.7782 1.5768 93.40% 3912 127009
0.95 116.4691 116.3653 0.1038 1.9177 1.6480 94.30% 4328 140325

CI Relative Precision = 1.3%

p xp Avg. ỹp(n′)
∣∣Bias

[
ỹp(n′)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Coverage m n

0.3 94.7494 94.8064 0.0570 1.0577 1.1156 94.30% 6785 219673
0.5 100 100.0245 0.0245 1.1138 1.1136 95.30% 5463 176863
0.7 105.2506 105.2691 0.0185 1.1786 1.1196 93.50% 5177 167596
0.9 112.8316 112.8059 0.0257 1.2807 1.1354 93.80% 5718 184808
0.95 116.4691 116.4293 0.0398 1.3314 1.1434 94.90% 6781 218818

CI Relative Precision = 1.0%

p xp Avg. ỹp(n′)
∣∣Bias

[
ỹp(n′)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Coverage m n

0.3 94.7494 94.7919 0.0425 0.8435 0.8899 94.50% 9829 317085
0.5 100 100.0254 0.0254 0.8883 0.8880 95.70% 8087 260821
0.7 105.2506 105.2553 0.0047 0.9352 0.8885 94.40% 7727 249201
0.9 112.8316 112.8234 0.0082 1.0055 0.8912 94.50% 8859 285313
0.95 116.4691 116.4423 0.0268 1.0327 0.8869 94.90% 10652 342688

The high correlation between successive observations in this process makes it a severe test of Sequest’s
ability to handle correlated observations and to deliver an approximately valid correlation-adjusted CI. The
steady-state marginal standard deviation of this test process is σX = σε

/√
1−ρ2 = 10.0125; therefore

this process starts approximately ten standard deviations below its steady-state mean. The magnitude and
duration of the initial transient in simulation-generated realizations of the AR(1) process under study was
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purposely designed to “stress-test” Sequest’s ability to eliminate initialization bias as well as to compensate
effectively for pronounced correlation among successive observations of a target process.

Table 1 shows that for all precision levels, Sequest’s sampling efficiency was good. For p ∈ [0.3,0.95]
in the no precision case, Sequest delivered the point estimator ỹp(n′) of xp with average bias (labeled
Bias

[
ỹp(n′)

]
in the table) ranging in magnitude from 0.0039 to 0.104, while the corresponding values

of xp ranged from 94.7494 to 116.4691. Moreover in the no precision case, Sequest delivered nominal
95% CIs with coverages ranging from 93.4% to 94.9% and average values of the CI relative precision
100×

∣∣H/ỹp(n′)
∣∣ ranging from 1.46% to 1.65%. The results for relative precision levels r∗ = 0.013 and

r∗ = 0.01 were judged to be similarly good—especially with respect to the increase in sample size required
to satisfy the precision requirement relative to the no precision case.

4.2 M/M/1 Queue-Waiting-Time Process

Consider an M/M/1 queueing system with interarrival rate λ = 0.8 and service rate ω = 1, and let Xi
be the time spent in queue by entity i prior to receiving service. Let ρ = λ/ω = 0.8 denote the traffic
intensity. It is well known that the steady-state c.d.f. of Xi is

F(x) =


0 , for x < 0 ,
1−ρ , for x = 0 ,
1−ρe−ω(1−ρ)x, for x > 0;

(18)

hence the response Xi has steady-state mean µX = 4 and the steady-state quantiles can be evaluated
analytically by inverting the c.d.f. (18). We assume that the system starts empty (X1 = 0). Table 2 shows
the results of applying Sequest to 1000 replications of this process.

Table 2: Performance of Sequest-delivered point and 95% CI estimators of the p-quantile xp of
the M/M/1 queue waiting-time-process described in Section 4.2 based on 1000 replications.

No CI Precision Requirement

p xp ỹp(n′)
∣∣Bias

[
ỹp(n′)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Coverage m n

0.3 0.6676 0.6673 3.20E-04 0.0645 9.6629 97.00% 9383 300439
0.5 2.35 2.3485 0.0015 0.1582 6.7352 96.50% 7829 250762
0.7 4.9041 4.8991 0.0050 0.2794 5.7038 95.50% 10880 348437
0.9 10.3972 10.3559 0.0413 0.3861 3.7288 93.50% 39730 1272035
0.95 13.8629 13.7678 0.0951 0.4529 3.2897 93.70% 80001 2560469

CI Relative Precision = 3.0%

p xp ỹp(n′)
∣∣Bias

[
ỹp(n′)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Coverage m n

0.3 0.6676 0.6672 3.84E-04 0.0178 2.6718 96.50% 66786 2137343
0.5 2.35 2.3498 0.0002 0.0622 2.6486 95.90% 23577 754701
0.7 4.9041 4.9026 0.0015 0.1274 2.5987 94.90% 21705 694852
0.9 10.3972 10.3874 0.0098 0.2382 2.2933 95.40% 47338 1515501
0.95 13.8629 13.8546 0.0083 0.2933 2.1167 95.80% 88303 2826131

CI Relative Precision = 2.5%

p xp ỹp(n′)
∣∣Bias

[
ỹp(n′)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Coverage m n

0.3 0.6676 0.6672 3.79E-04 0.0150 2.2477 95.50% 93812 3002160
0.5 2.35 2.3488 0.0012 0.0524 2.2292 95.00% 32330 1034797
0.7 4.9041 4.9022 0.0019 0.1079 2.2007 95.70% 28921 925752
0.9 10.3972 10.3885 0.0087 0.2107 2.0278 94.60% 54055 1730439
0.95 13.8629 13.8549 0.0080 0.2642 1.9066 95.50% 95675 3062058

The warm-up period for this process is relatively short, and consequently the effects of initialization bias
on our quantile estimators are much less than for the AR(1) process in Section 4.1. However, the marginal
c.d.f. (18) of the M/M/1 queue waiting times is markedly nonnormal, having an atom at zero (that is, a
nonzero probability mass at zero) and an exponential tail. This characteristic induces a positive skewness in
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the batch quantile estimators (13) that significantly distorts the behavior of the conventional sectioning-based
CI given by Equation (7), resulting in coverage probabilities significantly below the nominal level 1−α .

Table 2 shows that for all precision levels, Sequest’s sampling efficiency was good. For p ∈ [0.3,0.95]
in the no precision case, Sequest delivered the point estimator ỹp(n′) of xp with average bias ranging
in magnitude from 3.20× 10−4 (for x0.3 = 0.6676) to 0.0951 (for x0.95 = 13.8629). Moreover in the no
precision case, Sequest delivered nominal 95% CIs with coverages ranging from 97.0% (for p = 0.3) to
93.5% (for p = 0.9) together with average values of the CI relative precision ranging from 3.29% (for
p = 0.95) to 9.66% (for p = 0.3). The results for relative precision levels r∗ = 0.03 and r∗ = 0.025 were
judged to be similarly good—especially with respect to the increase in sample size required to satisfy the
precision requirement relative to the no precision case.

4.3 M/M/1/LIFO Queue-Waiting-Time Process

The next test process was the sequence of queue waiting times for the M/M/1/LIFO queue, with customers
in the queue being served in last-in-first-out (LIFO) order, an empty-and-idle initial condition, arrival rate
λ = 1.0, and service rate µ = 1.25. In steady-state operation this system has a server utilization of ρ = 0.8
and a mean queue waiting time of µX = 3.2. The M/M/1/LIFO queue-waiting-time process was selected
for two reasons: (a) unlike the two previous test processes, the autocorrelation function for this process does
not decline in magnitude geometrically fast with increasing lags; and (b) the process has a highly nonnormal
marginal distribution that significantly distorts the behavior of the conventional sectioning-based CI (7),
resulting in coverage probabilities significantly below the nominal level 1−α . Table 3 shows the results
of applying Sequest to 1000 replications of this process. We computed the “exact” value of each selected
quantile xp = F−1(p) as follows: (a) we numerically inverted the Laplace transform of the steady-state
marginal c.d.f. FBFIFO(·) of a busy period in the M/M/1 queue with the same arrival rate λ and service
rate µ (Kleinrock 1975, Equation (5.144)) using the Euler algorithm of Abate and Whitt (2006); (b) we
combined the relation

F(x) =

{
0, if x < 0,
(1−ρ)+ρFBFIFO(x), if x≥ 0,

with the result of (a) to compute a piecewise-linear approximation to F(x) for 0 ≤ x ≤ 75 in increments
of size ∆x = 10−3; and (c) we inverted the result of (b) to yield an estimate of xp with high accuracy.

Table 3 shows that for all precision levels, Sequest’s sampling efficiency was good. For p ∈ [0.3,0.95]
in the no precision case, Sequest delivered the point estimator ỹp(n′) of xp with average bias ranging
in magnitude from 2.80× 10−5 (for x0.5 = 0.4692) to 0.0084 (for x0.95 = 14.4052). Moreover in the no
precision case, Sequest delivered nominal 95% CIs with coverages ranging from 97.2% (for p = 0.5) to
95.8% (for p = 0.3) together with average values of the CI relative precision ranging from 3.27% (for
p = 0.95) to 27.86% (for p = 0.3). The results for relative precision levels r∗ = 0.03 and r∗ = 0.025 were
judged to be similarly good—especially with respect to the amount of additional sampling compared with
the no precision case that was required to satisfy the precision requirement. It is particularly noteworthy
that with the imposition of the precision requirement r∗ = 0.03, the average relative precision of the CIs
delivered by Sequest for p = 0.3 declined from 27.86% (for the no precision case with average batch size
m = 462 and average total sample size n = 13940) to 2.71% (with m = 32011 and n = 1024513 when
r∗ = 0.03); and at the same time, the CI coverages for these two cases were 95.8% and 95.5%, respectively.

5 CONCLUSIONS

In this article we describe Sequest, a fully sequential procedure for delivering improved point and CI
estimators of steady-state quantiles of a simulation output process. Sequest delivers a CI designed to satisfy
user-specified requirements concerning both the CI’s coverage probability and its absolute or relative
precision. We found that Sequest exhibited good small- and large-sample properties in a preliminary
evaluation of the procedure’s performance in a suite of test problems that includes some problems designed
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Table 3: Performance of Sequest-delivered point and 95% CI estimators of the p-quantile
xp of the M/M/1/LIFO queue-waiting-time process described in Section 4.3 based on 1000
replications.

No CI Precision Requirement

p xp ỹp(n′)
∣∣Bias

[
ỹp(n′)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Coverage m n

0.3 0.1129 0.1146 0.0017 0.0319 27.8575 95.80% 462 14940
0.5 0.4692 0.4692 2.80E-05 0.0625 13.3175 97.20% 433 14000
0.7 1.3579 1.3581 1.51E-04 0.0872 6.4228 97.10% 1704 54654
0.9 6.718 6.7200 0.0020 0.2666 3.9675 95.90% 9807 313911
0.95 14.4052 14.3968 0.0084 0.4710 3.2714 96.00% 24949 798473

CI Relative Precision = 3.0%

p xp ỹp(n′)
∣∣Bias

[
ỹp(n′)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Coverage m n

0.3 0.1129 0.1129 1.57E-06 0.0031 2.7109 95.50% 32011 1024513
0.5 0.4692 0.4691 9.09E-05 0.0126 2.6933 94.90% 5834 186825
0.7 1.3579 1.3580 7.81E-05 0.0362 2.6665 95.20% 5030 161097
0.9 6.718 6.7168 0.0012 0.1678 2.4975 95.40% 14353 459375
0.95 14.4052 14.3978 0.0074 0.3413 2.3705 95.60% 29962 958892

CI Relative Precision = 2.5%

p xp ỹp(n′)
∣∣Bias

[
ỹp(n′)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Coverage m n

0.3 0.1129 0.1129 8.28E-06 0.0025 2.2423 95.80% 46588 1490978
0.5 0.4692 0.4691 1.13E-04 0.0105 2.2353 94.30% 8420 269587
0.7 1.3579 1.3580 9.14E-05 0.0304 2.2355 95.00% 7094 227142
0.9 6.718 6.7165 0.0015 0.1444 2.1499 95.60% 18139 580526
0.95 14.4052 14.3974 0.0078 0.3002 2.0848 95.60% 35195 1126361

to “stress test” the procedure. In all the test problems to which we have applied Sequest so far (including
all the processes that Tafazzoli et al. (2011) used to evaluate the performance of Skart), we have found
that Sequest was competitive with previously developed methods for estimating steady-state quantiles of
simulation output processes (Bekki et al. 2010, Chen and Kelton 2006, Jain and Chlamtac 1985, Moore
1980, Raatikainen 1987, Raatikainen 1990, Seila 1982a, Seila 1982b).

Future work on Sequest will include adaptation of the maximum transformation (Heidelberger and
Lewis 1984) to reduce the samples sizes required for estimating p-quantiles when p is close to 0 or 1,
especially in the case that p ∈ {0.9,0.95,0.99}. We will also perform a thorough sensitivity analysis of the
performance of Sequest with respect to variation in the procedure’s numerous parameters (“magic numbers”),
with the ultimate objective of achieving substantial improvements in the performance of the procedure. A
critical aspect of future work will be to gain a better understanding of the effect of noninitialization bias
on the performance of point and CI estimators of steady-state quantiles, and to exploit this understanding
in formulating more effective methods for estimating the required batch and sample sizes at each step of
Sequest.
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