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ABSTRACT

This paper considers the factor screening problem with multiple responses for simulation experiments. The
objective is to identify important factors with controlled Family-Wise Error Rate. We assume a multiple-
response first-order linear model, the responses follow a multivariate normal distribution, and estimated
effect coefficients also follow multivariate normal distribution. Two likelihood ratio based procedures, Sum
Intersection Procedure (SUMIP) and Sort Intersection Procedure (SORTIP), are proposed and verified.
Numerical studies are provided to demonstrate the validity and efficiency of our proposed procedures.

1 INTRODUCTION

Simulation models for complex systems typically involve hundreds to thousands of factors. According
to Pareto or sparsity-of-effects principle, in many cases only a few factors among many are responsible
for most of the response variation (Myers, Anderson-Cook, and Montgomery 2009). Factor screening
experiments are designed to identity a small subset of important factors efficiently so that the later effort
can be focused on them, therefore significantly save the overall experimental effort.

There has been considerable research in this area. Procedures including one-factor-at-a-time designs
(Saltelli, Tarantola, and Campolongo 2000), edge designs (Elster and Neumaier 1995), and the Trocine
screening procedure (Trocine and Malone 2000) are designed for stochastic simulation experiments. How-
ever, these procedures are based on homogeneous variance assumption and, more importantly, fail to provide
the error control. Later, procedures including Controlled Sequential Bifurcation (Wan, Ankenman, and
Nelson 2006), Two-stage Controlled Fractional Factorial Screening (TCFF) (Wan and Ankenman 2007),
Controlled Sequential Factorial Design (Shen and Wan 2009), and hybrid method of CSB and CSFD (Shen,
Wan, and Sanchez 2010) were proposed to address error controls on both Type I error and Type II error,
and relax the homogeneous variance requirement. The interested reader should refer to Kleijnen et al.
(2005) for reviews.

Most of the previous literature as discussed above focused on the single response model. In practice,
however, there are usually multiple responses of interest that can be observed simultaneously in one
experiment. For example, risk and return are two responses of a portfolio, and finding factors that
significantly contribute to these two responses is of great importance. The main challenge for multiple
response factor screening is to achieve desired error control with efficiency. Note that the multiple responses
add another layer of complexity to the error control. Lee, Chew, and Teng (2007) studied how to allocate
computation resources efficiently to identify “Pareto Set” of designs for a multiple objective Ranking and
Selection Problem. The concept of “Pareto Set” inspires our definition of important/unimportant factors
in this paper. Multiple responses factor screening problem has been firstly studied by Shi, Kleijnen, and
Liu (2014). They proposed Multiple Sequential Bifurcation (MSB) to identify important factors. MSB
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generalizes CSB (Wan, Ankenman, and Nelson 2006) and adopts sequential bifurcation to classify a group
or an individual factor as important or unimportant. However, MSB is conservative and restricted since it
controls error rate and power through Bonferroni procedures and fails to incorporate covariance information
among responses.

In this paper, we propose two sequential hypothesis testing procedures, SUMIP and SORTIP, for
multi-response factor screening. Both procedures control the Family-Wise Error Rates (FWERs), instead
of individual Type I error rate and power for each factor. We consider two types of FWER, Family-Wise
Error Rate I and Family-Wise Error Rate II, which are defined as follows:
Definition 1 Let V denote the number of true null hypotheses being rejected and T the number of false null
hypotheses being accepted. The Family-Wise Error Rate I (FWERI) is defined as the probability to reject
at least one true null hypothesis; the Family-Wise Error Rate II (FWERII) is the probability of accepting
at least one false null hypothesis.

FWERI = Prob(V ≥ 1)

FWERII = Prob(T ≥ 1)

Note that FWERI and FWERII are defined independent of the number of individual tests. Find more
discussions on FWERI and FWERII in Lee Lee (2004).

Both SUMIP and SORTIP are Sequential Probability Ratio Test (SPRT) procedures. SPRT is a sequential
likelihood-ratio testing procedure that varies with the specifics of hypotheses and assumed distributions.
From Neyman-Pearson lemma, among all tests with the same significance level, likelihood ratio test has
the greatest power. Moreover, the sequential nature of SPRT allows it to achieve the same power more
efficiently than fixed number of samples (Wald and Wolfowitz 1948). SPRT first chooses a pair of constants
A and B with 0 < A < 1 < B < ∞ as thresholds of likelihood ratio. After each observation, SPRT will
calculate Λ, the likelihood ratio of hypothesis H1 against H0, and choose H0 if Λ is smaller than A, H1 if
Λ is greater than B, or take one more observation. The smaller the A, the smaller the value of Λ needed
to accept the null hypothesis, and then the greater the power; and the greater the B, the larger the value of
Λ needed to reject the null hypothesis and then the smaller the Type I error.

There are two phases in SUMIP and SORTIP. Phase 1 is to calculate Likelihood Ratio (LR) for each
factor; phase 2 is to check whether LRs of all factors are sufficient to categorize factors into important and
unimportant sets within permitted FWERI and FWERII. For Phase 1, we derive formula and algorithm to
calculate likelihood ratio for each factor. In this problem, individual test on each factor takes the forms
of multivariate normal union-intersection tests. Literatures provide two other test methods. First method
is to approximate the test as Hotelling t test or χ2 test. These tests are substantially less powerful than
likelihood ratio test (LRT) for testing multivariate normal mean vector H0 : µ = 0 against H1 : µ 6= 0
according to Neymann-Pearson Lemma (Wald and Wolfowitz 1948). Moreover, χ2 or Hotelling t tests are
bias for one-sided test (Perlman and Wu 2006). Another choice is to decompose the testing problem into a
collection of sub-problems and treat them independently. Reitmeir and Wassmer (1996), Perlman and Wu
(2004), and Logan () discussed procedures in this fashion. However, their procedures neither fit sequential
manner nor take advantage of covariance information. In this paper, we provide the exact likelihood ratio
and prove that maximum likelihood estimator (MLE) is the solution of a quadratic programming problem.
Also, our method is robust under various covariance structure as demonstrated in our numerical evaluation.

For Phase 2, we propose two efficient and powerful stopping criteria to control FWERI and FWERII.
The complexity of such schemes lies in the number of possible hypotheses combinations. For a single test,
there are only 2 possibilities H0 and H1. However, for familywise test that formed by I individual tests,
the decision schemes should be able to make decisions among 2I possibilities. The common practice is to
apply Bonferroni method among these I tests, which is intuitive but conservative. So far, the most efficient
procedure is the Holm Intersection Procedure (HIP) proposed by De and Baron (2012). HIP generalizes
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Holm’s procedure, which is designed to control only FWERI, to both FWERI and FWERII in a sequential
manner. In our procedures, we propose weaker stopping criteria than HIP. Numerical results show that our
proposed methods achieve the same power as HIP with only approximately half of the sample size.

In our numerical evaluation, we use factorial design to estimate factor coefficients. Thus, one sample
is equivalent to one replicate of the factorial design. It is worth noting here that SUMIP and SORTIP can
be used for any designs, as long as the estimated coefficient vector of each factor follows a multivariate
normal distribution.

The rest of this paper is organized as follows: Section 2 states the problem details and assumptions.
Section 3 presents the two proposed procedures. Numerical evaluate are given in Section 4. We conclude
the paper with discussions of future research in section 5.

2 PROBLEM STATEMENT

In this paper, we assume a first-order model for all responses,

Yj = β0 j +
I

∑
i=1

βi jxi + ε j, ε j ∼ N(0,σ 2
j ), σ j ∝ Yj, j = 1,2, ...J (1)

which could also be written in matrix form as

Y = X ′β + ε (2)

where Y = [Yj]J , X = [xi]I , ε = [ε j]J and β = [βi j]I×J .
Here, Yj is the output of the jth response, and βi j represents the main effect of the ith factor on the jth

response. Quantitative inputs, xi, are normalized such that they have only two levels which are arbitrarily
denoted as -1 or 1. ε are the metamodel residuals with mean 0. Furthermore, we assume ε j for j = 1,2, ...,J
can be correlated and their scale may depend on the size of the output. In other words, we assume (1)
unknown covariance structure among different responses, and (2) heterogeneous variance condition.

To carry on, we need to define “important factor” in multiple responses setting. We use definitions
from Lee, Chew, and Teng (2007) and Shi, Kleijnen, and Liu (2014), where important factors are defined
as factors which have important effect on at least one response. Let ∆0 j be the threshold for important
effect on the jth response, and ∆1 j the threshold for critical effect on the jth response. Thus,
Definition 2 The ith factor βi is unimportant if

∣∣βi j
∣∣≤ ∆0 j for all j = 1,2, ...,J, important if there exists

at least one j such that
∣∣βi j
∣∣≥ ∆0 j, and critical if there exists at least one j such that

∣∣βi j
∣∣≥ ∆1 j. Specifically,

Θc =

{
βi| max

j∈{1,2,..,J}

(∣∣βi j
∣∣−∆1 j

)
≥ 0, i ∈ {1,2, ..I}

}
Θimp =

{
βi| max

j∈{1,2,..,J}

(∣∣βi j
∣∣−∆0 j

)
≥ 0, i ∈ {1,2, ..I}

}
Θ0 =

{
βi| max

j∈{1,2,..,J}

(∣∣βi j
∣∣−∆0 j

)
≤ 0, i ∈ {1,2, ..I}

}

With this definition, our goal is, under proper error control, to screen out factors within Θ0 and claim
them unimportant, and to find out factors in Θc, which have great impacts on responses, and claim them
important. For factors within the ”indifference zone”, which means factor is in Θimp but not in Θc, although
they are important, it is neither possible nor our intention to control the power for these factors.

For clarity, we call the single test for each factor the elementwise test, and the I elementwise tests
form the familywise test.
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In this paper, elementwise test is defined as follows:

Hi
0 : βi ∈Θ0 Hi

1 : βi ∈Θimp for i = 1, ..., I (3)

This elementwise test can be shown in the Union-Intersection form,

Hi
0 =

J⋂
j=1

Hi j
o Hi

1 =
J⋃

j=1

Hi j
1

where
Hi j

0 : βi j < ∆0 j Hi j
1 : βi j ≥ ∆0 j for j = 1, ...,J (4)

Familywise test includes I elementwise tests. As discussed earlier, our intention is to control FWERI
and FWERII, where FWERI is the probability of identifying at least one unimportant factor as important
and FWERII is the probability of classifying at least one critical factor as unimportant.

3 PROCEDURES

Procedures proposed in this paper contain two phases. Phase 1 is to calculate Likelihood Ratio (LR)
for each factor, whose effects follow multivariate normal distribution; phase 2 is to aggregate LRs of all
factors and decide whether the aggregated LR is sufficient to make statistic inference within upperbounds
of FWERI and FWERII. This section will discuss these two phases and state the algorithms.

3.1 Phase 1: Likelihood Ratio for Multivariate Normal Union-Intersection Test

Recall the test for factor i,

Hi
0 : βi ∈Θ0 Hi

1 : βi ∈Θimp (5)

From experiments, we observe {Zi1, Zi2, ...ZiK} as K estimators of βi, where Zik is of dimension
J×1 and from distribution N(βi,Σi) with unknown mean βi and covariance matrix Σi. If K ≥ J+1, then
Si = ∑

K
k=1 (Zik− Z̄i)(Zik− Z̄i)

′ is positive definite with probability one.
Assuming {Zi1, Zi2, ...ZiK} are independent. Z̄i and Si are then sufficient statistics for βi and Σ, and√

KZ̄i ∼ N(βi,Σi), Si ∼Wishart(K−1,Σi), and Z̄i and Si are independent. Based on these assumptions, we
can deduct the likelihood function and likelihood ratio for (5), which are given in Theorem 1.
Theorem 1 Likelihood ratio for (5) is

Λi (Θ0,Θc) =
L1

L0
=

(
1+‖Z̄i−βmle (Z̄i,Si,Θc)‖2

Si
K

)−K
2

(
1+‖Z̄i−βmle (Z̄i,Si,Θ0)‖2

Si
K

)−K
2

where ‖Z−β‖2
S = (β −Z)′ S−1 (β −Z) and βmle (Z,S,Θ) is the maximum likelihood estimator for β

within the parameter space Θ,
βmle (Z,S,Θ) = argmin

β∈Θ

‖Z−β‖2
S

For Θ = Θ0, βmle (Z,S,Θ0) is the solution of the following quadratic programming problem with convex
constraints,

min(β −Z)′ S−1 (β −Z)

s.t.
∣∣β j
∣∣≤ ∆0 j for j = 1,2, ...,J (6)
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For Θ = Θc, βmle (Z,S,Θc) is the solution of the following problem,

min(β − Z̄)′ S−1 (β − Z̄)

s.t.
∣∣β j
∣∣≥ ∆1 j for at least one j, j = 1,2, ...,J (7)

Note that this is no longer a convex quadratic programming problem. We prove that it can be solved
as a convex problem as demonstrated in Theorem 2.
Theorem 2 If Z ∈Θc, βmle (Z,S,Θc) = Z;

If Z /∈Θc, βmle (Z,S,Θc) is the solution of the following quadratic programming problem,

min(β −Z)′ S−1 (β −Z)

s.t. β j? = sign(Z j?)∆1 j? (8)

where j? = argmin j=1,...,J
(∆1 j−z j)

2

s j
with s j > 0 as the jth diagonal element of S.

Thus, both βmle(Z,S,Θ0) and βmle(Z,S,Θc) could be modeled as quadratic optimization problems with
linear constraints and, thus, be solved easily. (Functions, such as quadprog in Matlab and quadprog
in R, are for this type of problem.)

3.2 Phase 2: Sum Intersection Scheme and Sort Intersection Scheme

For familywise test, we could choose whether to make decision for elementwise tests simultaneously or
separately, which correspond to two types of stopping rules. One is the intersection rule, which makes
simultaneously inferences; the other one is the maximum rule, which treats I elementwise tests separately.
The intersection rule is less conservative since it dynamically allocate the “allowed errors” according to
the likelihood ratios, instead of assigning the same amount of errors to each factor (De and Baron 2012).

3.2.1 Intersection Rule

Let Ai and Bi (0 < Ai < 1 < Bi < ∞) be the pair of thresholds for Likelihood Ratio Test of the ith elementwise
test. The intersection rule states that if all elementwise tests reach decision regions, which means that the
likelihood ratio Λi /∈ (Ai,Bi) for all i ∈ {1,2, ...I}, then stop sampling and choose H0i if Λi is smaller than
Ai or H1i if Λi is greater than Bi; otherwise take one more observation for all elementwise tests. Therefore,
the intersection rule stops at the first time when Λi

n /∈ (Ai,Bi) for all i = 1,2,3, ...I.

Nint = inf

{
n :

I⋂
i=1

Λ
i
n /∈ (Ai,Bi)

}
Intersection rule is a proper stopping time since it stops in finite time with probability 1 (De and Baron

2012). The following corollary reveals the connection between thresholds, Ai and Bi, and Type I error and
Type II error for the intersection rule.
Corollary 3 (De and Baron, 2012) Let τ be any stopping time satisfying

Prob
(
Λ

i
τ ∈ (Ai,Bi)

)
= 0 f or Ai < 1, Bi > 1 f or i ∈ {1,2, ..., I}

with the decision rule of rejecting Hi
0 if and only if Λi

τ ≥ Ai. For such a test
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Prob
(

Type I on ith test
)
= Prob

(
Λ

i
τ > Bi|H0i is true

)
≤ B−1

i

Prob
(

Type II on ith test
)
= Prob

(
Λ

i
τ < Ai|H1i is true

)
≤ Ai

Based on Corollary 3, we propose two schemes, Sum Intersection Scheme and Sort Intersection Scheme,
to connect thresholds, Ai and Bi, with Family Wise Error Rate.

3.2.2 Sum Intersection Scheme

We propose Sum Intersection Scheme with the intersection stopping time and boundaries as

Nint = inf

{
n :

I⋂
i=1

Λ
i
n /∈ (Ai,Bi)

}
, ∑

i∈IA

Ai ≤ γ, ∑
i∈IB

B−1
i ≤ α (9)

where IA =
{

i : Λi
n ≤ 1

}
, IB =

{
i : Λi

n > 1
}

and α and γ are the predefined FWERI and FWERII,
respectively. IA and IB are determined after each iteration and hence may change at each step.

At Nint , factors within IB are claimed important, while factors within IA unimportant.
Theorem 4 The Sum Intersection Scheme strongly controls both FWERI and FWERII. That is,

FWERI = Prob(At least 1 Type I error among I tests)≤ α

FWERII = Prob(At least 1 Type II error among I tests)≤ γ

The insight of this scheme is to apply Bonferroni procedure, and set Bi = ∞ for factors within IA and
Ai = 0 for factors within IB.

3.2.3 Sort Intersection Scheme

We propose Sort Intersection Scheme with stopping time and boundaries as,

Nint = inf

{
n :

(⋂
i∈IA

Λ
(i)
n /∈ (Ai,1)

)⋂(⋂
j∈IB

Λ
( j)
n /∈ (1,B j)

)}
, Ai =

γ

|IA|− i+1
, B j =

j
α

(10)

where α and γ be the upperbounds of FWERI and FWERII, and Λ
(i)
n is the ith smallest likelihood ratios.

After each sampling, factors are sorted in increasing order and then separated into two groups according to
their likelihood ratios, IA =

{
i : Λi ≤ 1

}
and IB =

{
i : Λi > 1

}
, with cardinalities |IA| and |IB|. For factors

within IA, it is certain that we wouldn’t commit Type I error. Thus, we only need to consider FWERI for
factors within IB. Same logic applies to factors within IB.

We can prove that the Sort Intersection Scheme controls both FWERI and FWERII in the strong sense.
Theorem 5 The Sort Intersection Scheme strongly controls both FWERI and FWERII. That is,

FWERI = Prob(At least 1 Type I error among I tests)≤ α

FWERII = Prob(At least 1 Type II error among I tests)≤ γ
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3.3 Procedures

We now apply the aforementioned schemes into screening procedures. It is worth mentioning that the
hypothesis testing procedures can be applied in screening problem with any experimental designs as long
as the estimator of the factor effect follows multivariate normal distribution. In particular, we demonstrate
these procedures with the fractional factorial design.

3.3.1 Sum Intersection Procedure

The first procedure, Sum Intersection Procedure (SUMIP for short), is a two-phase procedure.
Phase 1 calculates likelihood ratio for each elementwise test. Phase 2 applies Sum Intersection Scheme.

This procedure calculates Likelihood Ratios (LRs) after sampling; then assigns factors into IB if LR > 1
or IA otherwise. If LRs in IB and IA satisfy (9), then we claim that factors within IA are unimportant and
IB are important. If not, we collect one more set of samples. Notice that Yk is the kth simulation result.

Algorithm 1 SUMIP Procedure
Step 0 Select a factorial design X for I factors, generate n0 replications of observations. Let n = n0.

Step 1

Likelihood Ratio Calculate Likelihood Ratio Λi
n for each factor i ∈ {1,2, ..., I} by Theorem 1 with

Zk =
(
X ′X

)−1 X ′Yk, k = 1,2, ...n0

Sn =
n

∑
k=1

(Zk− Z̄)(Zk− Z̄)′

Stopping Criteria Apply Sum Intersection Scheme
Divide factors into two set IA =

{
i : Λi

n ≤ 1
}

and IB =
{

i : Λi
n > 1

}
If α ≥ ∑i∈IB

(
Λi

n
)−1 and γ ≥ ∑i∈IA

Λi
n, go to Step 2.

Otherwise, generate 1 more observation with X , and make n = n+1; back to Step 1.

Step 2 Claim factors within IB are important, and factors within IA are unimportant.

3.3.2 Sort Intersection Procedure

Algorithm 2 SORTIP Procedure
Step 0 Select a factorial design X for I factors, generate n0 replications of observations. Let n = n0.

Step 1

Stopping Criteria Calculate Likelihood Ratio Λi
n for each factor i ∈ {1,2, ..., I} by Theorem 1 with

Zk =
(
X ′X

)−1 X ′Yk, k = 1,2, ...n0

Sn =
n

∑
k=1

(Zk− Z̄)(Zk− Z̄)′

Stopping Criteria Apply Sort Intersection Scheme

Divide factors into two set IA =
{

i : Λi
n ≤ 1

}
and IB =

{
i : Λi

n > 1
}

and sort Λi
n, i ∈ IA and Λ

j
n, j ∈ IB ascending.

If Λ
(i)
n /∈ (Ai,1) where Ai =

γ

IA−i+1 , and Λ
( j)
n /∈

(
1,B j

)
where B j =

j
α

for all i ∈ IA, j ∈ IB, then go step 2.
Otherwise, generate 1 more observation with X , and make n = n+1; back to step 1.

Step 2 Claim factors within IB are important, and factors within IA are unimportant.

This procedure, Sort Intersection Procedure (SORTIP), is based on Sort Intersection Scheme. It has the
same structure as SUMIP except for stopping criteria. This procedure will run n0 initial replications of the
design at first, where n0 ≥ J; then split factors into two groups, IA =

{
i : Λi ≤ 1

}
and IB =

{
i : Λi > 1

}
. If

751



Wang and Wan

likelihood ratios satisfy (10), then we claim factors within IB as important and IA as unimportant. If not,
we conduct one more factorial design for all factors.

4 NUMERICAL EXAMPLES

In this section, we compare our proposed procedures, SORTIP and SUMIP, with HIP proposed by De and
Baron (2012) and MSB (Shi, Kleijnen, and Liu 2014) to demonstrate the efficiency and validity of both
SORTIP and SUMIP. MSB procedure controls Type I error rate and Type II error rate for elementwise
test. Thus, we compare Likelihood ratio testing procedure used as Phase 1 in SUMIP and SORTIP with
MSB. HIP differs from SUMIP and SORTIP in stopping criteria. We run all three procedures for factor
screening in the second experiment to compare their performances and conclude both SUMIP and SORTIP
outperform HIP.

Numerical simulations use common random numbers across different methods to compare these
algorithms.

4.1 Single-Factor Multiple-Responses Study

This experiment is to show the performance of the proposed Likelihood Ratio Test, which is phase 1 of
SORTIP and SUMIP, with MSB. Consider a factor screening problem with a single factor and multiple
responses. Parameters are set as follows:

Table 1: Simulation experiment parameter of single factor screening.

Parameter Value Meaning

J Specified below Number of Responses
∆0 2 Threshold of Important Factors
∆1 4 Threshold of Critial Factors
α 0.05 Upperbound of Type I Error
γ 0.05 Upperbound of Type II Error
β Specified below Responses size
Σ Specified below Covariance matrix
n0 6 Initial sample size

In all cases, the presented results are the averages of 1000 independent macro replications.
For this example, we take three covariance matrix forms to represent independent case, positive dependent

case, and nested case, respectively. For nested case, there are both positive and negative correlations among
responses.

Σ1 =


4 0 0
0 4 0

. . .
...

0 0 · · · 4

 Σ2 =


4 1 1
1 4 1

. . .
...

1 1 · · · 4

 Σ3 =


4 (−1)2 (−1)J

(−1)2 4 (−1)J+1

. . .
...

(−1)J (−1)J+1 · · · 4


Table 2 and Table 3 present the average sample sizes required by our proposed likelihood ratio test and

MSB. Table 2 shows the average samples and achieved errors for Likelihood Ratio Test and MSB when
J = 5. Notice that we have many “-” in Table 3 since, for instance, if the factor is unimportant, we cannot
commit Type II error. Table 3 compares the performance of likelihood ratio test with MSB under different
value of J, the number of responses. We vary J from 2 to 10. Let Σ be the same and define β as

β
′
1 = (0,0, ...,0,1) β

′
2 = (0,0, ...,0,2) β

′
3 = (0,0, ...,0,5)
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Table 2: Average sample size for a single-factor screening.

Likelihood Ratio Test MSB

β Covariance Avg Sample Size Type I Error Type II Error Avg Sample Size Type I Error Type II Error

(0,0,0,0,1) Σ1 6.154 0.1% - 9.513 0.0% -

Σ2 6.163 0.2% - 9.456 0.0% -

Σ3 6.100 0.9% - 9.549 0.0% -

(1,1,1,1,1) Σ1 6.536 2.2% - 11.895 0.0% -

Σ2 6.495 3.4% - 11.598 0.1% -

Σ3 6.418 3.3% - 11.954 0.0% -

(0,0,0,0,3) Σ1 9.818 - - 36.606 - -

Σ2 9.121 - - 38.307 - -

Σ3 9.214 - - 39.753 - -

(3,3,3,3,3) Σ1 6.350 - - 22.766 - -

Σ2 7.008 - - 27.678 - -

Σ3 6.174 - - 22.097 - -

(0,0,0,0,5) Σ1 6.141 - 0.0% 8.535 - 0.1%

Σ2 6.063 - 0.2% 8.278 - 0.0%

Σ3 6.073 - 0.3% 8.405 - 0.0%

(5,5,5,5,5) Σ1 6.000 - 0.0% 6.192 - 0.0%

Σ2 6.001 - 0.0% 6.296 - 0.0%

Σ3 6.000 - 0.0% 6.201 - 0.0%

Table 3: Average sample size for single-factor screening.

Σ1 Σ2 Σ3

β ′1

β ′2

β ′3

753



Wang and Wan

We can see the proposed likelihood ratio test are more efficient than MSB. The advantage of the
likelihood ratio test over MSB is even more obvious when factors are within indifferent zone. In the five
response case, likelihood ratio test saves 30% simulation effort on average when compared with MSB.
When the factor is important but not critical, likelihood ratio test needs only approximately 1/4 of the
computation effort of MSB. Table 3 indicates that in some case, the gap between likelihood ratio test and
MSB is closing as the number of responses is increasing. But likelihood ratio test still performs universally
better than MSB in terms of computational effort. Moreover, for MSB, the computational effort highly
depends on the coefficient of the factors and the average sample size varies from 10 to 40 when j = 10.
As for likelihood ratio test, the average sample size is between 10 to 12 when j = 10.

4.2 Multiple-Factors Multiple-Responses Study

This experiment is to compare SUMIP and SORTIP with HIP. Resolution III fractional factorial design is
used in all three procedures. Consider a factor screening problem with five responses. Table 4 lists all
parameters for this experiment.

Table 4: Simulation experiment parameter of 2.

Parameter Value Meaning

I 50, 100, and 150 Number of Factors
J 4 Number of Responses
∆0 2 Threshold of Important Factors
∆1 4 Threshold of Critial Factors
α 0.05 Upperbound of FWERI
γ 0.1 Upperbound of FWERII
β Specified below Responses
Σ Specified below Covariance matrix
n0 5 Initial sample size

We consider two scenarios for βi j. Scenario one has 5% critical factors, 5% important but not critical
factors, and 90% unimportant factors. Scenario two has 10% critical factors, 10% important but not critical
factors, and 80% unimportant factors. Critical factors’ coefficients are randomly generated from uniform
distribution on (∆1,6), unimportant factors’ coefficients are generated from uniform distribution (0,∆0),
the important factors are generated from uniform distribution (∆0,∆1).

For the ith factor, its covariance is one of the three cases,

Σi =


4 1 1 1
1 4 1 1
1 1 4 1
1 1 1 4

+mi


βi1 0 0 0
0 βi2 0 0
0 0 βi3 0
0 0 0 βi4


where m1 = 0, m2 = 0.5 and m2 = 2.
We randomly generate two scenarios of β and Table 5 and Table 6 present the average sample sizes of

1,000 independent experiments required by SUMIP, SORTIP, and HIP. The sample size of each experiment
is the product of two parts: (1) the number of factors in the Resolution III fractional factorial design, (2)
the number of replications to reach a conclusion. For instance, if we have 50 factors and 10 replications
to reach the conclusion, since the number of the design points in Resolution III fractional factorial design
is 64, the sample size would be 64 times 10. In all cases in these two scenarios, both SUMIP and SORTIP
dominate HIP in terms of average sample size. SUMIP and SORTIP use approximately 50% to 60% sample
size required in HIP in most cases without the loss in power. Although SUMIP perform little worse than
SORTIP, its stopping criteria is much simpler than both SORTIP’s and HIP’s.
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Table 5: Average sample size for HIP, SUMIP, and SORTIP in Scenario One (5% factors are critical).

HIP SUMIP SORTIP

I Σ Avg Samples FWERI FWERII Avg Samples FWERI FWERII Avg Samples FWERI FWERII

50 Σ1 1038.208 0.0% 0.0% 520.512 0.0% 0.5% 474.816 0.0% 1.0%

Σ2 1089.216 0.0% 0.6% 481.984 0.0% 0.7% 470.848 0.0% 0.7%

Σ3 1179.264 0.0% 0.2% 535.808 0.0% 0.3% 535.920 0.0% 0.3%

100 Σ1 2583.040 0.0% 0.0% 1229.560 0.0% 0.6% 1113.984 0.0% 0.6%

Σ2 2597.120 0.0% 0.0% 1136.896 0.0% 0.6% 1078.144 0.0% 0.6%

Σ3 2923.392 0.0% 0.0% 1298.048 0.0% 1.3% 1189.130 0.0% 1.3%

150 Σ1 10965.504 0.0% 0.2% 5142.528 0.0% 0.2% 4904.960 0.0% 0.2%

Σ2 11048.960 0.0% 0.1% 5204.480 0.0% 0.5% 4874.240 0.0% 0.5%

Σ3 12914.416 0.0% 0.1% 6337.536 0.0% 0.2% 5766.144 0.0% 0.2%

Table 6: Average sample size for HIP, SUMIP, and SORTIP in Scenario Two (10% factors are critical).

HIP SUMIP SORTIP

I Σ Avg Samples FWERI FWERII Avg Samples FWERI FWERII Avg Samples FWERI FWERII

50 Σ1 696.448 0.0% 0.0% 401.920 0.0% 0.6% 390.208 0.0% 0.6%

Σ2 828.032 0.0% 0.1% 470.976 0.0% 0.7% 458.944 0.0% 0.7%

Σ3 1049.088 0.0% 0.0% 636.608 0.0% 0.1% 603.84 0.0% 0.2%

100 Σ1 1752.576 0.0% 0.0% 993.024 0.0% 0.1% 923.136 0.0% 0.3%

Σ2 2418.176 0.0% 0.0% 1300.350 0.0% 0.6% 1243.008 0.0% 0.7%

Σ3 3097.600 0.0% 0.3% 1704.704 0.0% 0.9% 1623.424 0.0% 0.9%

150 Σ1 7746.54 0.0% 0.0% 4401.664 0.0% 0.1% 4039.680 0.0% 0.2%

Σ2 11716.096 0.0% 0.0% 6277.12 0.0% 0.0% 6024.704 0.0% 0.0%

Σ3 15515.136 0.0% 0.1% 7777.792 0.0% 0.2% 7432.193 0.0% 0.2%

5 CONCLUSION

SUMIP and SORTIP are sequential multiple responses factor screening procedures that provide strong
controls on FWERI and FWERII simultaneously. With the option of using fractional factorial designs,
SUMIP and SORTIP can handle large-scale problems efficiently. Numerical evaluation indicates the
performances of SUMIP and SORTIP are robust and efficient across different simulation configurations.

Our future research will concentrate on developing sequential bifurcation or grouping procedure that
controls the FWERI and FWERII. In addition, since previous research of simulation factor screening
focused on controlling the error rate with economical designs, a related research topic would be the optimal
computational budget allocations, which is how to allocate design budgets in order to minimize the error
rates and maximize the power of the tests.
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