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ABSTRACT 

Prior to making a multiple attribute selection decision, a decision-maker may collect information to 
estimate the value of each attribute for each alternative. In this work, we consider a fixed experimental 
sample budget and address the problem of how best to allocate this budget across three attributes when 
the attribute value estimates have a normally distributed measurement error. We illustrate that the 
allocation choice impacts the decision-maker’s ability to select the true best alternative. Through a 
simulation study we evaluate the performance of a common allocation approach of uniformly distributing 
the sample budget across the three attributes. We compare these results to the performance of several 
allocation rules that leverage the decision-maker’s preferences. We found that incorporating the decision-
maker’s preferences into the allocation choice improves the probability of selecting the true best 
alternative.           

1 INTRODUCTION 

The problem of selecting the system (alternative) with the largest probability of actually being the best is 
known as the multinomial selection problem (Kim and Nelson 2006). In the selection problem, the 
performance measure must be inferred by sampling using a simulation model or other stochastic process. 
The problem is made more complicated when the performance measure is a function of multiple, 
uncertain attributes that are sampled separately. We call the process of sampling one attribute a 
“measurement.” Leber and Herrmann (2013, 2014) described the challenge of selecting a radiation 
detection system in which this problem occurred, but the problem is not limited to this particular 
application.  

The variability in each measurement process generates a range of results, which leads to uncertainty 
about the attributes that are relevant to the selection problem. (If the measurement process had no 
variability, then the measured value would equal the attribute’s true value, and there would be no 
uncertainty.) The decision-maker can reduce the attribute value uncertainty by making additional 
measurements, which yields more information. When the budget for measurements is limited, however, 
tradeoffs must be made. Thus the allocation of measurement effort (sample allocation) across the multiple 
decision attributes plays an important role in maximizing the probability of selecting the truly best 
alternative.

While much of the recent ranking and selection literature has focused on problems as they pertain to 
computer simulation experiments, the procedures are also applicable to physical experimentation (see 
Bechhofer, Santner, and Goldsman 1995). It is this setting for which the work desribed in this paper is 
most obviously applicable. Consider, for example, the selection problem faced by the Domestic Nuclear 
Detection Office (DNDO) of the U.S. Department of Homeland Security when the United States 
Congress mandated that the DNDO work with the U.S. Customs and Border Protection (CBP) to evaluate 
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and improve radiation detection systems in U.S. based international airports. As a result of this mandate, 
the DNDO initiated the PaxBag pilot program to identify the best possible system design for detecting, 
identifying, and localizing illicit radiological or nuclear material entering the United States through 
international passenger and baggage screening. This challenge was met by testing and evaluating, in a 
laboratory environment, available radiation detection equipment suitable for such an application, followed 
by an operational demonstration of the system that displayed the strongest potential for improved 
capability over currently deployed technology. To select the radiation detection system to put forth for the 
operational demonstration, DNDO and CBP formulated a multiple attribute decision model and 
developed a laboratory experimental plan to support the estimation of the true attribute values. This led to 
the following question: how should the limited laboratory experimental budget be allocated across the 
multiple alternatives and multiple attributes to generate information that leads to selecting the true best 
system? This question, which is not limited to the selection of a radiation detection system, applies to all 
decision processes where the true values of multiple attributes are estimated based upon experimental 
evaluations.        

In the following section we indicate how the problem of allocating the measurement effort (the 
sample allocation problem) considered in this paper differs from the extensive work done in the field of 
ranking and selection. The study described in this paper extends the results from our previous work with 
pass-fail testing on two attributes (Leber and Herrmann 2013) and normally distributed measurement 
error with two attributes (Leber and Herrmann 2014) to address the sample allocation problem for a three 
attribute selection decision with normally distributed measurement error where the measurement variance 
is assumed to be known. Details of this problem setting are provided in Section 3. Section 4 describes the 
simulation study that we designed to determine how well different procedures used to determine the 
allocation of experiments for the evaluation of the attribute values perform and is part of a larger study of 
this problem. Results from our simulation study and conclusions are presented in the final sections of this 
paper. 

2 RANKING-AND-SELECTION AND STATISTICAL EXPERIMENT DESIGN 

The problem studied herein is a type of ranking-and-selection problem. The ranking problem is to 
generate a complete ordering of a set of alternatives, when performance is a random variable and an 
alternative’s true performance must be estimated using experimentation – either physical measurements 
or computer simulation. The selection problem is to find the best of these alternatives. The result of an 
experiment can be used to estimate  j jy f A , where yj is the true value of the response variable 

(performance) for Aj, the jth alternative within the given set of alternatives. When the total number of 
available experimental runs (samples) is limited, the problem is to determine how many experimental 
runs should be allocated to each alternative. The indifference zone (IZ), the expected value of information 
procedure (VIP), and the optimal computing budget allocation (OCBA) are sequential approaches that 
have been developed to find good allocation solutions (see Bechhofer, Santner, and Goldsman 1995; Kim 
and Nelson 2006; Branke, Chick, and Schmidt 2007). In these approaches, the problem is to determine 
which alternatives should be observed (simulated) next and when to stop. Computational results presented 
by Branke, Chick, and Schmidt (2007) demonstrated the strengths and weaknesses of these procedures. 
Laporte, Branke, and Chen (2012) developed a version of OCBA that is useful when the computing 
budget is extremely small. Chen et al. (2008) developed a version of OCBA that can be used to find the 
best m alternatives efficiently. Lee et al. (2004, 2010) considered the problem of finding the set of non-
dominated alternatives when there are multiple objectives and developed approaches for allocating 
simulation replications to different alternatives. Although these approaches have some similarities to the 
problem that the current paper considers, we are exploring how the allocation of simulation replications to 
different attributes (which are combined in a single aggregate value function) affects the probability of 
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selecting the truly best alternative. This paper describes a computational study; analytical approaches like 
OCBA are being developed and will be described in future work.  

As described in the next section, the selection problem considered here is concerned with the 
allocation of information-gathering resources across the different attributes, not the different alternatives. 
Given a set of alternatives, each described by k attributes, the decision-maker’s value for a particular 
alternative Aj may be represented by    1, ,j j j jky f A v x x   . Instead of directly observing and 

estimating the alternative’s performance measure, yj, we can only estimate the alternative’s multiple true 
attribute values, 1, ,j jkx x , based on different information-gathering tasks (e.g., experiments). The 

estimated attribute values are then combined through a multiple attribute decision (value or utility) model 
to provide an alternative’s overall performance measure (see Butler, Morrice, and Mullarkey 2001 as an 
example of this approach for the selection problem). Our challenge is to determine how many 
experiments should be allocated to the evaluation of each attribute. 

The statistical design of experiments provides the foundation for defining experimental factors and 
levels in developing a design space, identifying optimal locations to sample within the design space, and 
determining the appropriate sample size. Box, Hunter, and Hunter (2005) and Montgomery (2013) 
provide extensive guidance for the principles and methods of statistical design of experiments. These 
problems can be represented by  1, , py f l l  , where y is the response variable of interest, p is the 

number of multiple level experimental factors under study, and li is the level of the ith experimental factor. 
A primary focus of the design of experiments discipline is how to best allocate the total budget of N 
measurements across the design space defined by the factors and their levels. The designer must choose 
which particular combinations of factors and levels will be included in the experiment. Bayesian 
experimental design (Chaloner and Verdinelli 1995) is an alternative to classical experimental design that 
leverages the information available prior to experimentation to find the best set of factors and levels, and 
to determine the appropriate sample size. 

3 PROBLEM STATEMENT 

As classified by Roy (2005), the decision problem we consider is one of choice: given a set of 
alternatives,  1, , mA A , m ≥ 2, the decision-maker will select a single alternative. Each alternative Aj is 

described by attributes, 1, , kX X , k ≥ 2, which are quantified by specific attribute values, 1, ,j jkx x , and 

by its overall value (utility), as determined by  1 , ,j j jky v x x  . The decision-maker prefers the 

alternative that has the greatest overall value. We assume that the corresponding tradeoffs condition is 
satisfied (Keeney and Raiffa 1993), and hence an additive value function of the form displayed in 
Equation (1) is a valid model of the decision-maker’s preferences. Let xi be the value of attribute Xi, let i 
be the weight of attribute Xi, and let  i iv x  be the individual value function for attribute Xi, for 1, ,i k  . 

Then the decision-maker’s overall value for alternative Aj is: 
 
      1 1 1 1, ,j j jk j k k jky v x x v x v x       (1) 

 
The individual value functions  i iv x  in Equation (1) map the attribute values, which are determined 

by the characteristics of the alternative, to decision values, and are scaled such that  0 0i iv x   for the 

least desirable attribute value, 0
ix , and  * 1i iv x   for the most desirable attribute value, *

ix . The attribute 

weights, i, reflect the decision-maker’s preferences and satisfy the constraint 
1

1
k

ii



 . 
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While true values for the k attributes exist for each alternative, they are unknown to the decision-
maker and will be estimated through a series of experiments (measurements). In this setting, a 
“measurement” is an information-gathering activity that provides a value for one attribute of one 
alternative. Due to randomness in the measurement process, the observed value is a random variable that 
is influenced by the measurement process but depends primarily upon the true value of the attribute for 
that alternative. The uncertainty associated with the attribute (attribute value uncertainty) is a function of 
the values that are collected from experimentation. (More measurements gather more information about 
an attribute and will reduce the uncertainty of the estimate for the true attribute value.) The information 
that is gathered (the measurements or experimental results) are used to model the uncertainty of the 
estimated attribute values. This uncertainty leads to uncertainty in an alternative’s overall value. 

We assume that the decision-maker is concerned with finding the best alternative and is thus facing a 
selection problem. Furthermore, we assume that, to make his decision, the decision-maker prefers (and 
will select) the alternative that has the greatest probability of being the best among the given set of 
alternatives. (Of course, there are other preferences that may be considered, each with their own virtues, 
but that is beyond the scope of this paper.) To estimate this probability, while propagating the attribute 
value uncertainty through the decision model, we use a very generalizable Monte Carlo approach. Further 
details of this approach are provided in Section 4.2, with a complete discussion found in (Leber and 
Herrmann 2012). 

If the budget for measurements is sufficiently large, then the decision-maker can gather enough 
information about every attribute of every alternative to reduce the attribute value uncertainty to a point 
where it is clear which alternative is truly the best. In practice, however, especially when measurement or 
experiments are expensive, this is not possible. For this work, we assume that the budget is fixed and all 
measurements (experimentation) will occur in a single phase. We will be considering sequential 
allocation policies in future work. 

The sample allocation problem for multiple attribute selection problems can be stated as follows: The 
overall budget in terms of measurements, B, is fixed and will be divided equally among the m alternatives. 
The budget for each alternative must be further divided among the k attributes. In general, the budgets for 
different alternatives could be divided differently, but we made the simplifying assumption that the 
allocation is the same for all alternatives (this constraint will be relaxed in future work). For a given 
alternative, let ni denote the number of measurements (samples) of attribute Xi. Let N B m  denote the 

total number of measurements for each alternative, thus, 1 kn n N   . The problem is to find values 

1, , kn n  that maximize the probability that the decision-maker will choose the truly best alternative (the 
probability of correct selection), given the decision-maker’s values and preferences. 

4 SIMULATION STUDY 

In general, obtaining more measurements on those attributes that have the most uncertainty and are the 
most important to the decision-maker is an obvious strategy for allocating the overall budget. To test this 
intuition, we conducted a simulation study to understand how the sample allocation affects the probability 
of correct selection. The following subsections briefly describe the details of the simulation study and the 
sample allocation rules that were tested. 

We considered the situation in which an alternative is described by three attributes, X1, X2, and X3, 
and each attribute is measured using a different technique. The error of each measurement technique is 
normally distributed with the variance assumed to be known. The alternatives, when characterized by 
their true values of X1, X2, and X3, form a concave efficient frontier in R3 space. The attributes share a 
common domain and the individual value functions  1 1v x ,  2 2v x , and  3 3v x  were defined to be 

linear. The overall value for alternative Aj can be expressed as  1 2 3 1 1 1 2 1 3, ,j j j j j j jy v x x x x x x      . 
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4.1 Training Cases and Measurement Error 

We generated a set of 20 training cases (sets of alternatives), evaluated every possible sample allocation, 
and used the results to generate insights for developing sample allocation rules. Each training case 
consisted of five alternatives described by three attributes. The true values of the attributes were randomly 
assigned from the domain of [100, 200], subject to the constraints necessary for non-dominance and 
concavity. The algorithm used to generate a concave efficient frontiers in R3 space is as follows:  

 
1. An attribute space was defined for each attribute Xi, i = 1, 2, 3, by: 

a. The distance between the minimum attribute value and the maximum attribute value, denoted 
disti, was randomly selected from a Uniform[0,100] distribution. 

b. The minimum attribute value, ximin, was randomly selected from a Uniform[100, 200 – disti] 
distribution. 

c. The maximum attribute value, ximax, was determined by ximin + disti. 
2. A normalized space was defined such that the domain of each variable, Zi, i = 1, 2, 3 is [0, 1]. 
3. A random concave surface in normalized space was defined by the curve 1 2 3 1s s sz z z   , where 

s was generated by randomly selecting a value r from a Beta[1, 2] distribution and setting 
s = 9r + 1 so that min(s) = 1 and max(s) = 10. (The expected value of s was 4.) 

4. The normalized attribute values (z1, z2, z3) for each of five alternatives were randomly selected 
from the concave surface. For each alternative the following steps were performed: 
a. A value of z1 was randomly drawn from a Uniform[0, 1] distribution. 

b. A value of z2 was randomly drawn from a 10, 1 ssUniform z    distribution. 

c. 3 1 21 s ssz z z   . 

5. The normalized attribute values were translated to the attribute space that was defined in step 1 
by: 

a. Assigning x1 = za, x2 = zb, x3 = zc, where (a, b, c) is a random permutation of (1, 2, 3), 
with each permutation having equal probability.   

b. Scaling (by disti) and shifting (by ximin) each xi, i = 1, 2, 3. 
 
For our simulation, each attribute was measured with a different measurement technique and it was 

assumed that the technique maintained a measurement variability that was consistent across all 
alternatives measured. We set the actual measurement variance of each of the three attributes ( 2

1 , 2
2 , 

and 2
3  ) to one of 102 or 302, which created 23 = 8 different “measurement error scenarios.” 

4.2 Evaluating Sample Allocations 

A sample generates one (random) measurement of one attribute of one alternative. Given a budget of 
N = n1 + n2 + n3 = 9 samples for each alternative, the problem is to determine n1, n2, and n3, the number of 
samples of attribute 1, attribute 2 and attribute 3, to maximize the probability of correct selection. That is, 
the decision-maker wants to maximize the likelihood of selecting the alternative whose true values of the 
attributes yield the greatest overall value as defined by Equation (1). As mentioned before, we assume 
that, given the uncertainty in the attribute values, the decision-maker prefers the alternative that is most 
likely to have the greatest overall value (the best performer) in any single trial. 

We evaluated, using the 20 training cases, all of the possible sample allocations (55) for N = 9 total 
samples per alternative, (n1, n2, n3) = (0, 0, 9), (0, 1, 8), …, (9, 0, 0), over a range of values of 1 , 2 and 
3, the weights in the decision value function. In particular, we considered 39 decision weight pairs (1, 
2, 3) = (0.1, 0.1, 0.8), (0.1, 0.2, 0.7), …, (0.8, 0.1, 0.1), (0.05, 0.05, 0.9), (0.05, 0.9, 0.05), 
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(0.9, 0.05, 0.05). To do this, for each case (20), measurement error scenario (8), and sample allocation 
(55) – a total of 8800 combinations – we simulated 1000 sets of measurements. (Henceforth, a case under 
a particular measurement error scenario is referred to as a subcase.) Each set included 45 measurements, 9 
for each of the 5 alternatives, with n1 measurements observed from attribute 1, n2 measurements observed 
from attribute 2, and n3 measurements observed from attribute 3. Each measurement was created by 
observing a single random draw from a normal distribution with a mean equal to the true attribute value 
and a variance defined by the measurement error scenario. 

Upon observing the sample measurements, we modeled the attribute value uncertainty, propagated 
this uncertainty through the decision model and selected an alternative for each set of sample 
measurements. The uncertain attribute values were modeled, a priori, with a normal distribution with 
mean of 150 and variance of 352. A Bayesian conjugate prior model for normally distributed data 
(Gelman, et al. 2004) was then used to update the attribute value models based on the observed sample 
measurements to provide posterior distributions. 

The uncertainty was propagated through the decision model and onto the decision value parameter by 
drawing 1000 Monte Carlo samples from the posterior distributions of each of the three attributes and 
calculating the overall decision value of the alternative using each of the 39 decision value functions (as 
defined by the 39 decision weight triplets). For each decision weight triplet, the alternative that most 
frequently displayed the best (largest) decision value across the Monte Carlo replications was selected and 
checked whether this alternative was the true best (the alternative whose true values of the attributes yield 
the greatest overall decision value for the given decision weight triplet). Repeating this selection process 
over all 1000 sets of measurements allowed us to define the frequency of correct selection (fcs) evaluation 
measure as the number of times that the best alternative had been selected divided by 1000 sets. 

The result of this simulation was an fcs value for each of the 55 sample allocations, for each of the 39 
decision weights, across the 160 subcases. For each of the 160 subcases and each of the 39 decision 
weights, there is at least one optimal sample allocation that produced the maximum fcs value. This 
optimal sample allocation should maximize the probability of choosing the true best alternative. For each 
subcase and decision weight, we defined the relative frequency of correct selection (rel fcs) for each 
sample allocations as the ratio of the frequency of correct selection for that sample allocation to the 
frequency of correct selection for the optimal allocation. Within the confines of the problem which 
include the alternatives’ attribute values and the total budget, this relative frequency of correct selection 
measure allows us to quantify how much better the selection could have been if a different sample 
allocation were chosen. 

The rel fcs values produced by the training cases were illustrated through a series of contour plots 
such as those presented in Figure 1. Each panel of Figure 1 displays the rel fcs values for the indicated 
training subcase under a single decision model defined by the decision weight pair 1 and 2 (recall that 
3 = 1 – 1 – 2). Within each panel, the shaded contours present the rel fcs values as a function of n1 and 
n2, ranging from dark (low rel fcs values) to light (high, desirable rel fcs values). Note that results are only 
feasible in the region n2 ≤ 9 – n1 since the overall budget N = n1 + n2 + n3 = 9. The solid squares within the 
plots denote the optimal sample allocation for the decision model. For each decision model there is at 
least one, but potentially more than one optimal sample allocation. 
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Figure 1: Contour plots displaying rel fcs as a function of n1 and n2 for training subcase 2.30.30.30 (case 2 
with measurement error 2 2 2 2 2 2

1 2 330 , 30 , 30     ) under decision model (1 = 0.1, 2 = 0.8, 3 = 0.1), 
subcase 7.30.10.10 under decision model (0.8, 0.1, 0.1), subcase 9.10.30.30 under decision model 
(0.1, 0.1, 0.8), and subcase 18.10.30.30 under decision model (0.3, 0.3, 0.4). The solid squares denote the 
optimal sample allocation for the decision model. 

The immediate observation to be made from Figure 1 is that the choice in sample allocation matters. 
That is, the rel fcs for the selection problem is impacted by the choice in sample allocation. Consider, for 
example, Subcase 7.30.10.10 in Figure 1 where a sample allocation of n1 = 9, n2 = 0, n3 = 0 is indicated to 
the be the optimal sample allocation. If a different sample allocation is selected, say n1 = 1, n2 = 6, n3 = 3, 
then the rel fcs would be approximately 0.3 and hence, the probability of selecting the true best alternative 
(correct selection) would be reduced by nearly 70 %. 

A second observation that can be made from the plots in Figure 1 is that when the decision models are 
such that high weight (high  value) is placed on one of the attributes and the other two attributes receive 
low weight, the optimal allocation is to allocate all or nearly all of the budget (N samples) to the highly 
weighted attribute. This trend was seen repeatedly throughout the 160 training subcases.     

4.3 Sample Allocation Rules 

In general, the optimal sample allocation rule depends upon the information that the decision-maker has. 
If he has no information, the decision-maker will have no reason to allocate more samples to any attribute 
and would use a balanced allocation of n1 = n2 = n3 = N/3. We refer to this sample allocation as the 
uniform allocation rule. This allocation is consistent with the principle of balance in the traditional design 
of experiments discipline. 

If the decision weight values of 1, 2, and 3 are available, then the decision-maker may choose to 
assign n1, n2, and n3 proportional to 1, 2, and 3. Observations made from contour plots resulting from 
the training cases (e.g., Figure 1) showed that, in the optimal sample allocation, the allocation to 
attribute i generally increased as i increased. Since n1, n2, and n3 must be integer values, rounding is 
necessary, e.g., n1 = round(1N), n2 = round(2N), n3 = N – n1 – n2. We refer to this sample allocation 
approach as the proportional allocation rule. As an example of this allocation rule, when the decision 
weights are (0.1, 0.5, 0.4) and the budget N = 9, then the sample allocation equals (1, 5, 3). 

The results from the training cases also showed that “extreme allocations” that allocate all of the 
budget to only one attribute (while the others are not evaluated) were optimal allocations for some of the 
39 decision weight triplets, especially those in which one weight is near 1 while the other two weights are 
near 0. This observation was consistent with observations in previous work involving two attributes. We 
thus created two “zone” allocation rules that determined the allocation based on the decision weight 
values of 1, 2, and 3. 

The three-zone allocation rule assigns the allocation (n1, n2, n3) = (9, 0, 0) to decision weight triplets 
in which 1 is near 1, assigns the allocation (0, 9, 0) to decision weight triplets in which 2 is near 1, and 
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assigns the allocation (0, 0, 9) to decision weight triplets in which 3 is near 1. The four-zone allocation 
rule assigns the same allocation as the three-zone allocation rule except for decision weight triplets in 
which all of the weights are between 0.2 and 0.4; to these triplets the rule assigns the allocation 
(n1, n2, n3) = (3, 3, 3). Figure 2 illustrates the sample allocations provided by the three- and four-zone 
allocation rules as a function of decision model.  
 

 

Figure 2: Sample allocation definitions for the three-zone (left) and four-zone (right) allocation rules. 

4.4 Testing the Sample Allocation Rules 

To test the sample allocation rules, we generated 500 new concave frontiers (testing cases). Each case was 
a set of 5 randomly generated alternatives. Again, the frontier generation process ensured that the 
alternatives formed a concave efficient frontier with attribute values restricted to the domain of [100, 200] 
by following the generation algorithm described in Section 4.1. 

We tested the sample allocation rules using all 500 testing cases and 39 decision weight triplets in the 
value function; (1, 2, 3) = (0.1, 0.1, 0.8), (0.1, 0.2, 0.7), …, (0.8, 0.1, 0.1), (0.05, 0.05, 0.9), 
(0.05, 0.9, 0.05), (0.9, 0.05, 0.05). To each of the 500 testing cases, we assigned a triplet of measurement 
variability values, ( 2

1 , 2
2 , and 2

3  ), to be associated with the three attributes, X1, X2, and X3. The 

assigned i values (i = 1, 2, 3) were independent, random draws from a uniform distribution with 
parameters min = 1 and max = 30. Then, for each of the 55 possible sample allocations from an overall 
budget N = 9, for each of the 39 decision weight triplets, across the 500 testing cases, we evaluated the 
performance of the sample allocation using the process described in Section 4.2 and obtained a rel fcs 
value. For each testing case and decision weight combination, we used each of the sample allocation rules 
to produce a sample allocation. From the evaluations of the 55 possible sample allocations and 39 
decision weight triplets, the rel fcs values for the allocations resulting from the sample allocation rules 
were identified. The performance of a rule, for each decision weight, was defined to be the average rel fcs 
of its sample allocation across the 500 test cases. The uncertainties in the average rel fcs were expressed 
as 95 % confidence intervals based upon the normality assumption as justified by the Central Limit 
Theorem. 

5 RESULTS 

The uniform and proportional allocation rules provided larger average rel fcs values than an arbitrary 
(random) allocation of samples over the range of decision weights studied. When 1 = 2 = 3 the 
proportional allocation rule and the uniform allocation rule provide the same sample allocation 
(n1 = n2 = n3 = N/3) and thus the rules displayed similar performance near these decision weight values. 
Otherwise, the proportional allocation rule provided rel fcs values that exceeded those provided by the 
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uniform allocation rule. This underscores the importance of the sample allocation decision when 
embarking upon a data collection exercise to support a selection decision. Figure 3 illustrates these 
general conclusions by displaying, for each of the four allocation rules studied and the random allocation 
(provided as a reference), the relative frequency of correct selection averaged across all test cases and the 
95 % confidence interval at each decision weight value.  
 

 

Figure 3: Relative frequency of correct selection for each allocation rule averaged across all testing cases 
for each decision weight value. The dotted lines represent the 95 % confidence intervals. 

The three- and four-zone allocation rules, which leverage extreme sample allocations, provided the 
largest rel fcs value as i approaches 1 for any i = 1, 2, 3. However, as the i move away from 1 and 
approach equality at 1

3 , the performance of the three- and four-zone allocation rules rapidly decreases. 

With few exceptions, when 0.3 ≤ i ≤ 0.6 for any i = 1, 2, 3, the average rel fcs values provided by the 
three- and four-zone allocation rules are either lower than or indistinguishable from the average rel fcs 
values provided the random allocation. Only when 0.2 ≤ i ≤ 0.4 for all i = 1, 2, 3 does the performance of 
the four-zone allocation rule exceed that of the three-zone allocation rule. It is within this range of i that 
the four-zone allocation utilizes the uniform allocation.    

6  SUMMARY AND CONCLUSIONS 

The ultimate goal of this research is to provide guidance on allocating a fixed budget (for measurements 
or experiments) across multiple attributes – when collecting data to support a selection decision – to 
maximize the probability that the decision-maker will choose the true best alternative. Through a 
simulation study, we have demonstrated that the allocation of samples across the multiple attributes does 
indeed impact the ability of the decision-maker to choose the true best alternative when the estimated 
attribute values are subject to normally distributed measurement error. As shown by the contour plots in 
Figure 1, for a given set of decision weights the relative frequency of correct selection can vary 
considerably based on the sample allocation. We have shown that a sample allocation based upon the 
decision model weights (proportional allocation rule) improves the probability of selecting the true best 
alternative over a sample allocation that does not consider this information (the uniform allocation rule). 
This emphasizes the importance for projects focused on a selection decision to be managed so that the 
decision modeling and the experimental (or measurement) planning are done jointly rather than in 
isolation (which, unfortunately, is currently not uncommon). Such a cooperative approach can improve 
the overall selection results of the project. 

For the three attribute case where the decision alternatives form a concave efficient frontier and the 
attribute value estimates are subject to normally distributed measurement error, we evaluated four sample 

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

re
l f

cs

(0
.9

, 0
.0

5,
 0

.0
5)

(0
.0

5,
 0

.9
, 0

.0
5)

(0
.8

, 0
.1

, 0
.1

)

(0
.7

, 0
.2

, 0
.1

)

(0
.6

, 0
.3

, 0
.1

)

(0
.5

, 0
.4

, 0
.1

)

(0
.4

, 0
.5

, 0
.1

)
(0

.3
, 0

.6
, 0

.1
)

(0
.2

, 0
.7

, 0
.1

)

(0
.1

, 0
.8

, 0
.1

)

(0
.7

, 0
.1

, 0
.2

)
(0

.6
, 0

.2
, 0

.2
)

(0
.5

, 0
.3

, 0
.2

)

(0
.4

, 0
.4

, 0
.2

)

(0
.3

, 0
.5

, 0
.2

)

(0
.2

, 0
.6

, 0
.2

)

(0
.1

, 0
.7

, 0
.2

)
(0

.6
, 0

.1
, 0

.3
)

(0
.5

, 0
.2

, 0
.3

)

(0
.4

, 0
.3

, 0
.3

)

(0
.3

, 0
.4

, 0
.3

)
(0

.2
, 0

.5
, 0

.3
)

(0
.1

, 0
.6

, 0
.3

)

(0
.5

, 0
.1

, 0
.4

)

(0
.4

, 0
.2

, 0
.4

)

(0
.3

, 0
.3

, 0
.4

)

(0
.2

, 0
.4

, 0
.4

)

(0
.1

, 0
.5

, 0
.4

)
(0

.4
, 0

.1
, 0

.5
)

(0
.3

, 0
.2

, 0
.5

)

(0
.2

, 0
.3

, 0
.5

)

(0
.1

, 0
.4

, 0
.5

)

(0
.3

, 0
.1

, 0
.6

)

(0
.2

, 0
.2

, 0
.6

)

(0
.1

, 0
.3

, 0
.6

)

(0
.2

, 0
.1

, 0
.7

)

(0
.1

, 0
.2

, 0
.7

)

(0
.1

, 0
.1

, 0
.8

)
(0

.0
5,

 0
.0

5,
 0

.9
)

Decision Model (1,2,3)

4 zone

3 zone

proportional

uniform

random

730



Leber and Herrmann 
 
allocation rules: uniform allocation, proportional allocation, three-zone allocation, and four-zone 
allocation. When the experiment or measurements are planned without any knowledge of the decision 
model or the alternatives’ attribute values, then the uniform allocation rule would be a reasonable 
approach for allocating the budget. We have displayed, however, that this allocation rule nearly always 
provides an allocation that is sub-optimal. By simply defining the decision model prior to the data 
collection phase, the proportional allocation rule can be utilized, providing sample allocations that 
improve the probability of correct selection over those provided by the naïve uniform allocation rule.  

The three-zone and four-zone allocation rules implement “extreme allocations” that perform very 
well for some decision models but very poorly for others. The four-zone allocation rule dominated the 
three-zone allocation rule, providing more favorable results when all of the weights in the decision model 
were near 1

3 . Moreover, a hybrid allocation rule that suggests “extreme allocations” when the weight for 
one attribute is very high (near 1) but proportional allocations when all of the attribute weights are 
moderate may prove to be valuable. 

We expect that these results will hold in cases with more than five alternatives and decision situations 
with more than three attributes. Nonlinear individual value functions may alter the influence of attribute 
value uncertainty, however, which could influence the impact of the sample allocation. In situations with 
a non-additive value function, the trends described here may not hold. 

Broadening our understanding of how the frontier characteristics impact the ideal sample allocation 
and incorporating these findings into an allocation rule is part of our ongoing work on this sample 
allocation problem for the three attribute selection problem. We will focus efforts on developing a better 
understanding of the impact the measurement uncertainty of each attribute plays on the optimal 
allocation. And finally, while our work to this point has focused on single-phased experiments with equal 
allocations across alternatives, our future work will consider sequential allocation policies and allow for 
varying allocations across alternatives. 
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