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ABSTRACT 

For system dynamics simulation (SD) models, an estimation of statistical distributions for uncertain 

parameters is crucial. These distributions could be used for testing models sensitivity, quality of policies, 

and/or estimating confidence intervals for these parameters. Assumptions related to normality, 

independence and constant variation are often misapplied in dynamic simulation. Bootstrapping holds a 

considerable theoretical advantage when used with non-Gaussian data for estimating empirical 

distributions for unknown parameters. Although it is a widely acceptable approach, it has had only limited 

use in system dynamics applications. This paper introduces an application of Direct Residual 

Bootstrapping (DRBS) for statistical inference in system dynamic model. DRBS has been applied 

successfully to ‘The Irish Elderly Patient Delayed Discharge’ dynamic model to estimate empirical 

distribution for some unknown parameters with a minimal computation effort. The computational results 

show that bootstrapping offers an efficient performance in cases of no availability of prior information of 

model parameters. 

1 INTRODUCTION 

Numerical parameter estimation is one of the pestering issues in System Dynamics (SD) modeling.  One 

of the challenges is that the model validation depends highly on the accuracy of the parameter estimations 

(Meadows 1980). Failure to set uncertain parameters during the design phase can impact on the dynamic 

behavior, which in turn can lead to undesirable and unforeseen consequences (Ng, Sy, and Lee 2012). 

Lack of the availability of historical data often makes it difficult to estimate all model parameters. Hence, 

estimating unknown parameters based on expert judgments (hand-calibration) can be a plausible solution, 

and is a common practice for assigning parameter values (Lyneis and Pugh 1996). But this method has 

been criticized for few reasons: (1) it is often difficult, and relies mainly on the experience of the experts 

concerned; (2) the results are not replicable; (3) it is not optimal or even best estimate; (4) it makes 

sensitivity analyses and building confidence bands more cumbersome and less robust. In practical terms, 

statistical and judgment methods can work together to enhance the estimation of parameters, where 

former can be used to estimate the possible ranges (the distribution) of parameter values which can then 

be used to check the judgmental estimates (Sterman 2000). When formal parameter estimation procedures 

are used, modelers typically compare time series data against the same variables in their model, and 

minimize the weighted sum of a function of the error terms, using a nonlinear optimization algorithm to 

adjust uncertain parameter values until ‘best fit’ estimates are found (Oliva 2003; Jun and
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 Ng 2013). Rahmandad et al (2013) introduced a ‘simulated moments’ method as a non-parametric 

method of estimating the parameters of dynamic models. A number of statistically-based or optimization-

based techniques can be employed to overcome the shortcomings of hand-calibration. Lyneis and Pugh 

(1996) concluded that combining priori estimations and qualitative information with statistical approaches 

improves the efficiency and reliability of system dynamics practice. Econometric approaches are the most 

commonly used methods, in particular multiple regression based on ordinary least squares (OLS), 

although early studies (Senge 1977), concluded that econometric approaches were not useful because of 

the propensity of SD models to violate the ordinary least squares estimation assumptions. OLS can 

estimate accurate parameters when there is: no co-linearity (correlation among the independent variables); 

no autocorrelation (where the dependent variable depends on its own previous values); no heteroskedastic 

(non-stationary variance thorough the sample), and normality assumptions of the residuals (Sterman 

2000).  

 Sensitivity analyses are often used to judge the sensitivity of model behavior to uncertain assumptions 

about model formulations and parameter values (Moxnes 2005). Moxnes stated that, in addition to the 

importance of sensitivity analysis for model testing, learning and validating, it would be also useful to 

observe how the optimal policy changes in line with variations in model parameters. For these reasons, 

estimating model parameter(s) distribution is required in case some parameters are uncertain, and 

sufficient information about their variations is unavailable. Hypothesis testing and confidence interval 

estimation are useful to modelers to build confidence about parameter estimates. The literature reports 

confidence interval estimation as being used for steady state simulations such as discrete event simulation 

models and queuing systems (Alexopoulos, Goldsman, and Tang 2013; Calvin and Nakayama 2013). For 

system dynamics models, the methods reported confidence interval estimation in literature impose 

assumptions about the data, such as it being normally distributed, independent, and not auto correlated or 

heteroskedastic, whereas system dynamics models usually violate these assumptions (Dogan 2007). 

 In his work, Dogan (2007; 2004) used residual bootstrapping (RBS) for estimating confidence 

intervals for parameters in system dynamics models. Dogan (2004) makes a comparison between residual 

bootstrapping and likelihood ratio method using synthetic data, concluding that the former is more 

appropriate for dynamic models , as it does not require strong assumptions and is valid for small samples. 

This study uses this method to investigate the statistical inferences of system dynamics model parameters. 

Residual resampling is a robust method for data analysis, and Dogan (2007) proposed the residual 

bootstrapping method as suitable to estimate parameters’ confidence intervals, applying it to two small 

system dynamics models with synthetic data. The originality in this study is threefold: (1) it introduces 

double residual bootstrapping (DRBS) in order to reduce the required computations and to overcome the 

large number of parameter fittings; (2) it investigates the utility of the bootstrap method in cases where 

there is or is not prior information about the parameters; (3) it applies this modified method to large real 

system dynamic model with real data.  

 Section 2 of this article presents the research methodology, and provides a brief overview of the 

bootstrapping method, and its appropriateness and challenges for the study of dynamic systems. Followed 

by Section 3, which describes the proposed framework, Section 4 reports the empirical results and 

analysis of the healthcare case study.  

2 METHODOLOGY 

The bootstrap method is an approach for estimating the distribution of an estimator or test statistic by 

resampling data under conditions that hold in a wide variety of econometric applications. It provides 

approximations to distributions of statistics, coverage probabilities of confidence intervals, and rejection 

probabilities of hypothesis tests that are more accurate than the approximations of first-order asymptotic 

distribution theory. The technique, introduced by (Efron and Tibshirani 1994), is growing in popularity in 

the statistics and econometrics literatures as computation becomes cheaper and faster, and because it is 

applicable to general problems. In outline, the bootstrapping method involves resampling from a sample - 

that is, generating many new data sets resampled from the original data in order to estimate 
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parameters (𝜃) for each new generated data set, which allows an empirical distribution to be estimated for 

that parameter (𝜃). This empirical distribution can then be used to estimate relevant characteristics of the 

population by statistical inference. Resampling methods can be parametric or nonparametric (Chernick 

2011; Efron and Tibshirani 1). Many ways in which bootstrapping can be used, including direct or 

residual bootstrapping, the latter being more appropriate for dynamic models (Dogan 2004). Helpful 

reviews and details of bootstrapping methods are provided by Efron and Tibshirani (1994) and DiCiccio 

and Efron (1996), and Hongyi Li and Maddala (1996) provide an extensive survey of the approach. 

2.1 Automatic Model Parameters Calibration 

Assume different multiple actual data variables 𝑃 are used to estimate the parameter vector 𝜃. Let 
{𝐷𝑖𝑡 , 𝑡 = 𝑇0, 𝑇0 + 1, 𝑇0 + 2, … , 𝑇} be a series of the actual data variable 𝐷𝑖 , where t is the subscript for 

time, 𝑇0 the initial time, and 𝑇 the final time. Assume �̃� is the information available about the parameters 

(i.e., estimated judgments, expert guesses, or previous estimates). Let 𝑛 = (𝑇 − 𝑇0 + 1) be the total 

number of simulation runs, and {𝑌𝑖𝑡, 𝑡 = 𝑇0, 𝑇0 + 1, 𝑇0 + 2, … , 𝑇} the corresponding simulated output 

endogenous variable 𝑌𝑖 that has been generated using a simulation model of a non-linear function that 

represents the dynamics of the simulation model Γ; where 𝑖 represents 𝑖𝑡ℎ time series and 𝑖 ∈
{1, 2, … , 𝑃}. The function Γ represents a system of differential equations. The output(s) variables (𝑌𝑖𝑡) of 

the model are non-linear functions (Γ) of system state variables (𝑠𝑡), known model inputs (𝜐𝑡), and 

unknown model parameters (𝜃), where 𝑌𝑖𝑡 =Γ(𝑠𝑡, 𝜐𝑡, 𝜃). Model calibration is the process of estimating 

the unknown model parameters, which minimizes the sum of the non-linear function of the residuals 𝜀𝑖𝑡. 

Generally, the residual is the difference between actual data (𝐷𝑖𝑡) and simulated data (𝑌𝑖𝑡). Formally, the 

error function is given by equation (1). Kleijnen and Sargent (2000), Sterman (2000) and Reichelt, 

Lyneis, and Bespolka (1996) provide and compare ranges of error functions.  

 𝔉𝑖(𝜀𝑖𝑡) = ∑ ℱ(𝑌𝑖𝑡 − 𝐷𝑖𝑡)

𝑇

𝑡=𝑇0

, ∀ 𝑖 = 1,2, … , 𝑃 (1) 

his study uses the root mean square errors (RMSE) metric as an error function which can be defined 

as RMSEi = ℱ(Yit − Dit) = (n−1 ∑ (Yit − Dit)2T
t=T0

)1/2. The calibration process mainly attempts to 

match the behavior of the structure (Oliva 2003). Several methods can be employed to calibrate or to 

estimate model parameters that optimize an arbitrary chosen error function 𝔉i(εit) without losing 

generality. The vector of residuals term εi is assumed to be iid with mean zero. The calibration process in 

this study is described as a non-linear optimization problem, where decision variables are the parameters 

(θ) that should be selected in order to minimize a weighted average objective function of the residuals 

(εit). The weights (ωi) reflect the importance of each time series data i. The optimization model is 

constrained by the lower and upper limits of the parameter(s) (ℓϴ, uϴ) and a system of differential 

equations represented by (Γ). Mathematically, the optimization model of the parameter estimation is 

provided here: 

 min
𝜃

 𝔉𝑖(𝜀𝑖𝑡) = ∑ 𝜔𝑖 ∑ ℱ(𝑌𝑖𝑡 − 𝐷𝑖𝑡)

𝑇

𝑡=𝑇0

𝑃

𝑖=1

 (2) 

 subject to: 𝑌𝑖𝑡 = Γ(𝑠𝑡, 𝜐𝑡, 𝜃), and ℓϴ ≤ 𝜃 ≤ 𝑢ϴ  

where T0 is the intial simulation time, and T is the final simulation time. Solving this non-linear 

optimization problem is beyond the scope of this study. However, a variety of solvers and algorithms are 

available, from commercial or open sources, that can be used to obtain the optimal (or near to optimal) 

solution. Miller (1998) reported breifly on optimization techniques (i.e., genetic algorithm, simulated 

anealing, gradient methods). 
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2.2 Residuals Bootstrapping Procedure (RBS) 

Let B is number of bootstraps, and b the current bootstrap iteration where b ∈ {1, 2, 3, ⋯ , B}. Assume that 

B is sufficiently large to obtain a representative bootstrap sample. The algorithm steps are: 

Step 1: Set the bootstrap iteration number b = 0. 

Step 2: Fit the model data Yit to the actual data Dit by solving the optimizing problem provided in 

equation (2) to obtain a first optimal estimate of the parameter vector (θ̂). 

Step 3: Compute the error terms (ε̂it) for the optimal parameter values. Centering the residual terms (ε̂it) 

at zero mean is given by equation (3).  

 ε̂it = (Yit − Dit) − με̂i
 

where με̂i
= (n)−1 ∑ ε̂it

T
t=T   

(3) 

Note: there are two ways to compute residuals:  

(3a) where prior information about the parameters θ̃ is available, compute (Yit) via simulation 

using the original parameter values (θ̃), where (Yit = Γ(st, υt, θ̃),  

(3b) where there is no such prior information, compute Yit via simulation using the first estimate 

(θ̂), where (Yit = Γ(st, υt, θ̂). 

Step 4: Set b = b + 1. 

Step 5: Resample the residual terms using a parametric or nonparametric technique to obtain new residual 

values (εit
∗b), where εit

∗b represents the new residuals value of the ith variable at time t in bootstrap 

iteration b. 

Step 6: Generate new data sets (Dit
∗b) by adding the re-sampled error terms to the model output. The new 

generated data are given by equation (4). 

 Dit
∗b = Yit

b + εit
∗b (4) 

Step 7: Use the new generated data set (Dit
∗b) to estimate the parameter value(s) (θ̂∗b) with automated 

calibration as provided by equation (2).  

Step 8: Repeat steps 4, 5, 6, and 7 until b = B. 

 At the end of running this procedure, B estimates of the parameter vector (θ) will have been obtained. 

Formally, the parameter bootstrap estimates, represented by θ̂∗ = {θ̂∗b, b = 1, 2, 3, ⋯ , B}. θ̂∗, can be used 

to construct estimate empirical distribution for the parameter vector (θ). 

2.3 Parametric and Nonparametric Resampling 

The simplest sampling technique is nonparametric sampling, because it does not require any distributional 

assumptions, but it requires a large sample of data to be sufficiently representative. In this method, each 

new set of residuals is created by resampling randomly, with replacement, from the set of residuals (ε̂it) 

associated with the best fit parameters (θ̂) or the original parameters values (θ̃). No such assumption 

needs be made in the parametric method. The empirical distribution function is given as:  

 𝔽(x) = n−1 ∑ I(θ ≤ x)  (5) 

where I(∙) is the indicator function. On the other hand, parametric sampling is the process of sampling 

from a parametric probability function that can be obtained by fitting residual terms to a specific 

theoretical probability distribution. This method is efficient if the residual term fits a parametric 

distribution as well, as it does not require large data set. Once the distribution parameters are estimated, 

the distribution can be used to generate a new data set by sampling error terms from the parametric 

distribution. However, distribution assumptions must be respected in this method. 

2.4 Autoregressive Model 

As noted earlier, the advantage of bootstrapping is that it does not require statistical assumption for 

residuals as do the other traditional methods for estimating parameter distributions, especially given that 

most dynamic models violate these assumptions. Exploring and studying the residuals obtained from 
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fitting actual data to simulated data is most essential in order to investigate sources of variability and bias 

in parameter estimation problems (Oliva 2003; Sterman 2000). An autocorrelation spectrum can be used 

to detect the auto-dependency of the residuals for different time lags. 

 The assumption that the residuals are not correlated is most likely to be violated in dynamics models, 

which could lead to a bias in bootstrapping estimation when resampling the residuals ignoring that they 

may be auto-correlated. Formal tests can be conducted by computing the autocorrelation function values 

and their variances (Barlas 1989; Barlas, Topaloglu, and Yilankaya 1997). If the error terms are auto-

correlated, they should be removed before resampling. 

  Formally, the centered residual terms (ε̂it) are computed using equation (3) in step 3 for each output 

variable and then autocorrelation coefficients (rk
i ) in the residual terms are computed for different 

lags k ∈ {0, 1,2, … , 𝒦}, where 𝒦 is the maximum number of lags and 𝒦 < n − 1. Mathematically, the 

equation of sample autocorrelation spectrum for lags k ∈ {0, 1,2, … , 𝒦} is given by: 

 
rk

i =
∑ ε̂it.ε̂i(t+k)

n−k
t=1

∑ ε̂it
2n

t=1

, ∀ i ≤ P  (6) 

Then the hypothesis as to whether {rk
i : ∀ k ≤ 𝒦} are significantly different than zero can be tested. 

Hence, the null and alternative hypothesis can be formulated as following: 

 H0: rk
i = 0, ∀ k ≤  𝒦  

H1: ∃ rk
i ≠ 0, ∀ k ≤  𝒦  

 

The test statistic τi(k) for each individual rk
i  is provided by equation (7), using the autocorrelation 

function variance estimator developed by Barlas (1994). 

 
τi(k) =

 rk
i

σ̂rk
i
 

σ̂
rk

i = ((n(n + 2))−1 ∑ (n − t)n−k−1
t=1 [rk−t

i + rk+t
i − 2rk

i rt
i]

2
)

1/2

  

 

(7) 

Equation (7) is the test statistic of autocorrelation at lag k. The hypothesis test is of individual 

autocorrelation at significance level α under the assumption of normal autocorrelation values. The null 

hypothesis of this individual test is rejected at significance level α if |τi(k)| > z1−
α

2. Rejecting the null 

hypothesis for at least one individual test means that autocorrelation violates the assumption of the 

residuals’ independence, but the bootstrapping method can still be valid even the residuals are not 

independent. Formally, the auto-dependency of residuals ε̂it can be modeled using 𝓅th autoregressive 

model; AR(𝓅). 

 ε̂it = ∑ φijε̂i(t−j)
𝓅
j=1 + ℯit  

ℯit ∽ N(0, σℯit
2 )  

 

(8) 

where φij is the jthcoefficient of autoregressive model of variable i, and eit is a white noise with zero 

mean and variance σℯit
2 . The underlying white noise eit should be tested subject to normality and 

autocorrelation to insure their independence. After estimating the autoregressive process using equation 

(8), the bootstrapping process can be applied by resampling the white noise (ℯit) parametrically or non-

parametrically to obtain ℯit
∗b. Based on the autoregressive model, both steps 5 and 6 of the residual 

bootstrapping procedure given above can be revised as follows: 

Step 5: Use equation (8) to estimate the autoregressive residual terms using ε̂̂it = ∑ φijε̂i(t−j)
𝓅
j=1 , and 

compute the estimated ‘white noise’ terms using ℯit = ε̂it − ε̂̂it. Resample those terms ℯit using a 

parametric or nonparametric technique to obtain new residual values (ℯit
∗b), where ℯit

∗b represents 

the new residual value of the ith variable at time t in bootstrap iteration b. 

Step 6: Generate new data sets (Dit
∗b) by adding the re-sampled error terms to the model output. The new 

generated data are given by equation (9). 

 Dit
∗b = Yit

b +  ε̂̂it + ℯit
∗b   (9) 
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2.5 Confidence Intervals Estimation using the Bootstrap Method 

The bootstrap method is particularly useful as an approach to estimating standard errors, and obtaining 

confidence intervals for location parameters based on these robust estimators. The trouble with standard 

intervals is that they are based on an asymptotic approximation that, in practice, can be quite inaccurate. 

There are different methods available for estimating bootstrap confidence intervals for estimated 

parameters, of which this paper utilizes two: bootstrap percentile confidence interval and bias corrected 

bootstrap percentile interval. (For complete discussion and detailed algorithms of both methods, see 

Davison 1997; Efron and Tibshirani 1994; DiCiccio and Efron 1996). 

 First, the bootstrap percentile confidence interval method is based on the quantile of the bootstrap 

distribution of the parameters estimate. Formally, the bootstrap percentile confidence interval at the 

100α% significance level is given as: 

 [𝜃∗(𝛼 2⁄ ), 𝜃∗(1−𝛼 2⁄ )] (10) 

where θ̂∗(
α

2
) and θ̂∗(1−

α

2
)
 represent the actual quantiles of the bootstrap distribution of estimates. To figure 

out the confidence intervals in equation (13), first sort the bootstrap estimates in ascending order. The 

lower limit of θ̂∗(α 2⁄ ) is obtained by locating the (α 2⁄ )100th position in the ordered list, while θ̂∗(1−α 2⁄ ) 

is located by the (1 − α 2⁄ )100th position in the ordered list. 

 Second, the bias correction bootstrap confidence interval method basically tries to take estimated bias 

into account. According to Efron and Tibshirani (1994) the bias correction constant is defined as: 

 �̂�0 =Φ−1(𝐵−1 ∑ 𝐼(𝜃∗𝑏 < 𝜃)𝐵
𝑏=1 )  (11) 

where I(⋅) is the indicator function and Φ−1(⋅) is the inverse cumulative standard normal distribution. So 

the bias correction bootstrap percentile confidence interval is given by: 

 [𝜃∗𝛼1, 𝜃∗𝛼2] (12) 

where α1 and α1 are modified quantities of the location of the confidence interval’s endpoints. The 

confidence interval endpoints at significant level 100α% are defined as: 

 
𝛼1 =  Φ(2�̂�0 + 𝑍𝛼 2⁄ ), and 

(13) 

 𝛼2 =  Φ(2�̂�0 + 𝑍(1−𝛼 2⁄ )) (14) 

where Φ is the cumulative standard normal distribution. (Further comments on the sample size are 

provided by Polansky 2000 and by Chernick 2011). 

3 DIRECT RESIDUALS BOOTSTRAPPING PROCEDURE (DRBS) 

It is worth pointing out a problem associated with estimating statistical inferences using residual bootstrap 

method in large-size SD models is the estimation process might potentially require larger bootstraps. 

Hence the computational process can become lengthy and expensive. To overcome this drawback, this 

study proposes applying a direct bootstrap method on the empirical distribution estimated using the 

residual bootstrapping method. The idea here is simply resampling from the empirical distribution 

estimated from RBS. Roughly speaking, the residual bootstrapping method aforementioned in section 2 is 

computationally expensive due to the auto calibration processes that require simulation optimization 

procedures to estimate the best fit parameters. Instead using large numbers of residual bootstraps to 

estimate unknown parameters, we suggest using much smaller number of residual bootstraps and 

applying a direct bootstrap method with a large number of bootstraps. Direct bootstrapping is 

computationally inexpensive, as it simply involves resampling from the estimated empirical distribution.  

Formally, suppose that the θ̂∗ = {θ̂∗1, θ̂∗2,, … , θ̂∗B} are residual bootstrap estimates of parameter theta, 

a sample that has been obtained using the residual bootstrap procedure. The empirical distribution 

function 𝔽 of θ̂∗ is given by equation (5). B independent drawn samples are taken with replacement from 

𝔽 to obtain a sample θ̂∗∗(ℳ) = {θ̂∗∗1, θ̂∗∗2,, … , θ̂∗∗B}. This sample can be used to compute θ̅∗∗ using the 

same formula as for θ̅∗. Repeat the sampling with replacement B cases from 𝔽 and computing 

θ̅∗∗𝓂 results in {θ̅∗∗1 , θ̅∗∗2, … , θ̅∗∗ℳ}, where 𝓂 is the direct bootstrap sample and ℳ is the total number 
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of direct bootstrap samples drawn given ℳ ≫ B. The proposed direct bootstrap integration with residual 

bootstrap for statistical inference of SD model’s parameters framework is represented in Figure 1. 

4 EMPIRICAL RESULTS 

The empirical results were obtained by applying the RBS and DRBS to the SD model of delayed elderly 

patients discharge from Irish public healthcare (model developed by Rashwan et al. 2013). The historical 

data is used in order to fit parameters of delayed discharge patients in Irish public hospitals in 2012, 

which represents (Dt). Three parameters (θ) of the model are estimated: (1) ‘Rehabilitation to Long 

Term Care Ratio’ represents the ratio of patients referred to long care units directly from rehabilitation 

services; (2) ‘Average time in Rehabilitation’ represents the average the patients spend in rehabilitation 

services; and (3) ‘Maximum Waiting Time to Access Rehabilitation Services’ represents the time 

taken by patients to access rehabilitation services. Short in data sources and inconsistency in available 

data were the main challenges that faced the developer of SD model.  This issue inspires the idea of 

applying RBS and DRBS in the SD model to estimate statistical inferences for the three aforementioned 

parameters. 

 For simplicity, the three parameters are denoted as θ1, θ2 and θ3 respectively. Two types of 

experiments were run, both using RBS and DBS but with different assumptions about the parameters. 

The first (represented as θ̃) used prior information (i.e., guess, judgments, or estimations based on past 

data) - in this case values computed based on Irish delayed discharge data for 2011. The second 

experiment addressed the problem of the unavailability of prior information about the model parameters 

(i.e., unknown parameter values). This experiment aimed to investigate the usefulness of bootstrapping 

method to construct an empirical distribution for unknown model parameters. This would be practicable 

when the parameters are completely unknown, then the first estimates of the parameters (θ̂) are used. In 

the experimentation, RBS(B) refers to the residual bootstrapping method (as presented in section 2.), 

with number of bootstrap replications B, while DRBS(B, M) refers to theDRBS, method (as proposed in 

section 3) with residual bootstrap replications B and direct bootstrap replications ℳ.  

 The Elderly Delayed Discharge SD model in the experiments was developed using Microsoft Excel 

spreadsheets, and the visual basic for application (VBA) programing language was used to develop the 

RBS and DRBS methods. The ‘Solver add-ins’ integrated in Microsoft Excel were used as the 

optimizer/estimator for each calibration that minimizes the RMSEs required. The RBS requires a 

minimum of 1000 residual re-sampling iterations to get good results (Efron and Tibshirani 1994; 

DiCiccio and Efron 1996). Hence, the SD model used in this case was calibrated for 1000 times. With a 

relatively large SD model such as the elderly care model, one RBS run demands huge computational 

time (run execution usually takes approx. 5 hours), so the RBS and DRBS experiments presented in this 

section used 1000 iterations per run. 

 

Figure 1: The proposed framework for estimating SD model’s parameters statistical inference. 
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4.1 Availability of Prior Information  

The residuals were computed using equation (3) and step 3a (subsection 2.2), and tested for 

autocorrelation according to the method described in subsection 2.5. The autocorrelation function values 

were calculated and checked for the first 30 lags (see Figure 2a). Although there are significant 

autocorrelations at lags k =  1,6,7, 15 and 20, the first was the most significant lag (r1 = 0.858) 

compared to the others. Hence a first-order autoregressive process AR(1) provided by equation (8) was 

used to model the auto-dependency of the residuals. 

 Autocorrelation tests of the underlying white noises revealed that they were independent (Figure 

2b), and the normality test showed that they were normally distributed (Figure 2c). The residuals were re-

sampled with parametrical re-sampling of the underlying white noises using normal distribution, and 

these samples were used to estimate percentile confidence intervals (PCI) and bias-corrected percentile 

confidence intervals (BCPCI) for each parameter. Table 1 shows the estimated 95% bootstrap CIs based 

on the RBS and DRBS with sizes of 25, 50, 100, 200 and 500, while Figure 3 illustrates the empirical 

bootstrap sampling distributions for each of three parameters. All estimated CIs for the parameters 

suggest that none of the three parameters were significantly different from their initial guesses at the 95% 

confidence level. The estimated CIs using DRBS with sizes of 100, 200 and 500 are very close to those 

estimated using the original RBS for the three parameters. On the other hand, the CIs estimated using 

DRBS with the size of 25 are close to those estimated based on bias-corrected RBS for the three 

parameters. Overall, the bias correction for the RBS results produces tighter CIs. 

4.2 Unavailability of Prior Information  

Assume that the pre-mentioned parameters are unknown. In this experiment (i.e., the second) the 

residuals are calculated using the first estimate given in step 3b (subsection 2.2), and are modeled using 

AR(1) as given by equation (8). The test of the underplaying white noises showed that they are 

independent and normally distributed, so normal distribution was employed to parametrically re-sample  

 
(a)  θ1 

 
(b)  θ2 

 
(c)  θ3 

 

Figure 3: Empirical distributions for the parameters with prior information of the parameters. 

a) The Residuals b) White Noises 

 
c) White Noise distribution 

 

Figure 2: The Autocorrelation Values (Lags 1 to 30) for the residuals & underlying ‘white noise.’ 
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Table 1: The estimated CIs for the parameters using RBS and DRBS with prior information of the 

parameters. 
 

95% CI CI Method Lower Limit Parameter’s Guess (θ̃) Upper Limit Width of Interval 

 𝜽𝟏 
  

0.20 
  

RBS (1000) PCI 0.17  0.35 0.18 

Bias Corrected RBS (1000) BCPCI 0.14 0.22 0.08 

DRBS (25,2000) PCI 0.17 0.27 0.10 

DRBS (50,2000) PCI 0.17 0.27 0.10 

DRBS (100,2000) PCI 0.16 0.33 0.16 

DRBS (200,2000) PCI 0.17 0.35 0.18 

DRBS (500,2000) PCI 0.17 0.35 0.18 

 𝜽𝟐 
  

19.00 
  

RBS (1000) PCI 2.61  19.15 16.54 

Bias Corrected RBS (1000) BCPCI 5.08 19.18 14.09 

DRBS (25,2000) PCI 6.89 19.18 12.29 

DRBS (50,2000) PCI 2.61 19.14 16.54 

DRBS (100,2000) PCI 2.61 19.15 16.54 

DRBS (200,2000) PCI 2.60 19.15 16.54 

DRBS (500,2000) PCI 2.78 19.15 16.37 

𝜽𝟑 
  

60.00 
  

RBS (1000) PCI 41.81  66.14 24.33 

Bias Corrected RBS (1000) BCPCI 55.27 73.67 18.40 

DRBS (25,2000) PCI 50.54 67.00 16.47 

DRBS (50,2000) PCI 49.84 67.00 17.16 

DRBS (100,2000) PCI 43.92 67.87 23.94 

DRBS (200,2000) PCI 38.54 67.29 28.76 

DRBS (500,2000) PCI 41.81 66.47 24.66 

 

them. Table 2 presents the estimates of 95% bootstrap CIs with various bootstrap samples, and Figure 4 

gives the empirical bootstrap sampling distribution for the three parameters. Except for the biased 

corrected CIs, all estimated CIs suggest that the three parameters are not significantly different from 

their initial guesses at 95% confidence level. Although the bias correction method in this case created 

CIs that were wider than the RBS, they also suggest that the parameters θ1 and θ3 were significantly 

different from their initial guesses. The results for the DRBS are very close to the regular RBS for all 

bootstrap sample sizes. 

 

 
(a)  θ1 

 
(b)  θ2 

 
(c)  θ3 

Figure 4: Empirical distributions for the parameters without prior information of the parameters. 
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Table 2: The estimated CIs for the parameters using RBS and DRBS without prior information of the 

parameters. 
 

95% CI CI Method 
Lower 

Limit θ̃ θ̂ 
Upper 

Limit 

Width of 

Interval 

𝜽𝟏Rehab to LTC Ratio ( 
  

0.20 0.27 
  

RBS (1000) PCI 0.18  0.36 0.18 

Bias Corrected RBS (1000) BCPCI 0.24 0.60 0.35 

DRBS (25,2000) PCI 0.17 0.33 0.16 

DRBS (50,2000) PCI 0.19 0.39 0.20 

DRBS (100,2000) PCI 0.18 0.39 0.21 

DRBS (200,2000) PCI 0.18 0.37 0.20 

DRBS (500,2000) PCI 0.17 0.34 0.17 

𝜽𝟐Average time in Rehabilitation (𝜽𝟐) 19.0 19.11  
  

RBS (1000) PCI 2.61  19.15 16.23 

Bias Corrected RBS (1000) BCPCI 5.08 19.20 5.50 

DRBS (25,2000) PCI 6.89 19.14 15.55 

DRBS (50,2000) PCI 2.61 19.13 16.29 

DRBS (100,2000) PCI 2.61 19.14 16.31 

DRBS (200,2000) PCI 2.60 19.14 15.92 

DRBS (500,2000) PCI 2.78 19.15 16.23 

𝜽𝟑Time to delay in Rehab Waiting ( 
 

60.0 49.99 
  

RBS (1000) PCI 41.36  65.51 24.15 

Bias Corrected RBS (1000) BCPCI 27.92 53.86 25.93 

DRBS (25,2000) PCI 43.55 67.06 23.50 

DRBS (50,2000) PCI 39.01 63.46 24.45 

DRBS (100,2000) PCI 39.01 64.65 25.64 

DRBS (200,2000) PCI 39.01 64.91 25.91 

DRBS (500,2000) PCI 40.14 65.50 25.36 

5 DISCUSSION AND CONCLUSION 

This paper discusses the theoretical framework of the residual bootstrapping method and its application 

in system dynamics models. Residual Bootstrapping (RBS) is used to estimate statistical distributions for 

the model parameters. These distributions can be used to build confidence intervals for the parameters or 

to perform hypotheses testing. They can also be used for model sensitivity and policy analyses, and to 

help estimating correlations between model parameters.  

 This paper presents RBS in an application of a system dynamics model for the Irish elderly care 

capacity planning, using historical data of delayed discharges from Irish public hospitals in 2012. The 

literature recommends a large number of iterations (min 1000) for the RBS to replicate good estimation 

for distribution of the model parameter(s), and this large number imposes a long execution time, which 

grows rapidly with the increase in model complexity. The idea presented is to integrate RBS with the 

direct bootstrap method (DRBS) in order to reduce overall execution times. In DRBS, a relatively small 

number of iterations are used for the RBS, and the direct bootstrap method is then applied to generate a 

larger sample of the parameter estimates. The proposed framework is generic and can be applied to any 

simulation model. 

 The results in Tables 1 and 2 suggest that using regular RBS with few iterations (25, 50 or 100) and 

applying the direct bootstrapping on estimated boots, can give PCI estimates that are close to those by 

using RBS with much larger numbers of iterations (e.g. 1000 or more). This suggests that the proposed 

integration between RBS and direct bootstrapping has an advantage over the perspective computational 

time. The estimated samples for the parameters could be used for other purposes than CI estimation and 

hypothesis testing, such as sensitivity analysis. Further statistical analysis is required to test whether the 

samples estimated using DRBS are different from those estimated using regular RBS or not, such as pair 

wise hypotheses testing between the two. The null hypothesis (H0) claims that the two samples have 

equal variances, while the alternative hypothesis (H1) claims the two samples’ variances differ from 
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each other. The results showed that H0 was rejected for all samples estimated using DRBS with subsets 

sizes of 25 and 50 for the three parameters: but that the test results did not reject H0 for the three 

parameters for sizes 100, 200 and 500, with exceptions of θ2 at size 100;  θ1 and θ3 at size 200; and  θ1  

at size 500 (α = 0.05). 

 The empirical results of the two experiments (using prior information versus no information for the 

parameters) demonstrate that the medians of the estimated samples in both experiments did not differ 

significantly from the initial conjecture of the parameters. However, the bias correction in the second 

experiment (no information available) appears to contradict this finding. The historical data used in the 

SD model were for the year 2012, and the parameters values used were estimated based on healthcare 

data statistics for 2011. Assuming that there were no dramatic changes in demographic characteristics 

between 2011 and 2012, these parameters values were also assumed to be close to each other over the 

two years. Empirically, bias correction might result in estimated distribution that could be significantly 

different from the original parameters’ values, and might negatively affect the estimated inferences for 

the parameters. Nevertheless, empirical experimentation showed that the method proposed in here help 

to reduce RBS computational times by 90%, and yield promising results with minimum inaccuracy.  
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