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ABSTRACT

Often the accurate estimation of multiple values from a single simulation is of practical importance. Among
the many variance reduction methods known in the literature, stratified sampling is especially useful for
such a task as the allocation fractions can be used as decision variables to minimize the overall error of
all estimates. Two different classes of overall error functions are proposed. The first, including the mean
squared absolute and the mean squared relative error, allows for a simple closed-form solution. For the
second class of error functions, including the maximal absolute and the maximal relative error, a simple and
fast heuristic is proposed. The application of the new method, called “multiresponse stratified sampling”,
and its performance are demonstrated with numerical examples.

1 INTRODUCTION

We consider the problem of estimating multiple values using Monte Carlo simulation. We define the
response function r(θθθ) as the expectation of a random-valued function under parameter θθθ where Θ is the
set of possible parameter values. We assume that r(θθθ) can only be estimated via simulation for each θθθ ∈Θ.
Moreover, we assume that the dimension of the random input is not changed by the parameters. Then, it is
possible to simulate r for several θθθ values in a single simulation. Such an objective can easily be realized
using common random numbers (Law 2014). However, under this simple approach, all r(θθθ) values are
estimated with comparatively large variances. To obtain more accurate estimates for several r(θθθ) values,
one can apply variance reduction methods such as antithetic variates (Myers and Montgomery 2002), control
variates (see e.g., Rubinstein and Marcus 1985), and importance sampling (see e.g., Glasserman and Li
2005 and Sak and Hörmann 2012).

A variance reduction method that can be very useful for the above problem is stratified sampling with
optimally selected allocation fractions. Interestingly, this seems to be a fact overlooked in the literature
and only used in Başoğlu, Hörmann, and Sak (2013). The aim of this paper is to show how stratification
can be used to minimize the overall error of all estimates. We, therefore, introduce objective functions
that measure the overall error and develop simple methods to minimize (approximately) these objective
functions using the allocation fractions as decision variables for the optimization problem. We consider (as
a new contribution) the minimization of linear functions of the variance-covariance matrix of the stratified
estimates. In addition, the minimization of the maximal absolute and the maximal relative error of the
estimates is discussed (see Başoğlu, Hörmann, and Sak 2013 for the application of that idea for risk
simulations).

The allocation fractions calculated by the optimization algorithm are then used in the sampling phase.
We call the resulting method “multiresponse stratified sampling”. The method is applicable to simulation
problems where the size of the random input is independent of the parameter space, and it should exhibit
a good performance for simulation problems for which stratification reaches a good variance reduction in
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the single response case. The new method can be useful in stochastic optimization and response surface
applications as they require the evaluation of the simulation response for many different parameter values
(Box and Wilson 1951).

The paper is organized as follows. In Section 2, we give a brief description of the stratified sampling
method. Section 3 presents the nonlinear optimization models and the methodology of multiresponse
stratified sampling. In Section 4, we demonstrate the efficiency of multiresponse stratified sampling with
several examples and present our experimental results. We give our final comments in Section 5.

Note that, in this paper, vectors and matrices are set in bold to enhance readability.

2 SIMULATION WITH STRATIFIED SAMPLING

Let XXX ∈RD be a random vector with density fXXX (.), and q :RD→R be a measurable simulation function
such that E

[
q2 (XXX)

]
< ∞. Suppose that ξi, i = 1, . . . , I, is a partition of RD into I strata and pi = Pr{XXX ∈ ξi}

is known for i = 1, . . . , I. We want to estimate:

x = E [q(XXX)] =
I

∑
i=1

piE [q(XXX) |XXX ∈ ξi]

based on the latter equality. Henceforth, XXXi denotes the random vector that follows the conditional distribution
of XXX given XXX ∈ ξi. Let N denote the total number of replications, Ni denote the amount of drawings allocated
to stratum i, such that ∑

I
i=1 Ni = N, and XXXn

i , n = 1, . . . ,Ni, denote the independent drawings of XXXi. We define
the allocation fractions πi = Ni/N for i = 1, . . . , I. The stratified Monte Carlo estimator of x is formulated
as:

x̂ =
I

∑
i=1

pix̂i =
I

∑
i=1

piN−1
i

Ni

∑
n=1

q(XXXn
i ) = N−1

I

∑
i=1

piπ
−1
i

πiN

∑
n=1

q(XXXn
i ),

where x̂i = N−1
i ∑

Ni
n=1 q(XXXn

i ) is the estimated mean conditional on stratum i. Let s2
i denote the variance of

q(XXX) conditional on the i-th stratum, namely s2
i =V [q(XXXi)] =V [q(XXX) |XXX ∈ ξi]. Then, the variance of the

stratified estimator is:

V [x̂] =
I

∑
i=1

p2
i N−1

i s2
i = N−1

I

∑
i=1

π
−1
i p2

i s2
i . (1)

The variance of the stratified estimator has the lower bound V ∗ [x̂] = N−1
(
∑

I
i=1 pisi

)2, which can be attained
if we use the optimal allocation fractions (see e.g., Glasserman 2004):

π
∗
i = pisi

/
I

∑
l=1

plsl, i = 1, . . . , I. (2)

Usually, we lack the prior information about the conditional standard deviations, si. Therefore, it is
not possible to decide about the optimal allocation fractions beforehand. A simple solution is to use the
estimates of conditional standard deviations, ŝi, obtained with a pilot sample of total size Np. To accurately
estimate the optimal allocation sizes, we suggest selecting a sufficiently large pilot sample size. The
remaining N−Np drawings can then be used in the main run according to the allocation rule in (2).

3 MULTIRESPONSE STRATIFIED SAMPLING

We define the response function r(θθθ) = E [q(XXX ,θθθ)], where r : Θ→ R and XXX ∈ RD follows a common
distribution that is independent of θθθ . We assume that for each θθθ ∈ Θ, r(θθθ) can only be estimated via
simulation. If we can find a small number of effective stratification variables in XXX , which have a large
contribution to V [q(XXX ,θθθ)] and are computationally tractable (i.e., we can generate XXX conditional to strata
defined by these variables), then that stratification will effectively reduce the variance of the estimates.
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Suppose we are given J points, θθθ 1, . . . ,θθθ J , in Θ. Our goal is to estimate x j = r(θθθ j) for j = 1, . . . ,J in
a single simulation using stratified sampling. Let x̂i j be the mean conditional on stratum i estimated under
parameter θθθ j. Then, the stratified estimator of x j is calculated as x̂ j = ∑

I
i=1 pix̂i j. Each of these estimates

is unbiased and asymptotically normal (Etoré and Jourdain 2010). Let ŝ2
i j be the variance of the sample

in stratum i drawn under parameter θθθ j. We also define ŝ jk
i as the covariance of the samples in stratum i

drawn under parameters θθθ j and θθθ k. Given the total sample size, N, and the vector, πππ = (π1, . . . ,πI)
′, that

holds allocation fractions, the elements of the sample variance-covariance matrix ΣΣΣ of x̂xx can be calculated
as a function of the allocation fractions:

Σ j j (πππ) = N−1
I

∑
i=1

π
−1
i p2

i ŝ2
i j, j = 1, . . . ,J, (3)

Σ jk (πππ) = N−1
I

∑
i=1

π
−1
i p2

i ŝ jk
i , j = 1, . . . ,J, k = 1, . . . ,J, j 6= k. (4)

We define the objective function ω(πππ) = g(ΣΣΣ(πππ)), where g :RJ×J→R+∪{0} is a continuous function
of the variance and covariance values. This objective function is used for representing the overall error of
all J estimates, for example:

• ωMSE(πππ) = ∑
J
j=1 Σ j j(πππ), the mean squared error of all estimates,

• ωMSR(πππ) = ∑
J
j=1 x̂−2

j Σ j j (πππ), the mean squared relative error of all estimates,
• ωSUM(πππ) = ∑

J
j=1 ∑

J
k=1 Σ jk (πππ), the sum of all elements in the variance covariance matrix,

• ωMAXE(πππ) = max{ j : Σ j j (πππ)}, the maximum of the squared errors of all estimates,
• ωMAXR(πππ) = max{ j : x̂−2

j Σ j j (πππ)}, the maximum of the squared relative errors of all estimates,

all of which are convex in πππ . Therefore, we assume ω to be a convex function of πππ for practically relevant
examples. Our objective is to solve the following optimization model:

min ω (πππ)
s.t. ∑

I
i=1 πi = 1 and πi ≥ 0, i = 1, . . . , I.

(5)

The constraints in (5) form a convex and bounded feasible region. Thus, (5) becomes a convex
programming problem and a local optimum found in the feasible solution set will also be a global optimum.
If a closed-form optimal solution is unavailable, the optimal solution of problem (5) can be found by using
an interior-type method with trust regions (Byrd, Nocedal, and Waltz 2006). However, since we use the
estimates of conditional variance and covariance values, ŝ2

i j and ŝ jk
i , the optimal solution of an instance will

only be an estimate for the real optimal allocation fractions. Thus, a sub-optimal solution for the model
in (5) is enough in practice.

The above examples for the objective function ω(πππ) can be categorized in two general classes. The
first three examples are all linear functions of the elements of the variance-covariance matrix ΣΣΣ. We were
able to find closed-form solutions under this class of objective functions. The second class consists of
the last two examples where we consider the maximum of the variances, Σ j j, which are weighted with
non-negative coefficients. We provide a heuristic method for the second class.

3.1 Minimizing a Linear Combination of the Elements of the Variance-Covariance Matrix

As a first example, suppose, we want to minimize the mean squared relative error of all estimates. We
consider the objective function

ωMSR(πππ) =
J

∑
j=1

x̂−2
j Σ j j (πππ) = N−1

I

∑
i=1

π
−1
i p2

i

J

∑
j=1

x̂−2
j ŝ2

i j,
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which has a form that is similar to the variance of the stratified estimator given in (1), only the expression
of the conditional variances, s2

i , is now replaced by ∑
J
j=1 x̂−2

j ŝ2
i j. The lower bound for ωMSR(πππ) is:

ω
∗
MSR(πππ) = N−1

 I

∑
i=1

pi

(
J

∑
j=1

x̂−2
j ŝ2

i j

)1/2
2

and, according to (2), it can be attained if we choose the allocation fractions:

π
∗
i = pi

(
J

∑
j=1

x̂−2
j ŝ2

i j

)1/2/ I

∑
l=1

pl

(
J

∑
j=1

x̂−2
j ŝ2

l j

)1/2
, i = 1, . . . , I. (6)

Using the pilot sample, we estimate the response values, x̂ j, j = 1, . . . ,J, and conditional variances, ŝ2
i j,

i = 1, . . . , I, j = 1, . . . ,J. Then, we can use (6) to determine the optimal allocation of the sample in the
main simulation, so that the mean squared relative error of all estimates is minimized.

Clearly, the arguments of above remain valid if we replace s2
i of Equation (1) by arbitrary non-negative

constants. Thus, we can generalize the previous example by assuming g to be a linear function of the
elements of ΣΣΣ(πππ).
Theorem 1 Assume the objective function ω(πππ) = ∑

J
j=1 ∑

J
k= j c jkΣ jk(πππ) with real coefficients. We plug

in the variance and the covariance values given in (3) and (4) into this objective function and obtain:

ω(πππ) = N−1
I

∑
i=1

π
−1
i p2

i

(
J

∑
j=1

c j jŝ2
i j + ∑

j<k
c jkŝ jk

i

)
.

For ω(πππ) to be convex in the feasible region of (5), a simple necessary condition is the non-negativity of
∑

J
j=1 c j jŝ2

i j +∑ j<k c jkŝ jk
i for i = 1, . . . , I. Under this assumption, the optimal solution that minimizes ω(πππ)

is:

π
∗
i = pi

(
J

∑
j=1

c j jŝ2
i j + ∑

j<k
c jkŝ jk

i

)1/2/ I

∑
l=1

pl

(
J

∑
j=1

c j jŝ2
l j + ∑

j<k
c jkŝ jk

l

)1/2
, i = 1, . . . , I. (7)

As a first application of Theorem 1, we have considered ωMSR(πππ). As a second example, we consider
minimizing the variance of a convex combination of all estimates, ∑

J
j=1 λ j x̂ j where λ j ≥ 0, j = 1, . . . ,J,

are fixed and ∑
J
j=1 λ j = 1. This is of practical relevance since, in response surface applications, we require

linear approximations of the intermediate values using the estimates of r(θθθ j), j = 1, . . . ,J (Box and Wilson
1951). Our objective function is, then, ω (πππ) = ∑

J
j=1 ∑

J
k=1 λ jλkΣ jk (πππ). If we aim to minimize the variance

of the average of all estimates, the coefficients λ j become all equal and the objective function simplifies
to the sum of all elements in the variance covariance matrix, ωSUM (πππ) = ∑

J
j=1 ∑

J
k=1 Σ jk (πππ). For any case,

the optimal solution can be found using (7) and the estimates of the conditional variance and covariances.
A third example in this class of objective functions is related to the estimation of the ratio r (θθθ 1)

/
r (θθθ 2).

We obtain the stratified estimates, x̂1 and x̂2, using a single simulation. Then, we can estimate the ratio
with x̂1

/
x̂2 which has bias:

Bias
[
x̂1
/

x̂2
]
= x̂1x̂−3

2 Σ22 (πππ)− x̂−2
2 Σ12 (πππ)+O

(
N−2) ,

see e.g., Fishman (1996), page 109. Here, the leading term is of order O
(
N−1

)
. It is possible to reduce

the bias by subtracting the estimate of the leading term from the ratio estimate. However, the squared
bias is of order O

(
N−2

)
, which is small compared to the variance. Thus, we rather consider reducing the

variance that is approximated by:

V
[
x̂1
/

x̂2
]
≈ x̂2

1x̂−4
2 Σ22 (πππ)−2x̂1x̂−3

2 Σ12 (πππ)+ x̂−2
2 Σ11 (πππ) = ω (πππ) . (8)
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The approximate variance in (8) is of order O
(
N−1

)
and found by using the multivariate Taylor series

expansion of the variance of the ratio (see e.g., Glasserman 2004). The second equation in (8) defines
an objective function that is a linear function of the variance-covariance matrix. It is easy to show that
it satisfies the sufficient condition for convexity stated in Theorem 1. Therefore, we can find optimal
allocation fractions using (7):

π
∗
i = pi

(
x̂−4

2 x̂2
1ŝ2

i2−2x̂1x̂−3
2 ŝ12

i + x̂−2
2 ŝ2

i1
)1/2
/

I

∑
l=1

pl
(

x̂−4
2 x̂2

1ŝ2
l2−2x̂1x̂−3

2 ŝ12
l + x̂−2

2 ŝ2
l1
)1/2, i = 1, . . . , I, (9)

where the conditional sample variances, ŝ2
i1 and ŝ2

i2, the conditional sample covariances, ŝ12
i , and the

estimates, x̂1 and x̂2, are found using the pilot sample.
Note that the allocation fractions given in (9) minimize the variance of a single ratio estimate. We can

also use the multiresponse stratified sampling algorithm for minimizing the overall error of multiple ratio
estimates. In fact, the third example given in Section 4 demonstrates the application of this idea.

3.2 Minimizing the Maximum of the Variances Weighted with Non-negative Coefficients

Now, we consider minimizing ω(πππ) = max
{

j : c jΣ j j(πππ)
}

for non-negative c j values. We use the short
notation ω j(πππ) for functions c jΣ j j(πππ), j = 1, . . . ,J. The objective function is non-differentiable at some
points in the solution set; thus, the model in (5) is replaced by:

min z
s.t. z−ω j(πππ)≥ 0, j = 1, . . . ,J, ∑

I
i=1 πi = 1, and πi > 0, i = 1, . . . , I.

(10)

For the model in (10), Başoğlu, Hörmann, and Sak (2013) propose a simple allocation heuristic which
yields a satisfactory sub-optimal solution in a short period of time. The heuristic method calculates the
respective optimum allocation fractions πππ j ∈RI which minimize the variances of the stratified estimates,
ΣΣΣ j j(πππ), j = 1, . . . ,J:

π
j

i = piŝi j

/
∑

I
l=1 pl ŝl j, i = 1, . . . , I

and searches for the best solution in the convex hull of these points. In other words, the allocation heuristic
searches the optimal solution of the following model:

min z
s.t. z−ω j(πππ)≥ 0, j = 1, . . . ,J, πi−∑

J
j=1 λ jπ

j
i = 0, i = 1, . . . , I,

∑
J
j=1 λ j = 1, and λ j ≥ 0, j = 1, . . . ,J.

(11)

Thus, the equality and the non-negativity constraints of the model in (10) are automatically satisfied and
the dimension of the problem is clearly reduced for practically relevant settings. The numerical results of
Başoğlu, Hörmann, and Sak (2013) show that the optimal solution of the model in (11) is either equal or
close to the optimal solution of (10).

The main idea of the heuristic method is as follows: For every point in the convex hull, the objective
value ω(πππ) is attained by one of the convex functions, say, ω j(πππ). Then, we expect the objective value
to decrease if we move towards the respective optimum solution πππ j. We stop moving towards πππ j if we
reach a point for which the objective value is attained by another function ωk(πππ), k 6= j; then, we can
move towards πππk. In summary, for every point in the convex hull, the heuristic automatically determines a
descent direction at the function evaluation. The size of the move is determined by the iteration number.

Now, we continue with a more-detailed description of the heuristic algorithm. We direct the reader
to Başoğlu, Hörmann, and Sak (2013) for the pseudocode and the numerical performance results of the
allocation heuristic.
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Heuristic Algorithm for Minimizing ω(πππ) = max
{

j : c jΣ j j(πππ)
}

: Assume a feasible solution πππ in
the convex hull of πππ j, j = 1, . . . ,J. The objective value at πππ is ω(πππ) = max

{
j : ω j(πππ)

}
, and the index of

the function which attains this objective value is obtained by j (πππ) = argmax
{

j : ω j (πππ)
}

. Assume further
that ω is differentiable at πππ . Then, the two functions, ω and ω j(πππ) are equal in an open neighborhood of πππ ,
and ω j(πππ) decreases as we move towards πππ j. Hence, πππ j−πππ forms a simple descent direction for ω at πππ .

The allocation heuristic algorithm starts with an initial feasible solution in the convex hull of πππ j,
j = 1, . . . ,J. The weight center of the πππ j is a simple candidate. The current and the best solution are
denoted by πππc and πππh, respectively. Therefore, we initialize πππh = πππc = J−1

∑
J
i=1 πππ j and set the best and

the current objective value ωh = ωc = ω(πππc). We also determine the index of the function which attains
the current objective value, jc = j(πππc).

We expect an improvement in the objective value if we make a move towards πππ jc
. Let η denote the

step number of the current iteration as the algorithm is run. When the algorithm is started, η is initialized to
1. We update the current solution according to the recursion πππc =

(
ηπππc +πππ jc)

/(η +1). As η increases,
the current solution πππc and, since ω is continuous, the current objective value ωc converge.

After each move, we update the current objective value ωc and set j′ = j(πππc) as the index of the
function which attains this value. At this point, we sequentially check the following two conditions:

• If ωc ≤ ωh, we update the best solution πππh = πππc and the best objective value ωh = ωc.
• If j′ 6= jc, then the current solution can be improved by moving in another direction. We set jc = j′

and increase η by one.

Then, we return to the step where we update the current solution. The algorithm terminates when ωc

converges.

4 NUMERICAL EXAMPLES

To demonstrate the efficiency of multiresponse stratified sampling, we now present examples where we
estimate multiple values in a single simulation. Multiresponse stratified sampling yields comparatively
good results if stratification is also successful in the estimation of a single value, for example, the simulation
function is of rare-event type or the random input has a small number of stratification variables that have a
large contribution to the output variance. For this reason, we give examples that are of these types. Notice
also that the examples here are new and not included in Başoğlu, Hörmann, and Sak (2013).

We remind that in all multiresponse stratified sampling algorithms the pilot samples use the same
random sequence. For each example, we also run naive Monte Carlo simulation using common random
numbers and find the variance of multiple estimates in a single simulation. The efficiency results are
presented as variance reduction factors, V RF [x̂] =V

[
x̂NV
]/

V [x̂] where x̂NV and x̂ denote the naive Monte
Carlo and stratified estimators, respectively. The execution times of the methods are also reported.

Example 1: We begin with a toy example where the size of the random input is small. With this first
example, we demonstrate the practical aspects of the optimization models given in Section 3. Therefore, we
consider a simulation function where we can achieve successful variance reduction by applying stratification
over a single direction.

q(ZZZ,θθθ) = min
{

max
{
(Z1 +Z2)

2 +θ1Z1,θ2

}
,θ2 +θ3

}
. (12)

Here, Z1 and Z2 are independent standard normal variables. Our aim is to estimate x j = r(θθθ j), j = 1, . . . ,6,
in a single simulation for θθθ j vectors:

θθθ 1 = (.1,1.1, .722)′, θθθ 2 = (.1,1.2, .688)′, θθθ 3 = (.2,1.1, .291)′,
θθθ 4 = (.2,1.2, .342)′, θθθ 5 = (.3,1.1, .148)′, θθθ 6 = (.1,1.2, .192)′.

(13)
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We divide the sampling domain into 100 equiprobable subsets with planes that are orthogonal to the direction
(
√

2/2,
√

2/2)
′
. In other words, we stratify the random variable Z1 +Z2 with I = 100 equiprobable strata.

Increasing the number of strata promises for more variance reduction. However, the marginal contribution
of adding a stratum eventually decreases and the variance reduction becomes saturated. Increasing the
number of strata also decreases the number of drawings to be allocated in each stratum in the pilot study
and may result in poor estimates of the conditional standard deviations. Thus, the choice for the number
of strata depends on the simulation function q and the size of the pilot sample Np. For all examples in this
section, we fix Np = 105 and we keep the number of strata between 100 and 300.

We run the multiresponse stratified sampling algorithm under the objective functions listed in Section 3
and also, for minimizing the variance of each single estimate, with the objective functions Σ j j(πππ), j = 1, . . . ,6.
This allows us to observe the minimal error reachable for each θθθ j.

The variance and the percentage relative error of all estimates obtained under each of these objective
functions are listed in Table 1. Variance reduction factors are also given for performance comparison. The
total sample size used in all simulations is N = 106 and Np = 105 of the drawings are used in a pilot study
to determine the optimal allocation fractions via (7) or the allocation heuristic described in Section 3.2.

Table 1: The variance and the percentage relative error of all estimates obtained under different objective
functions, for the simulation function in (12) and the parameter vectors given in (13).

θθθ j θθθ 1 θθθ 2 θθθ 3 θθθ 4 θθθ 5 θθθ 6
Method ω (πππ) ∼ x j 1.385 1.462 1.226 1.340 1.166 1.281
Naive - V [x̂ j] 1.14E-07 1.03E-07 2.00E-08 2.71E-08 5.30E-09 8.78E-09
1.80 sec. - %RE [x̂ j] ±0.04785 ±0.04307 ±0.02262 ±0.02410 ±0.01224 ±0.01434
Multiresponse minΣ11 (πππ) V [x̂ j] 1.08E-10 1.04E-10 2.26E-10 1.46E-10 5.90E-10 3.52E-10
Stratified 2.52 sec. %RE [x̂ j] ±0.00147 ±0.00137 ±0.00240 ±0.00177 ±0.00409 ±0.00287
Sampling V RF [x̂ j] 1059 989 89 186 9 25

minΣ22 (πππ) V [x̂ j] 1.35E-10 9.09E-11 5.44E-10 2.36E-10 1.01E-09 6.64E-10
2.54 sec. %RE [x̂ j] ±0.00164 ±0.00128 ±0.00373 ±0.00225 ±0.00534 ±0.00394

V RF [x̂ j] 849 1136 37 115 5 13
minΣ33 (πππ) V [x̂ j] 7.39E-10 1.14E-09 1.07E-10 1.99E-10 1.50E-10 2.01E-10
2.46 sec. %RE [x̂ j] ±0.00385 ±0.00453 ±0.00166 ±0.00207 ±0.00206 ±0.00217

V RF [x̂ j] 155 90 187 136 35 44
minΣ44 (πππ) V [x̂ j] 1.82E-10 2.47E-10 1.41E-10 1.20E-10 3.33E-10 2.11E-10
2.52 sec. %RE [x̂ j] ±0.00191 ±0.00211 ±0.00190 ±0.00160 ±0.00307 ±0.00222

V RF [x̂ j] 629 418 142 226 16 42
minΣ55 (πππ) V [x̂ j] 8.10E-10 1.12E-09 1.31E-10 2.29E-10 8.78E-11 1.50E-10
2.52 sec. %RE [x̂ j] ±0.00403 ±0.00449 ±0.00183 ±0.00222 ±0.00158 ±0.00187

V RF [x̂ j] 141 92 153 119 60 59
minΣ66 (πππ) V [x̂ j] 2.62E-10 3.50E-10 1.23E-10 1.49E-10 1.03E-10 1.20E-10
2.51 sec. %RE [x̂ j] ±0.00229 ±0.00251 ±0.00178 ±0.00178 ±0.00171 ±0.00168

V RF [x̂ j] 437 295 162 182 52 73
Multiresponse minωSUM(πππ) = ∑

J
j=1 ∑

J
k=1 Σ jk (πππ) V [x̂ j] 1.37E-10 1.49E-10 1.28E-10 1.34E-10 1.34E-10 1.33E-10

Stratified 2.50 sec. %RE [x̂ j] ±0.00166 ±0.00164 ±0.00181 ±0.00169 ±0.00194 ±0.00176
Sampling V RF [x̂ j] 835 692 156 203 40 66

minωMSE(πππ) = ∑
J
j=1 Σ j j (πππ) V [x̂ j] 1.32E-10 1.35E-10 1.35E-10 1.43E-10 1.22E-10 1.32E-10

2.47 sec. %RE [x̂ j] ±0.00163 ±0.00156 ±0.00186 ±0.00175 ±0.00186 ±0.00176
V RF [x̂ j] 864 763 148 190 43 67

minωMSR(πππ) = ∑
J
j=1 x̂−2

j Σ j j (πππ) V [x̂ j] 1.37E-10 1.42E-10 1.32E-10 1.44E-10 1.18E-10 1.30E-10
2.53 sec. %RE [x̂ j] ±0.00165 ±0.00160 ±0.00184 ±0.00176 ±0.00182 ±0.00174

V RF [x̂ j] 837 726 151 188 45 68
minωMAXE(πππ) = max{ j : Σ j j (πππ)} V [x̂ j] 1.31E-10 1.33E-10 1.36E-10 1.38E-10 1.31E-10 1.35E-10
2.12 sec. %RE [x̂ j] ±0.00162 ±0.00155 ±0.00187 ±0.00172 ±0.00192 ±0.00178

V RF [x̂ j] 874 776 147 197 41 65
minωMAXR(πππ) = max{ j : x̂−2

j Σ j j (πππ)} V [x̂ j] 1.54E-10 1.69E-10 1.23E-10 1.46E-10 1.11E-10 1.26E-10
2.14 sec. %RE [x̂ j] ±0.00176 ±0.00174 ±0.00177 ±0.00177 ±0.00177 ±0.00172

V RF [x̂ j] 741 611 162 185 48 70

If we minimize the variance of a single estimate rather than focusing on the overall error, we observe
in Table 1 that the variance for that estimate is reduced, however, we also see severe losses in the variance
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reduction factors for most of the other estimates. The last five objective functions aim to minimize the
overall error of the simulation and, in those cases, we observe reasonably good variance reduction with
only moderate losses compared to the maximum variance reduction factors. For the last two objective
functions, we utilize the allocation heuristic to determine sub-optimal allocation fractions. The objective
function ωMAXE leads to very close variances. A similar result is also valid for relative error values under
the objective function ωMAXR.

The calculated variance and the relative error values seem to be very close under the respective
objective functions. Therefore, we conclude that the allocation heuristic successfully determines the
allocation fractions which minimize the maximum variance and the relative error, respectively.

Example 2: We consider a practically more relevant response function; the risk-neutral price of an
Asian option with a maturity of one year. The underlying stock price follows a geometric Brownian motion
in a risk-neutral environment. We monitor the stock prices at discrete time points and the average stock
price is calculated using:

S̄ = S0www′ exp
{(

ρ−0.5σ
2) ttt +σLLLZZZ

}
,

where ZZZ ∈RD denotes a standard multinormal vector with independent elements, ttt ∈RD is the vector that
holds monitored control points in year units, LLL is the lower-triangular Cholesky factorization of matrix
AAA ∈RD×D with elements Ai j = min

{
ti, t j
}

, www ∈RD holds the weights of the control points, σ denotes the
yearly volatility, ρ the risk-free interest rate, and S0 the initial stock price.

In our experiments, we consider call options with discounted payoff function q(ZZZ) = e−ρtD
(
S̄−K

)+
where K denotes the strike price. The control points are monthly and equally weighted, thus, D = 12 and
wd = 1/12, d = 1, . . . ,12. We assume S0 = 100, K = 110 and J = 4 distinct θθθ = (ρ,σ)′ parameter vectors:

θθθ 1 = (.05, .1)′, θθθ 2 = (.05, .2)′, θθθ 3 = (.02, .1)′, θθθ 4 = (.02, .2)′. (14)

Our aim is to estimate the Asian call prices for each θθθ j in a single simulation. We stratify the linear
projection vvv′ZZZ where vvv ∈ RD is called the stratification direction with the property ‖vvv‖ = 1 (see, e.g.,
Glasserman (2004) for stratification of linear projections). We follow the idea of Jourdain, Lapeyre, and
Sabino (2011) and choose this direction proportional to the gradient of the average stock price (see also
Imai and Tan 2006):

vd ∝
∂ S̄
∂Zd

∣∣∣∣
ZZZ=0

, d = 1, . . . ,D.

However, since S̄ is a function of θθθ and we consider many θθθ values, we calculate the gradient at θθθ
∗, an

arbitrary parameter vector chosen in the convex hull of the continuous parameters. In our experiment, we
have chosen θθθ

∗ = (.035, .15)′.
The number of equiprobable strata used in this experiment is I = 200. Similar to our previous example,

we run the multiresponse stratified sampling algorithm under the objective functions listed in Section 3.
For each objective function, the percentage relative error of all estimates are listed in Table 2. Variance
reduction factors are also given for performance comparison. The total sample size used in all simulations
is N = 106 and Np = 105 of the drawings are used in a pilot study to determine the optimal allocation
fractions via (7) or the allocation heuristic described in Section 3.2.

In Table 2, we observe that the variance reduction factors obtained under the objective functions ωSUM,
ωMSE , and ωMSR are acceptable with a moderate loss compared to the maximum variance reduction factors.
We also observe that the variance reduction factors obtained under the objective function that minimizes
the maximum variance, ωMAXE , is the same as the variance reduction factors obtained under allocation
fractions that minimize the variance of the 2nd estimate, Σ22(πππ). In other words, the function Σ22(πππ)
dominates the other variance functions in the neighborhood of the heuristic solution. This is expected,
since the largest variance for the discounted payoffs in each stratum is obtained under the largest ρ and σ

values. On the other hand, if our objective function is ωMAXR, we get almost the same relative error values
for all estimates.
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Table 2: The variance and the percentage relative error of all estimates obtained under different objective
functions for the discounted payoff of Asian call option and the parameter vectors given in (14).

θθθ j θθθ 1 θθθ 2 θθθ 3 θθθ 4
ω (πππ) ∼ x j 0.43 2.29 0.25 1.88

Naive - V [x̂ j] 2.38E-06 2.92E-05 1.37E-06 2.42E-05
9.75 sec. - %RE [x̂ j] ±0.70365 ±0.46319 ±0.90778 ±0.51443
Multiresponse minΣ11 (πππ) %RE [x̂ j] ±0.01485 ±0.02650 ±0.02261 ±0.02609
Stratified 12.16 sec. V RF [x̂ j] 2236 305 1604 388
Sampling minΣ22 (πππ) %RE [x̂ j] ±0.01767 ±0.01153 ±0.02756 ±0.01285

12.03 sec. V RF [x̂ j] 1579 1609 1080 1599
minΣ33 (πππ) %RE [x̂ j] ±0.03114 ±0.03324 ±0.02087 ±0.03450
12.06 sec. V RF [x̂ j] 508 194 1883 222
minΣ44 (πππ) %RE [x̂ j] ±0.01683 ±0.01395 ±0.02611 ±0.01239
11.95 sec. V RF [x̂ j] 1741 1099 1203 1721

Multiresponse minωSUM(πππ) = ∑
J
j=1 ∑

J
k=1 Σ jk (πππ) %RE [x̂ j] ±0.01663 ±0.01184 ±0.02553 ±0.01263

Stratified 12.07 sec. V RF [x̂ j] 1783 1527 1259 1656
Sampling minωMSE(πππ) = ∑

J
j=1 Σ j j (πππ) %RE [x̂ j] ±0.01723 ±0.01157 ±0.02672 ±0.01269

11.95 sec. V RF [x̂ j] 1660 1597 1149 1638
minωMSR(πππ) = ∑

J
j=1 x̂−2

j Σ j j (πππ) %RE [x̂ j] ±0.01603 ±0.01280 ±0.02359 ±0.01339
11.95 sec. V RF [x̂ j] 1918 1307 1474 1473
minωMAXE(πππ) = max{ j : Σ j j (πππ)} %RE [x̂ j] ±0.01767 ±0.01153 ±0.02756 ±0.01285
11.58 sec. V RF [x̂ j] 1579 1609 1080 1599
minωMAXR(πππ) = max{ j : x̂−2

j Σ j j (πππ)} %RE [x̂ j] ±0.01936 ±0.01888 ±0.02144 ±0.01935
11.66 sec. V RF [x̂ j] 1316 601 1784 705

Example 3: We aim to estimate the risk of a linear portfolio of D = 5 stocks for a fixed time horizon.
We assume that the stock log-returns follow a multinormal distribution with mean vector, µµµ = (0,0,0,0,0)′,
volatility vector, σσσ = (.15, .175, .2, .225, .25)′, and correlation matrix RRR with all correlations equal to 0.3.
Then, the portfolio return is:

Return =
D

∑
d=1

wd exp{µd +σd

D

∑
k=1

LdkZk},

where www=(w1, . . . ,wD)
′ holds the fraction of investments in each stock and LLL is the lower-triangular Cholesky

factorization of the correlation matrix RRR. The loss of the portfolio is calculated as Loss = S0(1−Return)
where S0 is the initial amount of investment. For given threshold values τ j, j = 1, . . . ,J, our aim is to
estimate the conditional excess values x j = E [Loss|Loss > τ j]. For this purpose, we define the indicator
function:

1
{

Loss > τ j
}
=

{
1, Loss > τ j,
0, Loss≤ τ j,

and use the ratio

x j =
x′j
x′′j

=
E [Loss1{Loss > τ j}]

E [1{Loss > τ j}]
, j = 1, . . . ,J,

where x′′j = E [1{Loss > τ j}] = Pr{Loss > τ j} is called tail loss probability, another risk measure.
In our experiments, we take S0 = 1 and consider J = 10 equidistant threshold values. Our aim is to

estimate x j for j = 1, . . . ,J in a single simulation. The algorithm mainly estimates x′j and x′′j for j = 1, . . . ,J,
and the variance of the j-th ratio estimator x̂ j = x̂′j/x̂′′j is calculated using (8), by plugging in the variances
and the covariance of the stratified estimators x̂′j and x̂′′j .

Similar to our second example, we stratify the linear projection vvv′ZZZ where the stratification direction
vvv∈RD is proportional to the gradient of the loss function at ZZZ = 0. The number of equiprobable strata used
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in this experiment is I = 300. We run the multiresponse stratified sampling algorithm under two objective
functions. In the first one we aim to minimize the mean squared relative error and, in the second one, we
aim to minimize the maximum relative error of all ratio estimates. Thus, the variances, Σ j j(πππ), used in
these objective functions should correspond to the ratio estimates, x̂ j, j = 1, . . . ,J.

The variance and the percentage relative error of all estimates obtained under these two objective
functions are listed in Table 3. Variance reduction factors are also given for performance comparison. The
total sample size used in all simulations is N = 106 and Np = 105 of the drawings are used in a pilot study
to determine the optimal allocation fractions via (7) or the allocation heuristic described in Section 3.2.
Here, the allocation heuristic searches the optimal allocation fractions in the convex hull of πππ j, j = 1, . . . ,J,
the respective allocation fractions minimizing the variance of each ratio estimate, Σ j j(πππ) that can be found
by using (9).

Table 3: The variance and the percentage relative error of conditional excess estimates obtained under
different objective functions for different threshold values. The execution times for the three methods are
17.6, 24.1, and 24.5 seconds respectively.

Naive Str. Sampl.: minωMSR(πππ) Str. Sampl.: minωMAXR(πππ)
τ j ∼ x′′j ∼ x j V [x̂ j] %RE [x̂ j] V [x̂ j] %RE [x̂ j] V RF [x̂ j] V [x̂ j] %RE [x̂ j] V RF [x̂ j]

0.147 0.100 0.198 1.75E-08 ±0.131 3.99E-10 ±0.020 44 4.11E-10 ±0.020 43
0.159 0.083 0.207 1.96E-08 ±0.132 3.70E-10 ±0.018 53 4.24E-10 ±0.019 46
0.171 0.067 0.217 2.22E-08 ±0.134 3.85E-10 ±0.018 58 4.74E-10 ±0.020 47
0.184 0.054 0.227 2.53E-08 ±0.137 4.06E-10 ±0.017 62 4.99E-10 ±0.019 51
0.196 0.042 0.237 2.94E-08 ±0.142 4.34E-10 ±0.017 68 5.62E-10 ±0.020 52
0.208 0.033 0.247 3.45E-08 ±0.147 4.67E-10 ±0.017 74 5.83E-10 ±0.019 59
0.220 0.025 0.257 4.12E-08 ±0.154 5.30E-10 ±0.018 78 6.40E-10 ±0.019 64
0.233 0.019 0.268 4.97E-08 ±0.163 6.36E-10 ±0.018 78 7.00E-10 ±0.019 71
0.245 0.014 0.278 6.15E-08 ±0.175 7.90E-10 ±0.020 78 7.85E-10 ±0.020 78
0.257 0.010 0.289 7.78E-08 ±0.189 1.15E-09 ±0.023 68 8.15E-10 ±0.019 96

According to the results in Table 3, the variance of all conditional excess estimates are successfully
reduced under both objectives. If we choose to minimize the sum of squared relative errors, we can easily
determine optimal allocation fractions using (7). However, we can further decrease the maximum relative
error using the allocation heuristic and obtain similar relative errors, as can be seen in the last two columns
of Table 3.

For the estimation of multiple conditional excess values, we have repeated the above experiment also
with the objective functions ωMSE and ωMAXE , which focus on the absolute errors of all estimates. In
Figure 1 (a), we give the logarithms of absolute errors of all conditional excess estimates obtained with
naive simulation and with multiresponse stratified sampling under different objective functions.

According to Figure 1 (a), if we use optimal allocation fractions which minimize the variance of
the conditional excess estimate for the 5th threshold value, we are not at all able to reduce the error of
estimates for smaller threshold levels. However, by using the optimal allocation fractions which minimize
the variance of the estimate that corresponds to the smallest threshold, we observe a fair decrease in the
error of all estimates. This is similar to the method suggested by Glasserman and Li (2005), where they
utilize importance sampling to estimate tail loss probabilities of a credit portfolio in a single simulation
for several thresholds and use the optimal importance sampling parameter that corresponds to the smallest
of the thresholds. We also observe that we can obtain better results with multiresponse stratified sampling
under more global objective functions. The objective function ωMAXE results in absolute errors almost at
a constant level. Compared to that behavior, the objective function ωMSE reduces the relative errors for
smaller thresholds and increases the relative error for the largest threshold.

For the same problem, we also consider the estimation of tail loss probabilities. Since the loss probability
converges to zero as the threshold increases, we aim to reduce the relative error rather than the absolute
error. Thus, we run the multiresponse stratified sampling algorithm under objective functions ωMSR and
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Figure 1: (a) The log-absolute error of all conditional excess estimates obtained with a single simulation.
The dashed line shows naive simulation (0) results whereas the dotted lines correspond to stratified sampling
minimizing the variances of the first (1) and the 5th (2) estimates. The remaining plots correspond to
multiresponse stratified sampling with the objective functions (3) ωMSE and (4) ωMAXE . In (b), the log-
percentage relative error of tail loss probability estimates is shown. To reduce the overall relative error in
tail loss probability estimates, the objective functions (5) ωMSR, and (6) ωMAXR are considered.

ωMAXR. Figure 1 (b) shows the logarithms of percentage relative errors of all tail loss probability estimates
obtained with naive simulation and with multiresponse stratified sampling under these objective functions.

According to Figure 1 (b), for reducing the overall error, it is again not a good idea to use the optimal
allocations which minimize the variance of a specific tail loss probability estimate. In this case, optimizing
for the smallest threshold leads to worse results than in Figure 1 (a). However, we can obtain very good
results with multiresponse stratified sampling. The objective function ωMAXR results in relative errors
almost at a constant level and the objective function ωMSE again reduces the errors for small thresholds
but increases the error for the largest threshold.

With these examples, we have shown that multiresponse stratified sampling is an efficient method for
simulation problems for which we can find efficient stratification variables. We remind that in our examples,
the size of the random input is independent of the parameter space. Whether comparable results would be
obtainable for all type of discrete event simulations is an area in need of further research.

5 CONCLUSIONS

We have utilized multiresponse stratified sampling for the estimation of multiple values in a single Monte
Carlo simulation. In order to increase the efficiency of all estimators, we have proposed two general objective
functions. In the first, we consider minimizing linear functions of the variance-covariance matrix of the
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stratified estimates. In the second class, we minimize the maximum of the variances which are weighted
with non-negative coefficients. For these objective functions, we have introduced nonlinear optimization
models with allocation fractions as decision variables. We have developed the closed-form solution for the
first class of objective functions. For the second class, we have used the allocation heuristic of Başoğlu,
Hörmann, and Sak (2013) to develop a sub-optimal solution. These solutions are used in the sampling
phase. Variance reduction results indicate that multiresponse stratified sampling is an efficient and flexible
method for estimating multiple values in a single simulation. We are convinced that this new methodology
can also be useful for stochastic optimization and response surface estimation problems, as they require
the evaluation of the simulation function for many different parameter values.

The R-package riskSimul available on http://cran.r-project.org/ applies our new meth-
ods to the risk quantification of linear stock portfolios under the t-copula model.
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