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ABSTRACT

When using simulations for decision making, no matter the domain, the uncertainty of the simulations’
output is an important concern. This uncertainty is traditionally estimated by propagating input uncertainties
forward through the simulation model. However, this approach requires extensive data collection before the
output uncertainty can be estimated. In the worst case scenario, the output may even prove too uncertain to
be usable, possibly requiring multiple revisions of the data collection step. To reduce this expensive process,
we propose a method for inverse uncertainty propagation using Gaussian processes. For a given bound on
the output uncertainty, we estimate the input uncertainties that minimize the cost of data collection and
satisfy said bound. That way, uncertainty requirements for the simulation output can be used for demand
driven data acquisition. We evaluate the efficiency and accuracy of our approach with several examples.

1 INTRODUCTION

In simulation projects, several factors need to be taken into account in order to receive reliable results.
Besides the challenges of simulation modeling and validation, the uncertainty of simulation input data
affects the reliability of the results. Real world data is often used to estimate the parameters of probability
distributions that model random events in the simulation (Law 2007). This introduces the sampling error
of the real world data as an additional source of uncertainty.

As there are different kinds of uncertainty in simulations that need to be considered (O’Hagan 2006),
we define the nomenclature used throughout this paper as follows: Aleatory uncertainty results from
system inherent variability, which is represented by probability distributions. Epistemic uncertainty or
input uncertainty results from a lack of knowledge about the parameters of these distributions stemming
from a lack of real world data. Lastly, we need to consider code uncertainty arising from using mathematical
models to approximate the simulation response. These metamodels are commonly used to analyze the
output of black box simulation models (Santner, Williams, and Notz 2003). To assess the uncertainty
of the simulation output, we need to propagate the input uncertainty through the simulation model or
metamodel while considering aleatory and code uncertainty. While building metamodels requires some
effort, simulation output analysis and optimization call for a high number of simulation runs in any event.
Thus, we do not consider the effort of running the simulation as existing output data can be leveraged
when building metamodels.

Barton (2012) gives an overview of several existing approaches to deal with input uncertainty in
simulations. For example, Barton, Nelson, and Xie (2010) use stochastic kriging metamodels developed
by Ankenman, Nelson, and Staum (2010) to approximate the simulation response and estimate the output
uncertainty. Barton, Nelson, and Xie (2010) use a bootstrapping approach to propagate the input uncertainty
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through the metamodel. Girard and Murray-Smith (2005) developed an approach closely related to this. For
Gaussian process metamodels, which are a special case of kriging metamodels, Girard and Murray-Smith
(2005) found closed-form solutions for approximate and exact uncertainty propagation.

Ankenman and Nelson (2012) developed a method to assess the impact of the input uncertainty on
the simulation output. This method and its improved version (Song and Nelson 2013) allow to identify
the input parameters with dominant influence on simulation output uncertainty. Therefore, they are able to
“identify the input data sources from which additional observations would lead to the greatest reduction in
input uncertainty” (Song and Nelson 2013). However, they state as a remaining unsolved problem: “Open
questions remain about the design of the follow-up experiment, and in particular the total budget N that
should be expended on this experiment to obtain reliable results.“ (Song and Nelson 2013)

The contribution of this paper is the solution to this problem. After reviewing related work in Section 2,
we define demand driven data acquisition in Section 3. Our work is based on the method for uncertainty
propagation through Gaussian processes (Girard and Murray-Smith 2005), which we recapitulate in Section 4.
We utilize the Cramér-Rao bound (Cramér 1946) to estimate the number of measurements that is required
to reduce the uncertainty of each input parameter below a certain threshold. The number of measurements
can then be used as a cost function for the data acquisition process. To avoid spending unnecessary effort
during data collection by accumulating data with little impact on simulation output, we provide an efficient
method to find the data acquisition strategy with minimal costs that results in the desired target uncertainty
of the simulation’s output. We call this process inverse uncertainty propagation (IUP) and provide a
detailed description in Section 5. Inverse uncertainty propagation can be used both for demand driven data
acquisition and to assess the feasibility of simulation goals.

We use a discrete event simulation of an M/M/1 queue as a running example throughout the paper.
To evaluate our approach, we assess its efficiency and accuracy using real world discrete event simulations
from a configurable communication middleware (Fischer, Wahl, and Lenz 2014) in Section 6. Additionally,
we use synthetic data to evaluate the efficiency of our approach for simulations with a large number of
input parameters.

2 RELATED WORK

The estimation of input parameters and their uncertainty based on measurements of the output of the real
system is called backward or inverse uncertainty quantification. This is distinct from our approach, as our
method does not rely on measurements of the output of a real system. Chantrasmi and Iaccarino (2012) use
a Bayesian approach to estimate a probability density function for an input parameter based on measured
output data. The estimated density of the input parameters corresponds to the uncertainty based on the
lack of measured output data. Mares, Mottershead, and Friswell (2006) use a gradient based optimization
method to fit model parameters and estimated uncertainties to measured output data. Fonseca et al. (2005)
use a maximum likelihood approach to estimate the uncertainty of an input variable based on experimental
output data. Arendt, Chen, and Apley (2011) try to optimize the identifiability of uncertainty sources by
combining the information of multiple output variables. All of these approaches rely on measured output
data of the real system to fit their models.

The estimation of bounds for input uncertainties based on accuracy requirements for the simulation
output can be done in a similar way using these optimization approaches. However, as we will show in our
evaluation, numerical optimization is not suitable for simulations with a high number of input variables.

3 DEMAND DRIVEN DATA ACQUISITION

To formalize the goal of our approach, this chapter defines the cost function for demand driven data
acquisition. We assume that a maximum likelihood estimator x̂ is used to estimate the unknown parameter
u of a statistical distribution p(d,u) from dataset (d1, . . . ,dn). This is known as simulation input modeling,
an important step in every stochastic simulation (Biller and Gunes 2010, Law 2007). Several distributions
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represent random processes within a simulation and the parameters of these distributions together serve as
the input parameters of the simulation model.

Maximum likelihood estimators for distribution parameters are well studied and applicable to a wide
range of problems. It is noteworthy that the estimator x̂ itself is a random variable. The distribution
of a parameter estimated by the maximum likelihood method is asymptotically normal (Cramér 1946).
Therefore, the uncertainty about an input parameter u can be represented by the variance of a normal
distribution. In the following, we use “uncertainty” and “variance” synonymously.

The variance of an estimator is bounded by the Cramér-Rao bound (Cramér 1946), which is the
reciprocal of the Fisher information. The Fisher information I is a measure of the amount of information
gained by one observation (Cramér 1946):

I (u) = E

[(
∂ log p(d,u)

∂u

)2
]
=−E

[
∂ 2 log p(d,u)

∂u2

]
As the Fisher information of n observations is n times the Fisher information of one observation, the

Cramér-Rao bound for n observations is var(x̂) ≥ (nI (u))−1. An estimator is called “efficient” if the
equality is achieved. Maximum likelihood estimators are asymptotically efficient (Cramér 1946). Now, we
can use the Cramér-Rao bound to estimate the number of measurements n required to achieve a specific
uncertainty v = var(x̂): n≥ (vI (u))−1. With c being the cost of one measurement, the cost to achieve the
uncertainty v with an efficient estimator is: cost(v) = c/(vI (u)).

However, this approach requires knowing u upfront to estimate the achievable variance for x̂. We can
either assume to know an approximation of u or we can use best, worst and average case estimations for
I (u). We will explain this in more detail in Section 5.4.

For a given uncertainty v, we can now estimate the required number of measurements and the cost to
acquire them. This cost function can be used for every distribution parameter that is estimated by a series
of measurements using maximum likelihood estimators. Therefore, the cost function covers a wide range
of problems. There is also a multivariate version of the Cramér-Rao bound, which defines the cost function
for distributions with more than one parameter (i.e. in this case u is a vector).

3.1 Example

We use the M/M/1 queue as a running example throughout the paper. New customers arrive at random
with the time between arrivals being sampled from an exponential distribution with arrival rate ra. A server
serves one customer at a time with service times sampled from an exponential distribution with rate rs. The
output of the simulation is the number of customers in the system at a certain point in time. We replicate
this simulation 1000 times to get the average number of customers in the system.

To determine the parameters ra and rs from real world data with a specific uncertainty as input for
our simulation, we need the Fisher information of the rate parameter of the exponential distribution:
I (r) = r−2. For example, if the arrival rate ra is 0.5 (i.e. one new customer every 2 time units) and we
want to achieve an uncertainty of 0.01 (standard deviation) for this rate, then we need a sample size of
n≥ (vI (ra))

−1 = (0.5/0.01)2 = 2500. Because of clarity reasons, we use the standard deviation instead
of the variance to represent the uncertainty in our examples.

An obvious problem in this example is that we need to know the value of a parameter in advance
to estimate the number of samples required to determine the parameter with a specific uncertainty. In
Section 5.4, we will show how to overcome this problem.

4 UNCERTAINTY PROPAGATION

We use Gaussian processes as approximate metamodels of black-box simulations, as Gaussian processes
provide means for propagation of uncertainty. In this section, we present the uncertainty propagation
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method developed by Girard and Murray-Smith (2005). We will extend this method for inverse uncertainty
propagation in the next section.

4.1 Gaussian Processes as Metamodels

Definition 1 “A Gaussian process is a collection of random variables, any finite number of which have
(consistent) joint Gaussian distributions.” (Rasmussen 2004)

We model a given black-box function f (x) (x∈RD) by a Gaussian process G(x)∼GP(m(x),C(xi,x j)).
m(x) = E[G(x)] is the mean function of the Gaussian process and C(xi,x j) = Cov[G(xi),G(x j)] is the
covariance function. For any given set of inputs {x1, . . . ,xn}, (G(x1), . . . ,G(xn)) is a random vector with
an n-dimensional normal distribution N (m,ΣΣΣ). m is the vector of mean values (m(x1), . . . ,m(xn)) and ΣΣΣ

is the covariance matrix with Σi j =C(xi,x j) (Girard and Murray-Smith 2005).
For modeling f (x), we use the Gaussian squared exponential covariance function C(xi,x j)

= vexp
[
−1

2(xi−x j)
T W−1(xi−x j)

]
, as it performs well regarding accuracy (Rasmussen 1996). However,

the methods presented in this paper are independent of the actual covariance function. Without loss of
generality, we use m(x) = 0.

W−1 = diag(w1, . . . ,wD) and v are hyperparameters of the Gaussian process. We have a set of observed
simulation results D = {(xi, ti)}N

i=1 as supporting points with xi ∈ RD and ti = f (xi)+ εi with white noise
εi∼N (0,vt). This noise represents the aleatory uncertainty of the simulation that calculates f (x). To model
noisy observations Girard and Murray-Smith (2005) use K = ΣΣΣ+ vtI as covariance matrix for regression.
Therefore, we have an additional hyperparameter vt . The hyperparameters W−1, vt , and v can be estimated
from a given dataset with a maximum likelihood approach. In the following, we use β = K−1t with
t = (t1, . . . , tN)T to simplify notation.

Now the Gaussian process can be used as a surrogate for the simulation model. The input parameter
vector x consists of the parameters of all input distributions of the simulation and can be estimated from
real world data. The prediction µ(x) and code plus aleatory uncertainty σ 2(x) at a new input x is (Girard
and Murray-Smith 2005):

µ(x) =
N

∑
i=1

βiC(x,xi) σ
2(x) =C(x,x)−

N

∑
i, j=1

K−1
i j C(x,xi)C(x,x j)+ vt

With this covariance function, vt models a constant aleatory uncertainty. The metamodel developed by
Ankenman, Nelson, and Staum (2010) use a more sophisticated representation for the aleatory uncertainty.
However, as we will show in the following sections, we are not restricted to a specific covariance function and
are able to incorporate other more complex covariance functions modeling a variable aleatory uncertainty.

4.2 Gaussian Processes for Uncertainty Propagation

We assume that the input parameters will be estimated from real world data using a maximum likelihood
approach. Under this assumption, we can represent the uncertainty about an input parameter as a normal
distribution. For an uncertain input x ∼N (u,ΣΣΣx), the output distribution can be written as (Girard and
Murray-Smith 2005):

p(y|D ,u,ΣΣΣx) =
∫

∞

−∞

p(y|D ,x)p(x|u,ΣΣΣx)dx

Here, ΣΣΣx is the covariance matrix of the uncertain input and incorporates the uncertainty and dependencies
between the input parameters. As the distribution p(y|D ,u,ΣΣΣx) is hard to determine analytically, Girard
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and Murray-Smith (2005) approximate its mean and variance:

m(u,ΣΣΣx) = µ(u)+ 1
2

N

∑
i=1

βiTr[C′′(u,xi)ΣΣΣx]

v(u,ΣΣΣx) = σ
2(u)+ 1

2 Tr[C′′(u,u)ΣΣΣx]−
N

∑
i, j=1

(K−1
i j −βiβ j)Tr[C′(u,xi)C′(u,x j)

T
ΣΣΣx]

− 1
2

N

∑
i, j=1

K−1
i j

(
C(u,xi)Tr[C′′(u,x j)ΣΣΣx]+C(u,x j)Tr[C′′(u,xi)ΣΣΣx]

)
(1)

C′ is the Gradient and C′′ is the Hessian of the covariance function. In case of the squared exponential,
C′′(u,u) equals 0. As this approach makes no special assumptions about the covariance function, other
functions can be plugged into this method as long as they are twice differentiable.

We use this approximation for the output uncertainty v(u,ΣΣΣx) as a basis for our inverse uncertainty
propagation. At this point, the uncertainty propagation uses two layers of approximation: First, the
simulation is approximated by a Gaussian process and second, the uncertainty propagation is done using
an approximate formula.

Using this approach, we can clearly distinguish between aleatory, epistemic and code uncertainty.
Aleatory uncertainty is represented by vt , code uncertainty is represented by σ2(u)− vt and epistemic
uncertainty is v(u,ΣΣΣx)−σ2(u).

4.3 Example

We use 1000 random supporting points from the M/M/1 simulation with the input parameters x = (ra,rs).
Assuming x to be around (0.5,0.6), we draw the supporting points from the set [0.475,0.525]× [0.575,0.625].
We consider the uncertain input x∼N (u,ΣΣΣx) with mean u = (0.5,0.6) and standard deviation 0.005 for
each input parameter. By using a Monte Carlo method with 105 samples for uncertainty propagation through
the simulation and Girard’s approximate method with the Gaussian process, we can estimate the output
uncertainty (standard deviation): Monte Carlo ≈ 0.4145 (2.9 h); Approximation ≈ 0.4182 (uncertainty
propagation: 0.5 s, 1000 samples for the metamodel: 18 min). We used 105 samples for the Monte Carlo
method, as this yielded a suitable 95% confidence interval for the output uncertainty: (0.4088,0.4203).

5 INVERSE UNCERTAINTY PROPAGATION

In this section, we extend the methods for uncertainty propagation to find input uncertainties that produce
a given output uncertainty vout. As there are multiple input variables, there are many possible combinations
of input uncertainties that lead to vout. However, these solutions may result in different costs for the data
acquisition. Hence, we present a method that finds the input uncertainties that minimize the cost of data
collection.

As in Section 3, we assume that measurements are utilized to estimate the uncertain simulation input
parameter vector x∼N (u,ΣΣΣx), which serves as the parameters of several input distributions. Additionally,
we assume the variances of the input parameters to be independent from each other: ΣΣΣx = diag(v) =
diag(v1, . . . ,vn). This assumption holds as for most input distributions an orthogonal parameterization can
be found that leads to independent maximum likelihood estimates for each input parameter (Jeffreys 1961).
The cost to achieve the input variance vector v = (v1, . . . ,vn) is based on the cost function for one parameter
from Section 3:

cost(v) =
n

∑
h=1

ch

vhIh(uh)
=

n

∑
h=1

κh

vh

To simplify notation, we introduce κh = ch/Ih(uh). Again, we need the true value u = (u1, . . . ,un) of
the simulation input parameters. This constraint will be relaxed in Section 5.4.
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We want to find the input variances that minimize the cost function and satisfy the bound vout on the
output uncertainty. We write v(u,ΣΣΣx) from (1) as v(v) to simplify notation. It is noteworthy that v(v) is
an affine transformation. Now, we can write the bound on the output uncertainty as an equality constraint:
v(v) = vout.

Actually, this is originally an inequality constraint as the output uncertainty is allowed to be less than
the desired one. However, we know that the optimum lies on the boundary because of the structure of the
optimization problem. Now, the method of Lagrange multipliers allows us to find the minimum of cost(v)
that satisfies this equality constraint. To this end, we need to find the solution v̊ to the following system
of equations:

v(v̊) = vout; ∇vcost(v̊) =−µ∇vv(v̊)

This set of equations can be solved for vh, which has to be positive as it is a variance:

v̊h =

(
µ

κh

∂v(v̊)
∂vh

)−1/2

, ∀h = 1 . . .n (2)

As v(v) is an affine transformation, ∂v(v̊)/∂vh is a constant:

∂v(v̊)
∂vh

=
N

∑
i, j=1

[
(βiβ j−K−1

i j )[C′(u,xi)C′(u,x j)
T ]hh− 1

2 K−1
i j

(
C(u,xi)[C′′(u,x j)]hh +C(u,x j)[C′′(u,xi)]hh

)]
Here [A]i j denotes the element of the matrix A in the ith row and the jth column. Now, we can substitute
the v̊h from (2) as v into (1) and solve it for µ .

Additionally, we incorporate input parameters with a fixed uncertainty. We assume o input parameters
with fixed variance (ṽ1, . . . , ṽo) in addition to the first n parameters for which the desired variance (v̊1, . . . , v̊n)
is unknown. We can split up the matrices in (1) into block matrices with λ = µ−1/2:

ΣΣΣx =

(
λΣΣΣx1 0

0 ΣΣΣx2

)
, λΣΣΣx1 = diag(v̊1, . . . , v̊n), ΣΣΣx2 = diag(ṽ1, . . . , ṽo)

C′(u,xi) =

(
C′i1
C′i2

)
, C′′(u,xi) =

(
C′′i11 C′′i12
C′′i21 C′′i22

)
By using the rules for matrix multiplication and (1) we get:

λ =

[
N

∑
i, j=1

(K−1
i j −βiβ j)Tr[C′i1C′Tj1ΣΣΣx1]+

1
2

N

∑
i, j=1

K−1
i j

(
C(u,xi)Tr[C′′j11ΣΣΣx1]+C(u,x j)Tr[C′′i11ΣΣΣx1]

)]−1

·

[
σ

2(u)− vout−
N

∑
i, j=1

[
(K−1

i j −βiβ j)Tr[C′i2C′Tj2ΣΣΣx2]+
1
2 K−1

i j

(
C(u,xi)Tr[C′′j22ΣΣΣx2]+C(u,x j)Tr[C′′i22ΣΣΣx2]

)]]
Resubstituting µ = λ−2 into (2) yields the v̊h and therefore the optimal solution v̊ that minimizes the cost
function.

In addition to the approximate uncertainty propagation, which we use for our inverse propagation,
Girard and Murray-Smith (2005) also provide exact formulas for the mean and variance of the output
distribution. As utilizing Girard’s exact method for inverse uncertainty propagation leads to nonlinear
equations, we use numerical optimization to find the solution. Additionally, Girard’s exact formulas are
restricted to a specific kind of covariance function, which restricts the flexibility of this approach. In our
evaluation, we compare the accuracy of the exact and the approximate uncertainty propagation and the
performance of the different approaches.

In the next section, we will use our running example to illustrate our inverse uncertainty propagation.
In Section 5.2, 5.3, and 5.4, we will address several other problems that arise when this method is applied
to real simulations.
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5.1 Example

We use the Gaussian process for the M/M/1 simulation from our previous example in Section 4.3.
The M/M/1 queue uses two exponential distributions to represent random processes. Each exponential
distribution is parameterized by a rate parameter. In the previous example, we considered the uncertain input
x with mean u = (ra,rs) = (0.5,0.6) and standard deviation σra = σrs = 0.005 for each input parameter.
The output standard deviation was around 0.4.

In this example, we want to know the minimal number of measurements for each input parameter to
achieve an output standard deviation of at most 0.2. In Section 3.1, we described the Fisher information for
exponential distributions, which now serves as the cost function. We define the cost for one measurement
to be 1. Table 1 shows the resulting optimal solutions and the total number of measurements required to
achieve this result. The approximate solution is the result of our IUP method from this section. Additionally,
we used the Cobyla optimization algorithm (Powell 1994) in combination with Girard’s exact propagation
to find the exact optimal solution. It is noteworthy that the exact solution still uses the Gaussian process
approximation instead of the real simulation. We use the exact uncertainty propagation for both solutions
to evaluate whether we achieve the desired output standard deviation. The approximate IUP is much faster
than using the exact IUP and finds a solution that is near optimal. It underestimates the total number of
measurements slightly and the output standard deviation is only 4 ·10−5 above the desired bound.

Table 1: Inverse uncertainty propagation for the M/M/1 queue.

Runtime σra σrs Exact output Total number
(seconds) std. dev. of measurements

Approximate IUP 0.18 9.2821 ·10−4 1.11389 ·10−3 0.20004 580314
Exact IUP 5.51 9.3216 ·10−4 1.10627 ·10−3 0.20000 581872

5.2 Coestimated Parameters

Some input distributions may contain several parameters, which are estimated from the same sample using
the maximum likelihood method. Most distributions can be parameterized in a way that renders the estimates
for its parameters independent. However, the cost function has to incorporate the fact that all parameter
estimates for this distribution stem from the same sample. Hence, parameters i and j are estimated with
the same sample size ni = n j and therefore using the Cramér-Rao bound: viIi(ui) = v jI j(u j) (Section 3).
This can be incorporated in our IUP method.

5.3 Multiple Constraints

In most cases simulations generate several results and therefore there could be a constraint on each of the
output uncertainties. We have the cost function cost(v) and several functions v1(v), . . . ,vq(v) for estimating
the output uncertainties. Now, we have several inequality constraints, as the optimum no longer lies on all
boundaries:

vk(v)≤ vk,out,∀k = 1, . . . ,q

The method of Karush-Kuhn-Tucker (KKT) conditions, which is a generalization of the method of
Lagrange multipliers, allows us to find the optimum for a convex cost function and convex functions in
the inequality constraints. As cost(v) and vk(v) are convex, we can apply this method to our problem.
The vk(v) are affine functions, therefore all additional regularity conditions of the KKT conditions are
automatically met.
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5.4 Unknown Input Parameters

In Section 3, we assumed to know the true value u of uncertain input parameters in advance and in Section 5,
we needed the true value of the input parameters for inverse uncertainty propagation. In order to be able to
use our method for real simulations, we need to relax this constraint. Using our method from Section 5, we
obtain the optimal data collection strategy (number of samples) by estimating the input variances leading
to the lowest data acquisition cost. Our framework is basically a deterministic function Opt(u), which
determines the optimal costs and data collection strategy for a given u. Now, we can ask experts to give us
an approximation for u or we can collect a small sample of data to get a rough preliminary estimation for
u. We can represent this uncertain knowledge as any arbitrary distribution and use well known uncertainty
propagation methods for deterministic functions (Lee and Chen 2007). That way, we are able to get best,
worst and average case estimates for the data collection costs and the required number of samples.

5.4.1 Example

For our example, we use Genz-Keister numerical integration rules (Genz and Keister 1996) for numerical
uncertainty propagation as they are not affected by the curse of dimensionality. The number of function
evaluations depends only polynomially on the number of input parameters (Novak and Ritter 1999). Again,
we use our M/M/1 queue example and assume to know u≈ (0.5,0.6) with standard deviation 0.005 for
each parameter which leads to an output standard deviation of about 0.4. Now, we want to know the
minimal number of measurements for each input parameter to achieve an output standard deviation of at
most 0.2.

We propagate the input uncertainty through Opt(u) numerically using 45 function evaluations and use
a Pearson distribution system (Cramér 1946) to model the cost distribution. We compare this distribution
to a normal approximation of the cost distribution. Additionally, we use a Monte Carlo approach with 105

function evaluations to get a histogram representing the output distribution. The results are depicted in
Figure 1(a). The Pearson system is well suited to represent the cost distribution. Especially for estimating
the 95% confidence interval of the data collection cost, the Pearson system approximates the tails of the
distribution better than a normal distribution. The estimated 95% confidence intervals for the data collection
cost are: Normal : (236437,1014173); Pearson : (385853,1131650); Monte Carlo : (380105,1134960).

6 EVALUATION

In this section, we use a real world example to evaluate the precision of our methods. Additionally,
we evaluate the performance of our prototype and compare it to traditional optimization methods. Our
prototypic implementation uses Python, Scipy and Numpy to perform the calculations.

6.1 Real World Example

We use M2etis (Massive Multiuser EvenT InfraStructure), a configurable communication middleware
(Fischer, Wahl, and Lenz 2014), as a real world evaluation scenario. M2etis derives an optimal configuration
of the middleware by using discrete event network simulations and supervised learning techniques.

We used results from the M2etis simulator to analyze the average delivery latency in a content delivery
scenario: A group of 100 nodes received messages from a single sender over an IPv6-based overlay network
with a symmetric bandwidth of 1 Gbit/s. Messages were sent at 10 Hz and carried a payload of 1024 Byte.
All network nodes were communicating directly without intermediate overlay hops. To ensure delivery,
acknowledgements for each message were sent by the recipients.

As input distributions, we use a normal distribution with its mean me and standard deviation σe to
model the network delay. Additionally, we use probability pe to model packet loss. From previous
measurements we know the approximate mean of these parameters: ue = (me,σe, pe) = (15.05,5,0.025)
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Figure 1: Cost distribution example (a) and evaluation of the relative error (b).

with input uncertainty ΣΣΣe = diag(22,12,0.0052). The simulation output (average delivery latency) is about
0.3. Considering the input uncertainty, the output uncertainty is about 0.041 (standard deviation).

We want to know the number of measurements to estimate u well enough to get an output uncertainty
below 0.01. To this end, we build a Gaussian process metamodel with 1000 supporting points in the area
of interest from the simulation and use our techniques from Section 5. It is noteworthy that me and σe are
estimated from the same series of measurements, as they belong to the same distribution. If we assume
u = ue to be exact, our inverse uncertainty propagation estimates a sample size of 453 measurements for
me and σe and 523 measurements for pe. To evaluate, whether our estimated number of measurements is
sufficient to get an output uncertainty below 0.01 from the real simulation, we use Monte Carlo uncertainty
propagation. This yields a real output uncertainty of 0.0112, which is only slightly above the desired one.

Now, we relax the assumption to know u exactly and use only our knowledge from previous experiments
u ∼N (ue,ΣΣΣe). As in Section 5.4.1, we propagate this uncertainty through Opt(u) and compare Monte
Carlo propagation with 105 function evaluations to Genz-Keister numerical integration with 165 function
evaluations in combination with the Pearson system. The 95% confidence intervals for the total number of
measurements required to achieve the output uncertainty of 0.01 are:
Pearson : (922,1683), Monte Carlo : (895,1677).

6.2 Performance Evaluation

For performance evaluation, we use synthetic Gaussian processes with an arbitrary number N of supporting
points and an arbitrary number of dimensions D. We create a dataset {(xi, ti)}N

i=1 with N random points
x ∈ [0,10]D, ti = yi +εi and white noise εi ∼N (0,vt) with vt = 0.01. The yi are a random realization of a
Gaussian process with the hyperparameters wi = 0.04 and v = 2. This dataset is then used as supporting
points for another Gaussian process.

We use the synthetic Gaussian processes to evaluate the error of Girard’s approximate propagation
compared to Girard’s exact propagation (Girard and Murray-Smith 2005). Here, we only evaluate the
forward propagation, as our inverse method finds the exact optimum for the approximate propagation and
does not introduce an additional error. To this end, we use N = 100 and D = 5 and evaluate the error
of the approximate propagation relative to the exact method. For all input parameters, we use the same
input uncertainty. In Figure 1(b), we depict the mean and standard deviation of the relative error of 100
measurements per experiment. Here, the relative error of the approximate solution is always below 10%.
Additionally, our examples showed that the accuracy of the approximate method is suitable for real world
problems.
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Figure 2: Performance of the IUP methods depending on (a) D and (b) N.

We compare our inverse method from Section 5 to the Cobyla optimization algorithm (Powell 1994)
in combination with Girard’s exact propagation. For this problem, Cobyla is the fastest and most reliable
optimization algorithm from the Scipy library. For each experiment, we depict the mean and standard
deviation of 25 measurements. Figure 2(a) depicts the performance of the optimization solutions for
N = 1000 depending on D. Figure 2(b) shows the performance for D = 5 depending on N.

We do not evaluate methods for coping with unknown input parameters as described in Section 5.4
because Lee and Chen (2007) already evaluated methods for propagating uncertainties through deterministic
black-box functions. However, our evaluation shows that only our approximate method is fast enough to
be used for further numerical analyses.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a methodology to use bounds on the output uncertainties of simulations for
demand driven data acquisition. We use Gaussian processes and Girard’s forward propagation method
(Girard and Murray-Smith 2005) to estimate input uncertainties for a given bound. We defined a cost function
based on simulation input modeling and the Cramér-Rao bound to estimate the number of measurements
required to achieve the desired bound. The contribution of this paper is a novel approach to find the optimal
input uncertainties that satisfy the bound on the simulation output uncertainty. With our approach, we are
able to find an approximation to the optimal solution analytically. As many simulations rely on simulation
input modeling and measurements, this method is applicable to a wide range of problems. Simulation
experts can use prototypical models and rough estimates for simulation parameters to find the optimal data
collection strategy. Our inverse uncertainty propagation solves the open question from Song and Nelson
(2013) about the number of measurements required to get reliable results from simulations.

We evaluated our approach using a real world example from communication middleware simulations
(Fischer, Wahl, and Lenz 2014). Additionally, we evaluated the accuracy and performance of our approach
using synthetic Gaussian processes. Our evaluation showed that our approach is precise enough for real
world applications and very fast compared to numerical optimization methods. Therefore, we are able to
manage simulations with more than 100 input parameters and Gaussian processes with more than 5000 data
points. However, we need to be able to cope with much more dimensions and data points to make our inverse
propagation framework applicable for large scale real life scenarios. To this end, we need to investigate
how to use Sparse Gaussian Processes (Quinonero-Candela, Rasmussen, and Williams 2007, Snelson and
Ghahramani 2006) and dimensionality reduction (Snelson 2006) for inverse uncertainty propagation. As
one step in this direction, Groot, Lucas, and van den Bosch (2011) already extended Girard’s propagation
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methods for Sparse Gaussian Processes. In future work, we want to integrate these solutions into our
simulation input management framework, which we described in (Baumgärtel and Lenz 2012).
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