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ABSTRACT

In some service operations settings, data are available only for system outputs but not the constituent input
models. Examples are service call centers and patient flows in clinics, where sometimes only the waiting
time or the queue length data are collected for economic or operational reasons, and the data on the “input
distributions”, namely interarrival and service times, are limited or unavailable. In this paper, we study
the problem of estimating these input distributions with only the availability of the output data, a problem
usually known as the inverse problem, and we are interested in the context where stochastic simulation is
required to generate the outputs. We take a nonparametric viewpoint, and formulate this inverse problem
as a stochastic program by maximizing the entropy of the input distribution subject to moment matching.
We then propose an iterative scheme via simulation to approximately solve the program.

1 INTRODUCTION

In this paper, we study a model reconstruction problem: Consider a stochastic system that turns input
model, represented by probability distributions, into system outputs. The system structure specification is
assumed known, in the sense that the output can be simulated given the input model. Data are obtained
for the outputs but not on the input model, and the task is to infer the latter only from the output data.
The motivation of this problem comes from service operations. Basawa, Bhat, and Lund (1996) discussed
two such instances. For example, when doing market surveys, for economic and operational reasons, cable
companies may collect data on waiting times of customers instead of detailed recording of all interarrival
and service times. Similarly, the waiting times of patients in clinic for consultation and surgery can be
recorded, but not directly for the interarrival and service times. In both of these situations, the input
model is the interarrival or the service time distribution, and the observed outputs are the waiting times of
customers. From risk management and sensitivity analysis point of view, it is useful to infer these input
distributions, since they can be used to generate scenarios for prediction. Inferring these distributions is
the topic of study in this paper.

The above problem is referred classically as the inverse problem (Tarantola 2005). This concerns
inference on parameter, function, or in our case probability distribution, when direct observation of the
object of interest is unavailable. There are at least two significant branches of literature on this class of
problems, which we shall survey now and also point out the new elements in our setting. The first is so-called
linear inverse problem arising in the statistics literature (Csiszár 1991). This includes the reconstruction
of signals from the measurement of linear transformations, and more relevantly, the reconstruction of
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probability density that satisfies moment conditions. The typical approach to these problems is to set up
optimization programs that minimize certain L2-distance or statistical divergence. We shall use a similar
idea in this paper, but since the input-output relation is not linear nor in closed form in our situations of
interest, it forces us to use new simulation optimization strategies.

The second line of related literature lies in the emerging field of uncertainty quantification in applied
mathematics. This concerns the quantification of errors made by complex models, often called surrogate
models, that attempt to approximate the actual physical phenomena (Santner, Williams, and Notz 2003).
These models typically contain parameters that need to be calibrated, which can be viewed as an inverse
problem, and the major challenge lies on the uncertainty of how well the surrogate model approximates the
truth. A predominant methodology in the literature is to use Gaussian process to approximate the model
discrepancy error and to use Bayesaian updates to infer the error and also the parameter values (Kennedy
and O’Hagan 2001). In this paper, we do not consider surrogate model. Instead we assume the system
structure specification is completely known up to simulation. The challenge for us is the inference of the
input probability distribution as a functional object. In particular, we will take a nonparametric viewpoint,
i.e. not assuming any specific family for the probability distribution. This is because when the output data
is abundant, the input-output relation in our setting typically allows for a nonparametric reconstruction of
the input model, and this is superior to introducing parametric models that can suffer from bias issues.

Regarding past literature, we also mention that there have been several works on estimation of interarrival
and service times for queues, either parametrically or nonparametrically. See, for instance, Fearnhead (2004),
Basawa, Bhat, and Zhou (2008), Ross, Taimre, and Pollett (2007), and Bingham and Pitts (1999). These
papers typically focus on analyzing the structure of the queues (e.g. G/G/1) and investigate estimation
procedures that are suited to their particular structures. The observations can come from continuous or
discrete time points and can be the queue lengths or the waiting times. In this paper we do not deal with
observations as time series, and will focus on using output samples from a prespecified time. However,
we also do not assume any particular structure of the system, but only assume it is simulable. We leave
the extension to time series data to future work.

As mentioned before, we borrow ideas from linear inverse problems and attempt to set up optimization
programs that incorporate output information. More concretely, we shall match the moments between
simulation outputs and the observed output data. However, since we do not impose any parametric
assumptions, there can be many possible solutions to satisfy these moment conditions (This is also known
as non-identifiability in model calibration; see, for instance, Tuo and Wu (2013)). In order to alleviate
this issue, we use entropy maximization as a criterion, and there are at least three reasons for choosing
this as the objective function. The first is the natural interpretation of entropy maximizing distribution
as the conditional distribution given all the prior information (Csiszár 1984, Van Campenhout and Cover
1981). Second, in the classical setting without the input-output structure, consistency results are known
as the number of matched moments increases (Barron and Sheu 1991). Third, minimizing the so-called
I-divergence, which contains entropy as a special case, is known to possess many desirable axiomatic
properties (Csiszár 1991). Because of all these reasons, we shall set entropy as the objective in our
optimization formulation, subject to moment constraints on the output level.

These optimization formulations are non-convex in nature. As such, we focus on finding local optimum
and will demonstrate numerically how well it works. Our main idea of local maximization involves two
elements. First, we consider a version of duality for these programs, by turning them into a sequence of
optimization programs on the squared distances between the simulated and the observed moments. Second,
we propose a stochastic version of the feasible direction method, or the conditional gradient method in
the nonlinear programming literature, to solve these sequences of programs. This consists of deriving a
representation for the stochastic gradient based on the use of Gateaux derivatives with respect to the input
model, which is adapted from the work of Ghosh and Lam (2014).
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This paper is organized as follows. In Section 2, we lay out the notation, setting and formulation
for our problem. In Section 3, we detail our procedure to tackle our formulation, and also discuss some
properties of the procedure. Then in Section 4 we report some numerical results.

2 SETTING, NOTATION, FORMULATION

We denote p as the probability distribution of the input model. The system output is h(X) where X =
(X1, . . . ,XT ) ∈ RT is an i.i.d. sequence each distributed under p, and T is the time horizon. The function
h : RT → R transforms the input into output. For example, X can denote the sequence of interarrival
or service times for each customer in a queue, and h(X) is the waiting time of the T -th customer. In
our present exposition we shall only consider p having discrete finite support on {z1,z2, . . . ,zK}, so that
p = (p1, . . . , pK). Our viewpoint is that when K is large, the discrete distribution can approximate well
a continuous true model, but of course, this will introduce an extra layer of discretization error, and its
quantification is an important topic for future work.

As discussed in the introduction, we are interested in situations where the output h(X) can be observed.
Let y1, . . . ,yM be M observations of h(X). Our task is to estimate p. Depending on what the function h is, it
may or may not be possible to perform this task. Think of, for example, h is identically equal to a constant.
Then any p will give perfect fit. This phenomenon, often called non-identifiability, is well-documented
(e.g. Tuo and Wu (2013)). To get around this issue, we shall focus on finding a distribution p that has the
maximum entropy among all candidates that fit the observed yi’s, which also enjoys some advantageous
interpretations and consistency properties (at least for simpler settings) as outlined in the introduction.

To be more precise, we let

µ j =
1
M

M

∑
m=1

y j
m

be the empirical j-th moment of h(X). We consider the optimization program

max −∑
K
k=1 pk log pk

subject to Ep[h(X) j] = µ j, j = 1, . . . ,J
p ·1 = 1
p≥ 0

(1)

The decision variable is p. Here Ep[·] denotes the expectation under p, and the last two constraints merely
state that p has to be a probability distribution. The integer J represents the number of moments that are
matched. The quantities 1 and 0 represent vectors with 1 and 0 in each component respectively.

We mention that if some prior information on p is known, the objective of (1) can be modified to
incorporate such information. For example, if p is known to be close to a distribution, say p0 (for instance
from other data sources), then one can minimize the Kullback-Leibler divergence, or relative entropy,
between p and this prior distribution p0. In this case the objective becomes min∑

K
k=1 pk log(pk/p0

k) where
p0 = (p0

1, . . . , p0
K).

Note that the quantities Ep[h(X) j] are non-linear in p in general, because of the i.i.d. structure of X.
When the i.i.d. structure is not present and the quantities are linear in p, Barron and Sheu (1991) proved
that p converges to the true model as the number of observations M and the number of matching moments J
increase at suitable rates, and moreover confidence region can be formed, under some regularity conditions
(including continuity) of p. This also motivates our formulation (1), although here we shall focus on how
to solve (1) and leave the full consistency analysis for our setting to future work.

3 PROPOSED PROCEDURE

Our strategy to handle (1) consists of two parts: first, we turn (1) into a sequence of minimization programs.
Second, we derive a stochastic version of the feasible direction method for finding the local optima for
these programs.
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3.1 Transforming into a Sequence of Stochastic Programs with Entropy Constraints

While the optimization (1) is natural, the constraints are typically non-linear and need to be simulated. As
far as we know, the literature on dealing with stochastic non-convex constraints is very limited. Here we
propose an approach alike quadratic penalty (Bertsekas 1999). More concretely, we consider a sequence
of optimization programs

min ∑
J
j=1(Ep[h(X) j]−µ j)

2

subject to ∑
K
k=1 pk log pk ≤ η− logK

p ·1 = 1
p≥ 0

(2)

for increasing values of η ≥ 0 (note that − logK is the minimum value of ∑
K
k=1 pk log pk, by putting p as the

uniform distribution, and so − logK is put in the right hand side of the entropy constraint for convenience).
As η increases, the optimal value of (2) decreases since the feasible region enlarges. Suppose there is a
point where the optimal value decreases to zero and stays thereafter. The optimal solution to this particular
η value will give the optimal solution to (1), and the corresponding −η + logK is the optimal value for
(1). This is because any smaller η (and correspondingly larger objective value in (1)) cannot be achieved
by any p within the feasible region in (1). On the other hand, if the optimal value of (2) is larger than zero
for any η ≥ 0, then there is no feasible solution to (1).

To sum up, we have
Lemma 1 Let Z∗η be the optimal value of (2) parametrized by η . The optimal value of (1) is equal to
−η∗+ logK where η∗ := min{η ≥ 0 : Z∗η = 0}. Moreover, η∗ = ∞ if and only if (1) is infeasible. If
η∗ < ∞, then the optimal solution to (2) at η∗ will be optimal for (1).

The above approach resembles the use of quadratic penalty in nonlinear programming, which in a
simple form will entail solving (1) by transforming it into a sequence of programs

max −∑
K
k=1 pk log pk− cn

∑
J
j=1(Ep[h(X) j]−µ j)

2

subject to p ·1 = 1
p≥ 0

(3)

where cn is a sequence that diverges to ∞ (Bertsekas 1999). The reason we do not directly adopt (3) (or its
more advanced version) is that the entropy objective function in (1), when transforming into a constraint
in (2), leads to a handy analytical solution when using a feasible direction method, as will be discussed in
the next section.

We mention that the squared moment distances in the objective function of (2) have also appeared
in model calibration (see, for instance, Yuan, Ng, and Tsui (2013)), where the best values of a set of
parameters in the system or the input model are sought after. These papers, however, often focus on
parametric inference for surrogate models, which differs from our nonparametric motivation, and hence no
entropy constraint is imposed in those cases, nor is there an interpretation of maximizing the entropy via
η∗ in the constraint as in (2).

3.2 A Feasible Direction Method

In this subsection we discuss an iterative method to find local optimum for (2). The method is based
on a stochastic version of the feasible direction, also known as the conditional gradient method, in
deterministic nonlinear programming. Given a current solution, say pn, we first approximate the gradient
of ∑

J
j=1(Ep[h(X) j]− µ j)

2 at pn, and then consider an optimization with a linear objective as the inner
product between the gradient and p, searched over the feasible region.

Since the objective in (2) involves expectation that is not in closed form, the gradient will typically need
to be estimated via simulation. In the following, we will adapt a result in Ghosh and Lam (2014) to express
the gradient in expectation form. This result has the spirit of the likelihood ratio method in conventional
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derivative estimation, as it involves a score-function-alike object in the expectation. From there we can
run a constrained stochastic approximation scheme. We consider the following characterization:
Lemma 2 Given p0 = (p0

1, . . . , p0
K) where each p0

k > 0, we have

∇

(
J

∑
j=1

(Ep0 [h(X) j]−µ j)
2

)
· (p−p0) = 2

J

∑
j=1

(Ep0 [h(X) j]−µ j)Ep0 [h(X) jS(X)] · (p−p0)

= 2Ep0

[
J

∑
j=1

(h(X) j−µ j)h(X̃) jS(X̃)

]
· (p−p0) (4)

for any probability simplex p on the support {z1, . . . ,zK}, where S(X) = (S1(X), . . . ,SK(X)) and

Sk(x) =
T

∑
t=1

Ik(xt)

p0
k
−T

for any x = (x1, . . . ,xT ) ∈ RT . Here Ik(x) = 1 if x = zk and 0 otherwise. Moreover, X and X̃ are two
independent copies of the sequence X under p0.

The optimization objective in Ghosh and Lam (2014) does not involve the square operation, and so
does not need to generate two independent copies of X and X̃. As discussed in their work, the quantity
Ep0 [h(X) jS(X)] is the Gateaux derivative of Ep0 [h(X) j] with respect to the probability simplex p. In other
words, for each k, denoting 1k as the vector with 1 at the k-th component and 0 otherwise (i.e. a degenerate
probability mass at zk), a perturbation of probability distribution from p0 to the mixture (1− ε)p0 + ε1k
leads to

Ep0 [h(X) jSk(X)] = lim
ε→0

1
ε
(E(1−ε)p0+ε1k

[h(X) j]−Ep0 [h(X) j]). (5)

We point out that having a Gateaux derivative interpretation is preferable to using the standard partial
derivative (∂/∂ pk)Ep[h(X) j]|p=p0 directly. This is because the gradient ∇Ep0 [h(X) j] itself does not offer
probability interpretation, as the coordinate-wise perturbation of p shoots outside the feasible region of
probability simplex. This in turn makes the gradient non-simulable. On the other hand, the definition
(5) and hence (4) involves a simulable gradient. In particular, the function Sk(x) can be interpreted as a
nonparametric version of the likelihood ratio in the likelihood ratio method (or the score function method)
in classical derivative estimation applied to the function Ep0 [h(X) j], whose resemblance can be seen in the
proof of Lemma 2.

Proof of Lemma 2. We focus on Ep0 [h(X) j] for any given j. To facilitate our proof, let Z j(p0) =

Ep0 [h(X) j]. Consider

∇
(
(Z j(p0)−µ j)

2) · (p−p0) = 2(Z j(p0)−µ j)∇Z j(p0) · (p−p0).

We argue that ∇Z j(p0) · (p−p0) = g j(p0) · (p−p0), where g j(p0) =
( d

dε
Z j((1− ε)p0 + ε1k)

∣∣
ε=0

)
k=1,...,K .

Indeed,
d

dε
Z j((1− ε)p0 + ε1k)

∣∣∣
ε=0

= ∇Z j(p0) · (1k−p0) =
∂

∂ pk
Z j(p0)−∇Z j(p0) ·p0

and so
g j(p0) = ∇Z j(p0)− (∇Z j(p0) ·p0)1.

Therefore,

g j(p0) · (p−p0) = ∇Z j(p0) · (p−p0)− (∇Z j(p0) ·p0)(1−1) = ∇Z j(p0) · (p−p0)
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which concludes our claim.
Next, we show that the k-th component of g j(p0) is Ep0 [h(X) jSk(X)]. Indeed,

d
dε

Z j((1− ε)p0 + ε1k)
∣∣∣
ε=0

=
d

dε
∑

k1,...,kT

h(zk1 ,zk2 , . . . ,zkT )
T

∏
t=1

((1− ε)p0
kt
+ εIk(zkt ))

∣∣∣
ε=0

= ∑
k1,...,kT

h(zk1 ,zk2 , . . . ,zkT )
d

dε

T

∑
t=1

log((1− ε)p0
kt
+ εIk(zkt ))

∣∣∣
ε=0

T

∏
t=1

p0
kt

= ∑
k1,...,kT

h(zk1 ,zk2 , . . . ,zkT )
T

∑
t=1

−p0
kt
+ Ik(zkt )

p0
kt

T

∏
t=1

p0
kt

= Ep0 [h(x)Sk(x)].

The first equality in (4) follows by summing up over all the j = 1, . . . ,J moments. The second equality in
(4) is obvious by the property of independence.

With the above gradient characterization, we now design our stochastic approximation scheme. Say we
start from an initial probability simplex p0. For each iteration, given pn, Algorithm 1 gives the procedure to
update to pn+1. Under suitable conditions, Algorithm 1 should converge to a stationary probability simplex
p∗, in the sense that p∗ solves the optimization problem

min 2∑
J
j=1(Ep∗ [h(X) j]−µ j)Ep0 [h(X) jS(X)] · (p−p∗)

subject to ∑
K
k=1 pk log pk ≤ η− logK

∑
K
k=1 pk = 1

pk ≥ 0 for k = 1, . . . ,K

Although here we do not give a rigorous proof of convergence, we shall list out and explain all the
specifications of the algorithm below.

1. The sequence of step sizes εn is taken to be θ/n for some θ > 0. This is the typical choice in
running stochastic approximation scheme for unconstrained problems, or for constrained problems
with the use of projections.

2. The sample sizes mn
1 and mn

2 at step n grows to ∞ as n increases, say at a rate cnγ for some γ > 0.
The reason this is needed is because each qn carries a bias relative to the solution of (7) that has
ξk replaced by the actual gradient 2∑

J
j=1(Ep∗ [h(X) j]− µ j)Ep0 [h(X) jS(X)], even though ξk itself

is unbiased for estimating 2∑
J
j=1(Ep∗ [h(X) j]−µ j)Ep0 [h(X) jS(X)]. This bias can accumulate over

the iterations, and the growing sample size aims to compensate this error.
3. The optimization (7) has analytical solution, given by

qk =
eβξk

∑
K
k=1 eβξk

(8)

where β < 0 satisfies

β
∑

K
k=1 ξkeβξk

∑
K
k=1 eβξk

− log
1
K

K

∑
k=1

eβξk = η (9)

if this root exists. Otherwise qk = 1 for k = argmin ξk and 0 for all other k’s. The expression (8)
follows by solving the first order condition of the Lagrangian formulation of (7) and then verifying
optimality through a convexity argument. Finding β in (9) requires a one-dimensional deterministic
search. See, for example, Glasserman and Xu (2014) and Lam (2013).
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Algorithm 1 Each Iteration of the Stochastic Feasible Direction Method for Optimization (2)
1. Construct a probability simplex p̃n such that it is absolutely continuous with respect to pn and that
each nonzero component of p̃n is at least as large as some small positive constant δ .
2. Simulate mn

1 i.i.d. copies of h(XT )
jS̃k(XT ) under p̃n, simultaneously for all k = 1, . . . ,K and j = 1, . . . ,J,

where

S̃k(XT ) =
T

∑
t=1

Ik(xt)− pn
k

p̃n
k

For convenience, let these mn
1 samples be wk ji, i = 1, . . . ,mn

1.
3. Simulate another mn

2 i.i.d. copies of h(XT )
j simultaneously for each j = 1, . . . ,J. Say they are

r ji, i = 1, . . . ,mn
2.

4. Compute

ξk = 2
J

∑
j=1

(
1

mn
1

mn
1

∑
i=1

wk ji

)(
1

mn
2

mn
2

∑
i=1

r ji−µ j

)
(6)

for each k = 1, . . . ,K.
5. Solve the optimization:

min ∑
K
k=1 pkξk

subject to ∑
K
k=1 pk log pk ≤ η− logK

∑
K
k=1 pk = 1

pk ≥ 0 for k = 1, . . . ,K

(7)

Say the optimal solution is qn.
6. Update pn+1 = (1− εn)pn + εnqn for some step size εn.

4. In general, mn
1 should also scale with T linearly, i.e. mn

1 = Θ(T ). This is because the variance of
each sample of Sk(X) is typically of order T , and offsetting this order T variance by picking an
order T sample size tends to give more stable convergence.

5. The measure p̃n introduced in each step is a change-of-measure from pn to ensure that the variance
of the gradient estimate does not blow up. Correspondingly, the quantity S̃ is modified from S
that takes into account the likelihood ratio between pn and p̃n. The reason why the variance of the
direct samples of h(X)Sk(X) may blow up is because, from the form of Sk(X), it can be seen that
Ep[h(X)Sk(X)] = ∑

T
t=1 Ep[h(X)|Xt = zk]−T Ep[h(X)]. This probabilistic interpretation implies that

the variance of the direct estimator for Ep[h(X)|Xt = zk] can have huge variance as the probability
of the event Xt = zk gets tiny. The use of p̃n is designed to avoid such issue. One specific choice of
p̃n is the following: if any nonzero component of pn is less than δ , move enough weight from the
largest component to that component to make up the shortfall. Repeat until all nonzero components
have weights at least δ .

Algorithm 1 aims to obtain local optimum for (2), given a specific value of η . Going back to the
original formulation (1), we need to apply this algorithm across different values of η . By Lemma 1 and
its preceding discussion, one would expect the optimal objective value to decrease as η decreases. The
first η where the optimal objective value is exactly zero will correspond to the optimal value for (1). In
general, this cannot be evaluated exactly. In the numerical examples in the next section, we will merely
run Algorithm 1 across η and scrutinize the plot of the optimal objective values to pick the η . In future
work, we will investigate the use of bisection method or other search method to find this thresholding η ,
which we believe can be done given the monotone relation of η with the optimal values.
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4 NUMERICAL RESULTS

In this section we provide some numerics on using Algorithm 1 to find local optima for a sequence of
optimizations (2). As a proof of concept, we consider the simple setting of single-server queues. We assume
that the service times are known to be i.i.d. exponential with rate 1.2, but the interarrival times are i.i.d. with
unknown distribution. To fit into our setup, for the first experiment, we assume the true interarrival time
distribution is discrete over five points spanning across 0.5 to 2.5, with mean approximately 1. For the
second experiment, we assume the distribution is discrete over 100 points across 0 to 5, also with mean
approximately 1, which serves as a more realistic scenario.

For each of these experiments, we form a synthetic data set of 100,000 samples from the output of
the queue, which is set to be the waiting time of the 15-th customer. The large size of the synthetic data
essentially sets the moments to be very close to the true moments, and this is intentional as we want to
focus on assessing whether we can reconstruct the input distribution without introducing another layer of
errors from the outputs. We set up our optimization (1) to match up to the fourth moment, i.e. J = 4.
Converting (1) into (2), we then find the local optima for (2) using Algorithm 1. We do this across different
values of η , and we set θ = 2/3, γ = 1, and mn

1 = mn
2 = 14n in Algorithm 1.

For the first experiment, i.e. the interarrival time distribution has a support of 5 grid points, we vary η

from 0.1 to 0.4, at a scale of 0.01. For each η we run 300 iterations for Algorithm 1. Figure 1 shows the
values of each of the five probability weights against number of iterations, for η = 0.21, which is a value
roughly corresponding to the entropy of the true distribution, i.e. η∗ in Lemma 1.

Figure 1: Trace plot for the 5 estimated probability weights on the grid against the number of iterations

We found that these trace plots are quite typical, i.e. for different η the pattern is largely the same.
The algorithm seems to have converged by 300 iterations.

Next, Figure 2 below shows the estimated probability weights compared to the truth. Each of the graphs
shows the comparison after the 300-th iteration. The red dots are the truth, and the blue asterisks are the
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estimated weights. It can be seen that the differences between the weights shrink as η increases, although
there seems to be still some discrepancy left at η greater than or equal to 0.21 (the value corresponding to
the entropy of the true distribution). We expect this discrepancy to reduce further if we add more matching
moments in our formulation.

One observation is that even though the estimated weights do not seem too far off even for small
values of η , e.g. η = 0.1, and the improvement in approximating the truth does not seem too dramatical
on these four graphs as η increases, we will show in Figure 3 that indeed the objective value in (2) drops
significantly as η increases.

Figure 2: Plot of estimated vs true probability weights for the 5-grid distribution for different η’s

Figure 3 shows the (local) optimal values of (2) against 31 values of η spanning from 0.1 to 0.4.
As η∗ is around 0.21, we expect the optimal value to be 0 when η ≈ 0.21 or above. This is indeed the
case in Figure 3. The optimal value is decreasing for small η up to about η = 0.20, and remains close to
0 thereafter. We note that these objective values are obtained by running simulation on the moments of
outputs and then evaluating using the objective function in (2), and hence are subject to sampling error.
The magnitude of the objective value can be large, as the graph suggests, because of the contribution from
the square of the fourth moment, which amplifies the objective value greatly. Note that even though we are
able to locate the threshold roughly to be 0.20 from the graph, we have not provided a principled approach
to find this numerically in this work. One future direction is to design decision rules to locate the threshold
and to analyze the associated error bounds.
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Figure 3: Optimal values of optimization (2) against η

We have repeated the experiment for a 100-grid interarrival time distribution, again with mean approx-
imately 1. Figure 4 shows a typical trace plot of the first 5 weights (out of 100) against the number of
iterations, which runs up to 1,000 in this case.

Figure 4: Trace plot for the first 5 estimated probability weights on the 100-grid against the number of
iterations

Figure 5 shows the estimated probability weights over the 100 grid points after the 1,000-th iteration,
compared to the truth. The red dots represent the truth, and the blue asterisks represent the estimates. In
this plot the value of η = 0.66 roughly corresponds to the entropy of the true distribution. We can see
that the estimation approximates the distribution fairly well, albeit with some minor discrepancy. From the
trace plots we notice that if we let the experiment run for more than 1,000 iterations, the estimates might
approximate the true probability weights even better. As in the first experiment, we expect that adding
more matching moments here will improve our approximation.
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Figure 5: Plot of estimated vs true probability weights for the 100-grid distribution for an η that approximately
corresponds to the entropy of the true distribution

5 DISCUSSION OF FUTURE WORK

The present paper presents an initial attempt to solve inverse problems in contexts where simulation is
required for generating outputs, and when input objects are models represented by probability distributions,
using a nonparametric approach. There are several directions that we are investigating ahead. The first
is consistency results on our method as the number of matched moments increases relative to the output
sample size. This will give a theoretical counterpart to the classical inverse problems in density estimation
under moment conditions, and can shed light on how many moments, or even basis functions other than
powers, that can give optimal results. Second, we plan to give rigorous convergence rate analysis for
our stochastic approximation scheme, as well as to design efficient search method to pick the optimal η .
Multivariate and high dimensional settings, with several input models, are also worth investigating as these
are the typical scenarios in practice. Lastly, it will be important to test the applicability of our method in
capturing more sophisticated, such as multimodal, input distributions in future work.
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