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ABSTRACT

Effective uncertainty evaluation is a critical step toward real-time and robust decision-making for com-
plex systems in uncertain environments. A Multivariate Probabilistic Collocation Method (M-PCM) was
developed to effectively evaluate system uncertainty. The method smartly chooses a limited number of
simulations to produce a low-order mapping, which precisely predicts the mean output of the original system
mapping up to certain degrees. While the M-PCM significantly reduces the number of simulations, it does
not scale with the number of uncertain parameters, making it difficult to use for large-scale applications
that typically involve a large number of uncertain parameters. In this paper, we develop a method to break
the curse of dimensionality. The method integrates M-PCM and Orthogonal Fractional Factorial Designs
(OFFDs) to maximally reduce the number of simulations from 22m to 2⌈log2(m+1)⌉ for a system mapping of
m parameters. The integrated M-PCM-OFFD predicts the correct mean of the original system mapping,
and is the most robust to numerical errors among all possible designs of the same number of simulations.
The analysis also provides new insightful formal interpretations on the optimality of OFFDs.

1 INTRODUCTION

Modern large-scale complex systems typically involve a large number of uncertain parameters, which
modulate the systems’ dynamics, and which pose significant challenges for real-time system evaluation and
decision-support. For instance, the management of complex information systems requires methodologies
to achieve high throughput and low latency under demand uncertainties. Similarly, strategic air traffic
flow management is concerned with designing management initiatives that are robust to a wide range of
weather uncertainties at a long look-ahead time. As a step toward real-time management, it is critical
to develop a systematic procedure to evaluate statistical system performance in the presence of uncertain
parameters. This problem can be formulated as the prediction of output statistics subject to a set of
uncertain input parameters. The problem has been typically addressed using the Monte Carlo simulation
method (Sokolowski and Banks 2010), which simulates a very large set of randomly selected simulation
points, and then calculates the output statistics using the simulated outputs. In large-scale complex system
applications, each simulation consumes considerable computational time; as the Monte Carlo simulation
method requires a very large number of simulations to converge to meaningful performance estimates, the
method does not meet the requirement for real-time management. The uncertainty evaluation procedure
needs to be efficient in time and also scalable with the number of uncertain input parameters.
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The Multivariate Probabilistic Collocation Method (M-PCM) was developed to effectively evaluate
the output statistics of a system subject to multiple uncertain input parameters, which may or may not
be correlated (Zhou et al. 2014). Compared to the Monte Carlo method, the M-PCM permits using a
significantly reduced number of simulations to predict to a desired precision the correct mean of the
original system output. Specifically, the method suggests a procedure to smartly select a few values for
each uncertain input parameter as simulation points. Simulations evaluated at these points can identify a
reduced-order mapping between input parameters and the output, from which the output statistics are readily
obtained. The selection procedure is based on statistical knowledge of uncertain input parameters, such
as joint probabilistic distribution functions (pdfs), historical data sets, or as simple as low-order moments,
e.g., the mean and the variance. The resulting accurate predictions of mean output as well as several other
important statistics suggest that the reduced-order polynomial mapping approximates the original mapping
well over likely ranges of parameter values. The reduced-order mapping then facilitates further studies,
including parameter sensitivity analysis, optimal decision-support under uncertainties, and the application
to strategic air traffic management (Zhou et al. 2012, Zhou et al. 2013, Ma et al. 2012).

Although the M-PCM significantly reduces the number of simulations required to predict the correct
mean output, it is not scalable to large-scale system applications which typically involve a large number
of uncertain input parameters. In particular, the number of simulations increases exponentially with the
increase of the number of uncertain input parameters, and thus leads to potential computational load issues
for real-time applications. In this paper, we study further reducing the number of simulations from the
M-PCM designs.

Conceptually, this further reduction is possible, as the M-PCM assumes the existence of all cross-
multiplication terms in system mappings. As many of these cross-terms do not exist in realistic applications,
the number of mapping coefficients can be significantly reduced and thus requires a lower number of
simulations to estimate. In this paper, we investigate the selection of a subset of M-PCM points to predict
the correct mean output. In addition, we note a practical numerical issue on the success of M-PCM.
In particular, many system simulations have constraints on the resolutions of input parameters, and thus
require numerical truncation of selected points for simulation. Such truncation may unfortunately fail the
mean output prediction. As such, we also require the selected subset to be robust to such numerical errors.

In this paper, we explore the use of an experimental design method, called the Orthogonal Fractional
Factorial Design (OFFD) (J. Prinz 2013, Dey 1985, Box et al. 2005, Robert 2009) to further reduce the
number of simulations from the M-PCM. Main contributions of this paper are summarized in the following.

• An integrated design to enhance the scalability and applicability of the M-PCM for uncertainty
evaluation. By integrating M-PCM with OFFDs, the number of simulations is significantly further
reduced. We focus on the case that each parameter in the original system mapping has a degree
of up to 3. We show that for an m-parameter system, the integration of M-PCM and OFFDs is
able to reduce the number of simulations from 22m to the range of

[

2⌈log2(m+1)⌉,2m−1
]

, where ⌈x⌉
denotes the nearest integer above the number x. We prove that the integrated M-PCM and OFFDs
(M-PCM-OFFD) predicts the correct mean of the original system mapping, and is the most robust
to numerical errors among all designs of the same number of simulations. This study enhances
M-PCM for practical uncertainty evaluation for large-scale systems.

• A novel statistical measure and the optimality study of OFFDs. We explore the performance of
OFFDs in terms of the robustness to numerical errors for output statistics prediction, which has
never been studied in the literature per knowledge of the authors. We adopt a quantitative robustness
metric in the matrix theory (Dahleh et al. 2004), and show that the subset of simulations selected
by OFFDs is optimal under this metric. This study provides new quantitative insights into the
attributes of OFFDs, and broadens their application domains.

A related study in (Isukapalli 1999) suggested a heuristic method, called efficient collocation method
(ECM), to further reduce the number of simulations. However, this method does not have a quantitative
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performance analysis. We here conduct a thorough analysis on the optimality of the integrated M-PCM
and OFFDs.

The remainder of this paper is organized as follows. In Section 2, fundamentals of the M-PCM and
OFFDs are introduced. In Section 3, the algorithm of the integrated M-PCM-OFFD is presented, and the
main results on its performance are presented from two aspects: mean output prediction and robustness
to numerical errors. Section 4 includes simulation studies on an illustrative example. Finally, a brief
conclusion and a discussion of future works are included in Section 5.

2 Preliminaries

We first review fundamentals of the M-PCM and motivate our approach to further reduce the number of
simulations. We then review basics of the OFFDs and discuss the feasibility of integrating the two methods.

2.1 M-PCM

The M-PCM was developed to effectively evaluate uncertainty for systems with multiple uncertain input pa-
rameters. In this paper, we consider the case when these input parameters are independent; however we note
that the correlated M-PCM was developed in (Zhou et al. 2014). As Theorem 1 in (Zhou et al. 2014) gener-
ally shows, for a system mapping (called response surface in the experiment design literature) of m uncertain
input parameters with the degree ki of each parameter xi up to 2ni−1, a total number of 2m Õm

i=1 ni simula-
tions are needed to uniquely determine its mapping g(x1,x2, ...,xm)=å2n1−1

k1=0 å2n2−1
k2=0 ...å2nm−1

km=0 Yk1,...,km Õm
i=1 xki

i ,
where Yk1,...,km ∈ R are the coefficients. The M-PCM suggests a procedure to choose ni simulation points for
each parameter, and produces a reduced mapping g∗(x1,x2, ...,xm) = ån1−1

k1=0 ån2−1
k2=0 ...å

nm−1
km=0 Wk1,...,km Õm

i=1 xki
i

with the degree of each parameter up to ni −1, where Wk1,...,km ∈ R are the coefficients. The reduced-order
mapping predicts the correct mean output of the original mapping.

2.1.1 Design Procedures

The three major steps of the M-PCM method are briefly summarized below. Please refer to (Zhou et al. 2014)
for the details.

Step 1: Choose simulation points. For each input parameter xi, i = 1,2, · · · ,m, find its orthonormal
polynomial hni

i (xi) of degree ni based on the statistics of xi, such as the pdf, historical data, or low-order
moments. The roots of hni

i (xi) are the ni M-PCM simulation points for xi, denoted as xi(1), ...,xi(ni).
Step 2: Run simulations at selected simulation points. For each simulation point identified in Step 1,

run simulation and find the associated output.
Step 3: Produce the low-order mapping. Calculate the coefficients Wk1,...,km in the low-order mapping

g∗(x1,x2, ...,xm) by

















W0,...,0
...

W0,...,nm−1
...

Wn1−1,...,nm−1

















= L−1











g(x1(1), ...,xm(1))

g(x1(1), ...,xm(2))
...

g(x1(n1), ...,xm(nm))











, where

L =











x0
1(x1(1))...x

0
m(xm(1)) · · · x0

1(x1(1))...x
nm−1
m (xm(1)) · · · xn1−1

1 (x1(1))...x
nm−1
m (xm(1))

x0
1(x1(1))...x

0
m(xm(2)) · · · x0

1(x1(1))...x
nm−1
m (xm(2)) · · · xn1−1

1 (x1(1))...x
nm−1
m (xm(2))

...
. . .

...
. . .

...
x0

1(x1(n1))...x
0
m(xm(nm)) · · · x0

1(x1(n1))...x
nm−1
m (xm(nm)) · · · xn1−1

1 (x1(n1))...x
nm−1
m (xm(nm))











.(1)

735



Xie, Wan, Zhou, Mills, Filliben, Lei

and xki
i (xi( j)) represents the ki-th power of xi evaluated at the simulation point xi( j).

Despite the significant computational load reduction enabled by the M-PCM, the method does not scale
with the number of uncertain input parameters m. In particular, Õm

i=1 ni runs are still needed to predict the
correct mean output. We note that if all coefficients in the low-order mapping g∗(x1,x2, ...,xm) are nonzero,
the full set of M-PCM points is required to uniquely determine the mapping, and in turn the mean output.
In realistic applications, however, many cross-terms in the mapping do not exist or have negligible effects
on the output (Box et al. 2005). Under such assumptions, only a subset of the M-PCM points is required.
In this paper, we study using only a subset of the Õm

i=1 ni simulations to predict the mean output. Next, we
review the OFFDs, which we will use to achieve this further reduction.

2.2 OFFDs

Orthogonal fractional factorial designs (OFFDs) provide an approach to select a subset (from the full
factorial design, that is, from the design consisting of all possible combinations of levels of all factors)
of experimental combinations that best estimate the main effects of single factors (or parameters) and
low-order interaction effects of multiple factors on the output. Please refer to (J. Prinz 2013, Dey 1985,
Box et al. 2005, Robert 2009, Mills et al. 2011, Filliben and Simiu 2010) for the details of OFFDs.

2.2.1 Design Procedures

Consider an m-factor experiment, with each factor evaluated at P levels (or values). The full factorial design
would consist of Pm runs. Such a design is statistically effective, but is also very expensive, especially
when the number of parameters is large. A specific OFFD is described by Pm−g

R . This design examines m
parameters, but does so in a statistically balanced/optimal fashion using only Pm−g runs. The fractionation
constant, g , where g is a positive integer, indicates that a fraction Pm−g of runs is selected from the full
set of Pm runs (Gunst and Mason 2009, J. Prinz 2013). g is in the range of 1 ≤ g ≤ m−⌈logP(m+ 1)⌉
(Box et al. 2005), with the upper bound determined by the minimum number of runs to estimate m main
effects and the mean. g also determines the minimum number of generators, which decide the effects
(main effects or interactions) that are confounded together (Gunst and Mason 2009, J. Prinz 2013). The
length of the shortest generator is defined as the resolution R, which is usually represented by Roman
numerical subscript (J. Prinz 2013). The procedures to generate the Pm−g

R OFFD are summarized in the
following. We note that in statistical experiment design, the selections of g and R need to balance the
degree of tolerable confounding and OFFD sample sizes.

Step 1: Generate the Pm−g full factorial design for m−g factors. List all Pm−g combinations for m−g
factors.

Step 2: Specify g generators. The selection of generators is somewhat flexible. In principle, given g
and m, the highest resolution R is usually adopted to achieve the minimal aliasing for effect estimation
(Box et al. 2005). We can also refer to standard designs (L.Trutna et al. 2013) to select generators.

Step 3: Determine the levels of all other g factors for each experimental run. The generators selected
in Step 2 are used to generate the levels for all other factors.

If we view all PCM points selected from the M-PCM as a full factorial design, the OFFDs provide
systematic procedures to select a subset of simulation points that breaks the curse of dimensionality. In
the next section, we present the integrated algorithm, and show that it produces a low-order mapping that
predicts the correct mean output of the original mapping, and is the most robust to numerical errors.

3 Integrated M-PCM and OFFDs

In this section, we investigate the integrated M-PCM-OFFD that together break the curse of dimensionality
for effective mean output prediction. For most of the analyses here, we assume that each input parameter in
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the original system mapping g(x1,x2, ...,xm) is up to the degree of 3, i.e., 2ni−1 ≤ 3, for all i ∈ {1,2, ...,m}.
This assumption is placed to facilitate the use of 2-level OFFDs, which have mature design procedures
(and in particular the formulation of generators). In addition, we assume that uncertain input parameters
are independent. We note that the correlation among parameters, if known, can be exploited to further
reduce the number of simulations (Lei et al. 2008). We leave these generalizations to the future work. We
first present the integrated algorithm, and then analyze its optimality using two metrics: 1) mean output
estimation, and 2) robustness to numerical errors. We note that the specific OFFD to choose is dependent
on the knowledge that cross-terms have up to a certain number of parameters.

3.1 Algorithm Description

Consider an original system mapping of m input parameters, each with a degree up to 3. Mathematically,

g(x1,x2, ...xm) =
3

å
k1=0

3

å
k2=0

...

3

å
km=0

Yk1,...,km

m

Õ
i=1

xki
i , (2)

where the coefficients Yk1,...,km ∈ R. Assume that the random parameters x1, x2, ..., xm follow independent
distributions fX1(x1), fX2(x2), ... , and fXm(xm) respectively. In addition, assume that cross-terms involve at
most t parameters, where t is an integer in the range of 1 ≤ t ≤ m. In other words, Yk1,...,km = 0 if more
than t of k1, ...,km are non-zero.

The following integrated algorithm constructs a low-order mapping

g∗(x1,x2, ...,xm) =
1

å
k1=0

1

å
k2=0

...

1

å
km=0

Wk1,...,km

m

Õ
i=1

xki
i , (3)

where the coefficients Wk1,...,km ∈ R, and Wk1,...,km = 0 if more than t of k1, ...,km are non-zero.

Algorithm:
Step 1: Choose 2m M-PCM simulation points. Follow Step 1 of the M-PCM algorithm in Section 2.1.1

to select 2m PCM points. Here ni = 2 for all i. Check if m > 2 and 1 ≤ t ≤ ⌈m
2 ⌉−1 (Lemma 2). If yes,

move to Step 2; otherwise go to Step 4 as no simulations can be further reduced by OFFDs.
Step 2: Calculate gmax to save 2m −2m−gmax simulations. Select gmax = m−⌈log2(åt

i=0

(

i
m

)

)⌉ (Lemma
2) to save the maximum number of simulations. Here l = åt

i=0

(

i
m

)

is the number of coefficients in Equation
3.

Step 3: Select simulation subsets using the OFFD. Follow the three steps of the 2m−gmax OFFD algorithm
in Section 2.2.1 to select lo f f d = 2m−gmax simulation points from the full set of 2m simulations obtained in
Step 1. These points constitute the M-PCM-OFFD simulation set.

Step 4: Run simulations. Run simulation at each selected simulation point.
Step 5: Produce the low-order mapping. If the number of coefficients, l, equals the number of simulation

points selected using the OFFD, lo f f d , find the coefficients in Equation 3 similar to Step 3 of the M-PCM
algorithm, but with a reduced-size L matrix, denoted as the input matrix L′ ∈ Rl×l , which excludes those
entries with rows representing points not selected in the reduced M-PCM-OFFD simulation set, and those
columns with more than t of k1,k2, ...km being nonzero. If l < lo f f d , the input matrix L′ ∈ Rlo f f d×l is not
a square matrix. In this case, the coefficients can be instead found by replacing L′−1 with (L′T L′)−1L′T ,
according to the least square estimation (Montgomery et al. 1997).

We note that the ordering of entries in the L′ matrix does not need to strictly follow that in Equation
1. They only need to match with the orderings of simulation points and the simulated outputs.
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3.2 Performance of Algorithm on the Estimation of Mean Output

In this section, we show that the reduced M-PCM-OFFD simulation set in Section 3.1 estimates the correct
mean output of the original system mapping with the degree of each parameter up to 3. We first present three
lemmas. In Lemma 1, we show that the reduced-order mapping does not introduce additional cross-terms.

Lemma 1 Consider an original system mapping g(x1,x2, ...,xm) that contains cross-terms of at most t
parameters (Equation 2). The low-order mapping g∗(x1,x2, ...,xm) estimated using the M-PCM also contains
cross-terms of at most t parameters.

Proof: According to the proofs for Theorems 1 and 2 in (Zhou et al. 2014), the M-PCM recursively
reduces the degree of each input parameter to produce a low-order mapping of the same mean output. As
this procedure does not introduce new parameters to each cross-term, the numbers of parameters in all
cross-terms in the low-order mapping do not increase. 2

In Lemma 2, we study the maximum number of simulations that can be further reduced using
OFFDs, given the maximum number of parameters, t , in cross-terms of g(x1,x2, ...,xm), or equivalently
g∗(x1,x2, ...,xm) according to Lemma 1.

Lemma 2 Consider the low-order mapping g∗(x1,x2, ...,xm) (Equation 3) estimated using the M-PCM,
which contains cross-terms of at most t parameters. An OFFD design can further reduce the number of
simulations if 1 ≤ t ≤ ⌈m

2 ⌉−1, m > 2. The maximum fraction of simulations that can be reduced is 2−gmax

using the 2m−gmax OFFD, where gmax = m−⌈log2(åt
i=0

(

i
m

)

)⌉.

Proof: The M-PCM produces 2m simulation points. Let us first prove that an OFFD design can further
reduce the number of simulations if 1 ≤ t ≤ ⌈m

2 ⌉−1, m > 2. As OFFDs reduce the number of simulations
at least by half, the number of non-zero parameters åt

i=0

(

i
m

)

in g∗(x1,x2, ...,xm) must be less than or equal

to 2m−1 to produce the same low-order mapping g∗(x1,x2, ...,xm). Note that 2m−1 = å
m−1

2
i=0

(

i
m

)

when m is

odd and å
m
2 −1
i=0

(

i
m

)

< 2m−1 < å
m
2
i=0

(

i
m

)

when m is even. The maximum of t thus satisfies

max(t) =

{

m−1
2 if m mod 2 ≡ 1

m
2 −1 if m mod 2 ≡ 0

= ⌈m
2
⌉−1. (4)

As t is an integer greater than or equal to 1, it needs to be in the range of 1 ≤ t ≤ ⌈m
2 ⌉−1, such that an

OFFD can further reduce simulation points without altering the low-order mapping g∗(x1,x2, ...,xm).
Now we prove that the maximum fraction of simulations that can be reduced is achieved using the

2m−gmax OFFD, where gmax = m−⌈log2(åt
i=0

(

i
m

)

)⌉. As the number of simulations must be larger than or
equal to the number of parameters,

gmax = max{g | 2m−g ≥
t

å
i=0

(

i
m

)

}= m−⌈log2(
t

å
i=0

(

i
m

)

)⌉. (5)

2.
In the next lemma, we prove that the matrix L′ is full column rank, i.e. rank(L′) = l. In this process, we

show the general QR decomposition expression of L′. This lemma is central to the rest of the development
in this paper, as it establishes the direct relationship between the OFFD design table (captured by Q) and
the input matrix L′ which is used for our study of mapping construction and mean output prediction.

Lemma 3 The input matrix L′ ∈ Rlo f f d×l, lo f f d ≥ l constructed by the integrated M-PCM and OFFD is full
column rank, and can be represented using the QR decomposition (Wilkinson et al. 1965) as L′ = QU ,
where Q ∈ Rlo f f d×l is an orthogonal matrix (i.e. QT Q = I) of the form:

Q =
[

q1 q2 q3 · · · ql

]

=
1

√

lo f f d

[

v1 v2 v3 · · · vl
]

. (6)
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Here qi ∈ Rlo f f d×1 is the orthogonal basis with qT
i q j = 0 if i 6= j and ‖qi‖2 = 1, where i, j ∈ {1,2, · · · , l}.

Assume that xk(2) > xk(1) WLOG. vi =
√

lo f f dqi contains entries of ±1, and is obtained by replacing each
entry xk(1) in the i-th column of L′ with −1 and xk(2) with 1, where k is the index of input parameters.
Alternatively, it is obtained by replacing ‘-’ and ‘+’ in the OFFD design table by ‘-1’ and ‘+1’ respectively,
and adding an all ‘1’ vector to the left. U ∈ Rl×l is an upper triangular matrix, with the i-th diagonal entry
Uii expressed as

Uii =

{
√

lo f f d if i = 1√
lo f f d

2xi
Õk∈Si

Dxk if i 6= 1
(7)

where Dxk = xk(2)−xk(1), Si ⊆ {1,2, · · · ,m} includes all the indices of input parameters in the i-th column
of L′, and xi is the size of Si.

Proof: The QR decomposition follows the recursive Gram-Schmidt procedure (Wilkinson et al. 1965).
It is omitted due to the limited space. It is clear from the expressions of Q and R that L′ is full column
rank, as Q is invertible (Q−1 = QT ) and the determinant of U is ÕiUii 6= 0. 2

Lemmas 1-3 and Theorems 1-2 in (Zhou et al. 2014) directly lead to the theorem on the performance
of the M-PCM-OFFD in terms of the correctness of predicting the mean output of the original mapping.

Theorem 1 The low-order mapping g∗(x1,x2, ...,xm) (Equation 3) using the integrated M-PCM and 2m−gmax

OFFD predicts the correct mean output of the original mapping, i.e.,

E[g(x1,x2, ...,xm)] = E[g∗(x1,x2, ...,xm)]. (8)

The number of simulations reduces from 22m to 2m−gmax , where gmax = m−⌈log2(åt
i=0

(

i
m

)

)⌉. The maximum
reduction is 22m −2⌈log2(m+1)⌉, and is achieved when t = 1.

Proof: Theorems 1-2 in (Zhou et al. 2014) suggest that the reduced-order mapping g∗(x1,x2, ...,xm)
produced by the M-PCM predicts the correct mean output of g(x1,x2, ...,xm). Lemmas 1, 2 and 3 guarantee
that the reduced M-PCM-OFFD simulation set produces the same mapping g∗(x1,x2, ...,xm). The result is
then straightforward. 2

3.3 Performance of the Algorithm on the Robustness to Numerical Errors

In this section, we study the robustness of the integrated design to numerical errors. We first introduce
the robustness metric and formulate the problem in Section 3.3.1. We then show the optimality of the
integrated design using this metric in Section 3.3.2.

3.3.1 Metric and Problem Formulation

Recall that the integrated algorithm involves the calculation of L′−1 or (L′T L′)−1L′T . This inversion is only
feasible when L′ is full column rank. In Lemma 3, we have shown that an OFFD guarantees that L′ is full
column rank. In this section, we further explore the computational feasibility by noticing that parameter
resolutions of simulation software (Zhou et al. 2014) and computational limitations of computing devices
(Kato 1995, Ipsen and Chandrasekaran 1991) may unfortunately fail this calculation. In particular, when
L′ is close to losing column rank, a small disturbance introduced by the aforementioned numerical errors
may easily push L′ to lose rank. In addition, even if such L′ under a disturbance does not directly lose rank,
the correctness of L′−1 becomes sensitive to small perturbations (Demmel 1987). In order to facilitate the
inversion and minimize the impact of numerical errors, L′ needs to have a large margin to rank loss.

Multiple metrics exist in the literature to measure the margin to invertibility, including the widely used
condition number (the ratio between the largest eigenvalue to the smallest eigenvalue) (Boyd et al. 1994).
Here we use a metric based on the perturbation theory (Kato 1995, Ipsen and Chandrasekaran 1991).
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Specially, the full-column-rank margin for the matrix L′ to rank loss, D(L′), is measured by the norm of
the smallest perturbation matrix to make L′ lose rank. Here we use the Frobenius norm (“|| ||F”), calculated
by summing the squares of all its elements, and then taking a square root of the sum (Knupp 1999):

D(L′) = min{‖e‖F | rank(L′+ e)< l} (9)

where e ∈ Rlo f f d×l is a perturbation matrix.
Lemma 2 suggests that all simulation subsets of size 2m−gmax can predict the correct mean output,

provided that the input matrix of the design, L′, is full column rank. We show in the next section that when
t = 1, the L′ matrix of the OFFD design, denoted as L′

o f f d thereafter, has the largest margin to rank loss
among all designs of the size 2m−gmax . The results can be extended to the general case (t ≥ 1) through a
more complicated analysis and hence is ignored here for clarity.

3.3.2 Optimal Robustness of the Integrated M-PCM-OFFD

In this section, we study the robustness of the integrated M-PCM-OFFD to numerical errors for system
mappings of m uncertain input parameters and t = 1. Lemma 4 calculates the full-column-rank margin of
the integrated M-PCM-OFFD. Theorem 2 shows that the OFFD produces the largest margin among all
subsets of the same size.

Lemma 4 Consider an original system mapping g(x1,x2, ...xm) (Equation 2) with t = 1. The integrated
M-PCM and 2m−gmax OFFD, with gmax = m−⌈log2(åt

i=0

(

i
m

)

)⌉, has the following full-column-rank margin:

D(L′
o f f d) =

√

lo f f d

2
min{Dx1,Dx2, · · · ,Dxm} (10)

Proof:
According to Lemma 3, L′

o f f d is full column rank and can be expressed as a multiplication of an
orthogonal matrix Q and an upper triangular matrix U . Now we find the minimum ‖e‖F to make L′+ e
lose rank, according to the definition of full-column-rank margin in Equation 9. We use exi( j)

to represent
the perturbation to xi( j) and x̂i( j) = xi( j) + exi( j)

to represent the corrupted parameter value. Similar to

L′
o f f d , L′

o f f d + e can also perform a QR decomposition. In particular, L′
o f f d + e = Q̂Û , and Q̂ is an

orthogonal matrix of full column rank, and Û is an upper triangular matrix with the determinant of

det(Û) =
√

lo f f d Õl
i=2(

√
lo f f d

2xi
Õ j∈Si

Dx̂ j), where Dx̂ j = x̂ j(2)− x̂ j(1). Clearly, the rank of L′
o f f d is solely

determined by Û . Therefore, L′
o f f d + e loses rank if and only if at least one of Dx̂i = 0, i ∈ {1,2, · · · ,m}.

In the case of Dx̂1 = 0, we have Dx̂1 = x̂1(2) − x̂1(1) = (x1(2) + ex1(2)
)− (x1(1) + ex1(1)

) = 0 and therefore
ex1(1)

= ex1(2)
+ x1(2)− x1(1) = ex1(2)

+Dx1. As a consequence,

‖e‖F =

√

(
lo f f d

2
e2

x1(1)
+

lo f f d

2
e2

x1(2)
)+ (

lo f f d

2
e2

x2(1)
+

lo f f d

2
e2

x2(2)
)+ · · ·+(

lo f f d

2
e2

xm(1)
+

lo f f d

2
e2

xm(2)
)(11)

≥
√

(
lo f f d

2
e2

x1(1)
+

lo f f d

2
e2

x1(2)
) =

√

lo f f d

2
[(ex1(2)

+Dx1)2 + e2
x1(2)

]≥
√

lo f f d

2
Dx1

The equality holds when ex1(1)
= 1

2 Dx1, ex1(2)
= − 1

2 Dx1, and ex j(1)
= ex j(2)

= 0 for all j 6= 1. Similarly, we

obtain ‖e‖F ≥
√

lo f f d

2 Dx2, · · · ,
√

lo f f d

2 Dxm. As such, D(L′
o f f d) =

√
lo f f d

2 min{Dx1,Dx2, · · · ,Dxm}, and the min-

imum
√

lo f f d

2 Dxi is achieved when Dxi ≤ Dx j for all j 6= i, exi(1)
= 1

2 Dxi, exi(2)
=− 1

2 Dxi, and ex j(1)
= ex j(2)

= 0
for all j 6= i. 2

740



Xie, Wan, Zhou, Mills, Filliben, Lei

Theorem 2 Consider an original system mapping g(x1,x2, ...xm) (Equation 2) with t = 1. From the
2m M-PCM simulation points, the simulation subset selected by the M-PCM-OFFD has the largest full-
column-rank margin among all subsets of 2m−gmax simulations points, where gmax = m−⌈log2(åt

i=0

(

i
m

)

)⌉.
Mathematically,

max(D(L′)) = D(L′
o f f d). (12)

Proof:
We first construct the input matrix, L′, from any subset of 2m−gmax simulation points selected from the

2m M-PCM simulation points, and then show that the input matrix of the OFFD, L′
o f f d , has the largest

full-column-rank margin.
Through simple row operations, the L′ matrix constructed using any 2m−gmax M-PCM points can be

transformed to an upper triangular matrix, where the first diagonal entry is 1, and the (k+1)-th diagonal
entry is a multiple of Dxk, i.e., l(k+1)(k+1)Dxk, where lkk ∈ Z and k ∈ {1,2, · · · ,m}. As Dxk 6= 0, any lkk = 0
will lead to D(L′) = 0.

Now let us find the minimum ||e||F to make L′+e lose rank. The case that L′ is not full rank is trivial,
as e is the null matrix and D(L′) = 0. When L′ is full rank, the same procedures to calculate D(L′

o f f d) in
the proof of Lemma 4 leads to

D(L′) = min{
√

[c1e2
x1(1)

+ (lo f f d − c1)e2
x1(2)

]+ · · ·+[cme2
xm(1)

+ (lo f f d − cm)e2
xm(2)

]} (13)

= min{
√

c1(lo f f d − c1)

lo f f d
Dx1, · · · ,

√

cm(lo f f d − cm)

lo f f d
Dxm}

where ci is the number of xi(1) in the (i+1)-th column of L′. The minimum at
√

ci(lo f f d−ci)
lo f f d

Dxi is achieved,

when exi(1)
=

(lo f f d−ci)Dxi

lo f f d
,exi(2)

= − ciDxi
lo f f d

, and for all j 6= i, j ∈ {1,2, · · · ,m}, we have
√

ci(lo f f d−ci)
lo f f d

Dxi ≤
√

c j(lo f f d−c j)
lo f f d

Dx j, and ex j(1)
= ex j(2)

= 0.

Since
√

ci(lo f f d−ci)
lo f f d

=
√

− 1
lo f f d

(ci − lo f f d

2 )2 +
lo f f d

4 ≤
√

lo f f d

2 , we have
√

ci(lo f f d−ci)
lo f f d

Dxi ≤
√

lo f f d

2 Dxi. Equa-
tion 13 can then be further simplified to

D(L′)≤
√

lo f f d

2
min{Dx1,Dx2, · · · ,Dxm}= D(L′

o f f d) (14)

The equality is achieved by an OFFD. 2

The robustness optimality of the integrated algorithm is brought by the balance and orthogonality of
OFFDs. The orthogonality (i.e., the symbolic multiplication of each pair of columns in the design table
sums up to 0) guarantees the full rank of Q (as shown in in Equation 6) and thus the invertability of L′

o f f d .
Moreover, the balance property (i.e., each level is evaluated the same number of times for each factor)
guarantees the maximal perturbation to spoil the invertability of L′

o f f d (as shown in Equation 14).

4 Illustrative Examples

In this section, we first use a 3-parameter example to illustrate the procedures and properties of the integrated
design, and then briefly discuss a large 20-parameter example to show its effectiveness.

In the first example, consider an original system mapping of the form g(x1,x2,x3) = x3
1 + x2

1 + x1 +
x3

2 + x2
2 + x2 + x3

3 + x2
3 + x3 + 1, where x1 follows an exponential distribution of fX1(x1) = 2e−2x1 , x2

follows a uniform distribution of fX2(x2) =
1
15 ,5 ≤ x2 ≤ 20, and x3 also follows a uniform distribu-

tion of fX3(x3) =
1
5 ,5 ≤ x3 ≤ 10. The original output mean that we aim to predict is E[g(x1,x2,x3)] =

741



Xie, Wan, Zhou, Mills, Filliben, Lei
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Figure 1: a) 23−1
III OFFD design table. b) 23−1

III OFFD with each point represented at the vertex of a 3-D
cuboid. c) Comparison of the number of simulations needed to predict the correct output mean.

∫∫∫

g(x1,x2,x3) fX1(x1) fX2(x2) fX3(x3)dx1dx2dx3 = 3381.1. To precisely identify all coefficients in g(x1,x2,x3),
at least 43 = 64 simulations are required.

Now let us choose only 4 simulations to approximate the system mapping and predict the out-
put mean, using the integrated M-PCM-OFFD. According to the procedures described in Section 3.1,
we first choose 8 M-PCM points based upon the pdf of each parameter. The 8 simulation points
are p1 = (x1(1),x2(1),x3(1)), p2 = (x1(2),x2(1),x3(1)), p3 = (x1(1),x2(2),x3(1)), p4 = (x1(2),x2(2),x3(1)), p5 =
(x1(1),x2(1),x3(2)), p6 = (x1(2),x2(1),x3(2)), p7 = (x1(1),x2(2),x3(2)), and p8 = (x1(2),x2(2),x3(2)), where x1(1) =
0.2929, x1(2) = 1.7071, x2(1) = 8.1699, x2(2) = 16.8301, x3(1) = 6.0566, and x3(2) = 8.9434. We then use
23−1

III OFFD (as the design table and 3-D cube show in Figure 1a,b) to select 4 M-PCM points, which are
{p2, p3, p5, p8} or {p1, p4, p6, p7}. Here we choose to run simulations at {p2, p3, p5, p8} and obtain the es-
timated low-order mapping g∗(x1,x2,x3) =−4442.2+6.5x1 +513.5x2 +186.8x3. For illustration purpose,

L′
o f f d =









1 x1(1) x2(1) x3(2)

1 x1(2) x2(1) x3(1)

1 x1(1) x2(2) x3(1)

1 x1(2) x2(2) x3(2)









= QU = 1
2









1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

















2 ∗ ∗ ∗
0 1.4142 ∗ ∗
0 0 8.6602 ∗
0 0 0 2.8868









. Note

that Q can be directly obtained from the OFFD design table.
The output mean of g∗(x1,x2,x3) is E[g∗(x1,x2,x3)] =

∫∫∫

g∗(x1,x2,x3) fX1(x1) fX2(x2) fX3(x3)dx1dx2dx3 =
3381.1, precisely the same as the original output mean. For comparison, we also use the Monte Carlo
simulation to find the mean output. The number of simulations and associated mean output using these
three methods are compared and shown in Figure 1c.

To check the robustness of the integrated design to numerical errors, we calculate the full-column-rank
margin of the input matrix L′ ∈ R4×4, and compare it with those of other designs. According to Lemma 4,
we find D(L′

o f f d) = min{Dx1,Dx2,Dx3}= 1.4142, where Dx1 = 1.4142, Dx2 = 8.6602 and Dx3 = 2.8868.
For all simulation subsets of the same size, the margin D(L′) takes one of the following three values
{0,0.8660,1.4142}. Therefore, the OFFD design is the most robust to numerical errors.

Next, we briefly summarize a large-scale example in the limited space. Assume that a 20-parameter
process involves 10 subprocesses, each with 2 uncertain input parameters. If two PCM points are chosen
for each parameter, 220 simulations are needed to calculate the mean of the process’s output. Due to the
nature of the process, each cross-term in the mapping between input parameters and the output has at most
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2 parameters. With t = 2, a 220−12 OFFD can be used to further reduce the number of simulations from
220 to 256, saving a large amount of computations.

5 Concluding Remarks and Future Work

We developed an effective uncertainty evaluation method for large-scale complex systems with a large
number of uncertain input parameters. The integrated M-PCM and OFFDs significantly reduces the number
of simulations, while maintaining the statistical prediction performance of the M-PCM. Specially, for an
original system mapping of m parameters with each parameter up to the degree of 3, the reduced-order
mapping produced using the integrated method precisely predicts the mean output of the original system
mapping, and reduces the number of simulations from 22m to 2⌈log2(m+1)⌉. We also showed that the integrated
design is the most robust to numerical errors, making it of practical use for simulations with constraints on
parameter resolutions. The development in this paper also provided new interpretations of the optimality
of OFFDs, and gave rise to broad new usage of OFFDs for system mapping estimation and uncertainty
evaluation. In the future work, we will generalize the degree of uncertain input parameters by exploring
multi-level OFFDs and also exploit parameter dependency to further reduce the number of simulations.
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