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ABSTRACT 

This paper proposes using intermediate features of traffic simulations in a genetic algorithm designed to 
find the best scenarios in regulating traffic with multiple objectives. A challenge in genetic algorithms for 
multi-objective optimization is how to find various optimal scenarios within a limited decision time. 
Typical evolutionary algorithms usually maintain a population of diversified scenarios whose diversity is 
measured only by the final objectives available at the end of their simulations. We propose measuring the 
diversity by also the time series of the objectives during the simulations. The intuition is that simulation 
scenarios with similar final objective values may contain different series of discrete events that, when 
combined, can result in better scenarios. We provide empirical evidence by experimenting with agent-
based traffic simulations showing the superiority of the proposed genetic algorithm over standard 
approaches in approximating Pareto fronts. 

1 INTRODUCTION 

Traffic controllers often face daunting tasks in managing their cities’ traffic for impending future events, 
such as major sporting events or natural disasters. They have to find optimal traffic control scenarios with 
regards to various objectives that reflect the impact of the scenarios against the city’s economic and 
environmental key performance indicators (KPIs). They have to rely on traffic simulations to evaluate 
various control scenarios, and multi-objective optimization methods to quickly find as many best 
scenarios as possible for rapid decisions. 

Agent-based traffic simulation is one of the popular methods to evaluate traffic scenarios for such 
work (Gomes, May, and Horowitz 2004; Behrisch et al. 2011; Osogami et al. 2012). It does not require 
the full knowledge of the macro-dynamics of the traffic. The traffic controllers only need to encode rules 
for the micro-behavior of the drivers (agents) in their cities, run simulations on their scenario settings, and 
measure the emerging macro-level results. The agent-based traffic simulations thus allow the operators to 
evaluate many scenarios that never happened before. Another advantage is that, being a discrete event 
simulation, it can give the operators detailed pictures about what will happen up to and in the transition 
from expected events by looking at the intermediate results. However, there are large computational costs 
that grow at least linearly with the number of cars (agents) in the simulations, and exponentially with the 
number of types of plausible actions.  
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Evolutionary algorithms are methods of choice to quickly find optimal solutions to these kinds of 
complex multi-objective problems (Konak et al. 2006). A Genetic Algorithm (GA) is a heuristic search 
that finds optimal solutions by mimicking natural selections. It starts with a population of candidate 
solutions (or, individuals) that is evolved by recombination, mutation, and selection operators. The design 
of such operators is crucial for a GA to find a diverse set of optimal solutions after several evolutions of 
population (Fonseca and Fleming 1993; Horn et al. 1994; Konak et al. 2006). Traffic controllers can 
utilize an agent-based traffic simulation and a GA to generate optimal solutions for their tasks as follows. 
They can encode their traffic-regulation scenarios, such as, road closures, one-way restrictions, and 
others, in the genomes of individuals in the GA. The recombination and mutation now correspond to 
combining traffic-regulation scenarios and random changes of regulations, respectively. The traffic 
simulation is then used to evaluate the values of the simulation scenarios of the individuals. For multi-
objective optimization, a selection operator must ensure a diversity of population so that optimal Pareto 
solutions can be found as many as possible within a limited number of generations. Standard approaches 
treat simulations as black boxes in the selection operator, namely, scenarios with similar final objectives 
are often filtered to leave spaces for other individuals surviving into the next generation (Delahaye et al. 
2005; Schmöcker et al 2008; Ikeda et al 2007; Brown et al. 2013). 

In this paper, we present a novel idea of using intermediate changes of objectives values in an agent-
based simulation for a diversity measure to obtain such Pareto-optimal solutions. The idea is based on an 
observation that even though two simulations have similar final objective values, they are often caused by 
different underlying physical phenomenon. For example, if the final objectives are the length of traffic 
jams in a city center, similar values might actually be caused by traffic jams at different parts of the city 
center. Thus, combining the corresponding two scenarios might turn into distributing traffic to different 
parts of the city, and hence better final objectives. We propose to refine the diversity measure in a genetic 
algorithm to incorporate the intermediate changes of objective values that are easily available from an 
agent-based traffic simulation. Simulations with similar changes of objective values are more likely to 
have similar underlying phenomenon, and are better candidates to be filtered. On the other hand, although 
having similar final objectives, those with different changes of objectives when combined might result 
into better objectives.  

We also show by experiments the superiority of the proposed genetic algorithms against standard 
ones for multi-objective optimization in a large-scale agent-based traffic simulation. We show that the 
proposed method can produce near Pareto-optimal solutions with less number of generations. This 
translates into the traffic operators’ ability to quickly find optimal scenarios coping with various KPIs in 
their tasks anticipating future events. As a side contribution, we also propose a new quality measure of 
multi-objective solutions against Pareto-optimal solutions. We believe the measure might be useful for 
evaluating other multiple criteria decision makings.  

One of the state of the art to search Pareto optimal solutions with simulation is the study by Brown et 
al. (2013). They used a multi objective genetic algorithm to study bridge retrofit scenarios for a highway 
network. As in our study, they evaluated the scenarios by agent-based traffic simulations to search for a 
range of Pareto-optimal solution sets. However, they only used the final objective value of the traffic 
simulation as the fitness value of each individual solution. Thus, their genetic algorithm is different from 
our approach because it does not consider historical objectives or intermediate features to preserve 
diversity. In this paper, we show the advantage of our approach which brings not only the variety of 
solution sets but also the quick convergence to Pareto-optimal front. 

The remainder of this paper is organized as follows. Section 2 describes the concept of what-if traffic 
simulation for decision making, the role of an agent-based traffic simulation, and the traffic regulation 
scenarios considered. Section 3 presents key innovations of using intermediate objectives with regards to 
previously known approaches in multi-objective optimization, as well as the new measure of the quality 
of a solution set. Section 4 shows experimental results of the proposed method against the state-of-the-art. 
Section 5 presents related work, while concluding remarks and future work are listed in Section 6. 
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2 WHAT-IF SIMULATIONS FOR DECISION MAKING 

Agent-based simulations are popular for analyzing what-if scenarios in complex processes, such as traffic 
and social systems. One of the reasons is that because one does not need to have the full knowledge of 
macro dynamics within such complex systems to test various scenarios that are nevertheless difficult or 
impossible to test in the real-world. It suffices to define micro rules of agents in the simulations, that 
define how they interact with the environment and among each other, change the parameters according to 
the scenario settings, and then run the simulation to see how the interaction of a large number of agents 
gives rise to macro-level results, such as traffic jams in traffic simulations, or number of products sold in 
customer-behavior simulations. However, when there are a large number of scenarios to test, agent-based 
simulations face severe limitation because each run of a large-scale agent-based simulation requires high 
computational cost. A search algorithm that is capable of efficiently exploring the solution space within 
possible scenarios must be utilized so that good scenarios can be identified within a limited decision time. 
 Hereafter, for ease of explanation we describe a typical such case in evaluating scenarios with an 
agent-based traffic simulation. It is straightforward to see that similar cases exist in other types of agent-
based simulations, and with some modifications our approach can be extended to cope with such cases.  

2.1 Agent-based Traffic Simulation 

We are studying the use of agent-based simulations for the city traffic control. Suppose we have a critical 
traffic accident on a major road in the city. What kinds of traffic regulation scenario is effective to 
minimize the traffic congestion? These scenarios require making quick and effective decisions and 
sending the instructions for traffic control to the local police officers as soon as possible based on the real-
time traffic simulation results. To do this, it requires the combination of an agent-based traffic simulator 
that is capable of evaluating the results of enforcing traffic-regulation scenarios by taking into account 
typical traffic patterns in the city, and a highly-parallelized population-based evolutionary optimization 
algorithm to obtain optimal scenarios as quickly as possible.   
 In our work, we use the IBM Mega-Traffic-Simulator that has often been used to evaluate various 
what-if scenarios in many cities in the world (Imamichi and Raymond 2013; Suzumura et al. 2012; 
Osogami et al. 2012; Osogami et al. 2013).  Some of the unique features of the Mega-Traffic-Simulator 
are that it can build a traffic simulation model from traffic patterns of a city by estimating parameters 
from probe-car data, and it runs on massively parallel computers that enables it to simulate the 
microscopic traffic flows in the scale of arbitrary city or even the whole Japan (Suzumura et al. 2012). We 
use the simulator to evaluate the result of traffic-regulation scenarios.  
 We explain the types, the objectives, and the multi-criteria aspects within the traffic simulation 
scenarios that give rises to the complexity in finding good scenarios. Hereafter, for explanatory purpose, 
we will use the case of Nairobi with similar settings as (Imamichi and Raymond 2013) that generates 
traffic demands, or Origin-Destination (OD) data, based on (Gonzales et al. 2009). It is straightforward to 
apply our proposed method for traffic simulations in other cities with different settings of scenarios. 

2.2 Traffic Regulation Scenarios 

There are many possible ways to regulate traffic flows on the roads of a city. For simplicity, we consider 
scenarios in the form of directing the traffic on a road by one of four actions: no intervention, one-way, 
reverse one-way, and close. If there are r number of roads where those four actions can be executed, then 
there are 4r possible scenarios that need to be evaluated by the traffic simulator. It is easy to see that the 
number of possible scenarios grows exponentially with the locations, or roads, and types of actions, such 
that it can quickly become impossible to evaluate all scenarios using agent-based simulations.  

To show how our proposal can help identifying best scenarios, we will present two cases of traffic 
regulation scenarios upon a traffic accident on a road near the Central Business District (CBD) of Nairobi 
(see the cone mark in left parts of Figures 1 and 2): the small case where we know all optimal scenarios 
by simulating all possible scenarios, and the large case where the optimality of scenarios obtained is not 
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guaranteed. We will compare the performances of our proposal on both the small and large cases. We will 
show that our proposal outperforms standard approaches in the small case, and show similar trends in the 
large case.  

The small case consists of scenarios on applying one of the four actions on 5 roads nearby the 
location of the traffic accident, as shown in the left part of Figure 1 with “!” marks. Clearly, there are 45 
=1024 possible scenarios by the combination of the four actions on the five roads.  One of the scenarios is 
shown in the right part of the figure.  

The large case consists of scenarios considering more number of roads regulated with the four actions 
as shown in Figure 2. There are 16 roads on a larger portion of area surrounding the accident site, and 
thus 416 possible different scenarios that need to be simulated. There are now more than a million times as 
many as scenarios of the small case. One of the scenarios is shown in the right part of Figure 2.  
 

 
Figure 1: The small case: regulating traffic on 5 roads in Nairobi 

 
Figure 2: The large case: regulating traffic on 16 roads in Nairobi 

2.3 Objectives 

IBM Mega Traffic Simulator, like other agent-based traffic simulators, provides detailed information on 
the states of agents (cars), such as their speed, and macro-level statistics on each road, such as the number 
of cars passing through it, at every atomic time step of the simulation. This allows us to find roads with 
slow vehicles (slower than 10km/h) and calculate the total length of those roads. As the multi objectives 
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of the scenarios, we use the total length of such roads for the urban area (inside the CBD) and the 
suburban area (outside the CBD) as shown in Figure 3. These two objectives often conflict with each 
other. If the traffic regulations reduce congestion inside the CBD, then they often increase the congestion 
outside the CBD, and vice versa. The decision makers must decide a scenario from the multiple Pareto-
optimal solutions based on this trade-off relationship, and they need a multi-objective optimization 
method for the decision. 
 

 
Figure 3: Areas to calculate objective (congestion length) inside and outside of the CBD of Nairobi 

2.4 Multi-Objective Optimization 

Population-based evolutionary optimization is popular and effective to quickly search for (near) optimal 
solutions of multi-objective optimization problems. They are easily implemented in parallel on an SMP 
server or multi-node cluster system. In our work, we used a Genetic Algorithm, or GA,  (Goldbergs 1989) 
which is one of the most used population-based evolutionary algorithms. A GA evolves randomly 
generated individuals for highly optimized environmental fitness. It recombines, mutates, and selects 
individuals over many generations in a way that is quite similar to natural selection. The individuals 
encode explanatory variables in their genes. When we evaluate the fitness value of an individual, the 
explanatory variables are decoded from the genes, and then applied to an objective function, simulation, 
or other system with objectives.  
 In the work described here, we used an agent-based traffic simulation to evaluate the objective values 
of simulation scenarios. When there are multiple and conflicting objective values, then the individuals 
will eventually reach Pareto-optimal solutions. The ultimate goal of the multi-objective GA is to provide a 
range of solutions that are close to the Pareto-optimal front. The diversity of the solutions is very 
important, since the decision maker is required to understand the trade-off relationships of the objectives 
based on these solutions, and then select one of them based on priorities or preferences that often change 
over time. Unfortunately, it is difficult to find diverse solutions with a standard GA. Without diversity 
maintenance techniques, the solutions tend to converge at the center of Pareto-optimal front when we 
accelerate the convergence by prioritizing parents. 

3 INTERMEDIATE FEATURES FOR QUICKLY GENERATING DIVERSE NEAR 
OPTIMAL MULTI-OBJECTIVE SOLUTIONS 

In a multi-objective optimization problem, finding diverse (near) optimal solutions is important to balance 
various criteria of optimization. The diversity maintenance of populations is a key to improve the 
performance of a multi-objective genetic algorithm, and several ideas have been proposed (Konak, Coit, 
and Smith 2006; Deb 2012). Most of them based on these two methods and their combination: Pareto 
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ranking (Fonseca et al. 1993) and Sharing (Horn et al. 1994). The Pareto ranking is used to rank solutions 
from inside (or, outside) of the objective space, while Sharing is used to discard solutions that resemble, 
or are near to, other solutions that are already in the population. To our best knowledge, all known ideas 
rank and measure the proximity of solutions based on the end results, namely, the congestion length at the 
end of traffic simulations for our cases.  

In this paper, we propose a novel diversity-maintenance technique that discards solutions based on the 
distance of the intermediate features of the simulation process, as illustrated in Figure 4, where we use the 
traffic simulation to obtain time-series of objective values (the congestion lengths) and evaluate the 
individual fitness. Suppose we find two solutions that have similar final objective values but in different 
locations. Even though they have different temporal characteristics, the standard Pareto ranking and 
sharing approaches will likely discard one of them.  

In contrast, our proposed method compares the two solutions in detail in the direction of the temporal 
axis so that we can reduce the risk of discarding a unique solution. Notice that the simulator runs each 
scenario for one hour. In our approach, we implement a diversity-distance calculation method that 
compares time-series of historical objectives (the congestion lengths) obtained at every 10 minutes during 
a 1-hour simulation among individuals. The distance between two individual is the sum of the absolute 
differences of their objectives. We can assign different weights to objectives based on their time stamps. 
For example, assigning weight value 1.0 to final objectives and zero to other (intermediate) objectives is 
similar to the standard approaches. We assign non-zero weights to all objectives, final and intermediate, 
so that those with later time stamps are weighed more. 
 

 
Figure 4: Measuring distance: by final objective only (left) versus historical objectives (right) 

4 RESULTS 

We will see how the new comparison method supports a variety of Rank1 solutions that are closer to 
Pareto-optimal solutions, and finds those solutions earlier than standard comparison methods. We denote 
the standard GA as the standard GA, the GA that uses the final objectives to compare its individual as the 
final-objective GA, and the GA that uses our comparison method as the historical-objectives GA.  
 The final-objective GA utilized the Pareto ranking and Sharing by distance between final objectives, 
which are the congestion length of roads inside and outside the CBD. The historical-objective GA, our 
proposed method, also utilized the Pareto ranking, but Sharing is now by the sum of absolute differences 
of historical objectives, namely, the congestion lengths at 10-minute intervals, weighted by the time 
stamps of the historical objectives. Equation (1) is the formula to compute the distance between the 
individual i and the individual j, or d(i,j). Equation (2) denotes the (normalized) weighting scheme of the 
distance, with the differences of the final objectives are weighted thrice as large as the first objectives, 
while the rest are interpolated between them. 
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ucd(S | T) = max{dist(t, S) | t ∈  T} , where dist(t, S) = min{|| s - t || | s ∈  S}                                     (3) 
In Equation (3), the set S is the solution set that is obtained by running a GA after several changes of 

population, or generations, while the set T is the true Pareto-optimal solution. For the small case with all 
the objectives of all scenarios can be evaluated, we can obtain T. However in general, T is unknown and 
hard to obtain. We will show later how we can approximate T for the large case where evaluating all 
scenarios is nearly impossible.  

 
Figure 5: Uniform-Cover Distance (UCD) from Pareto-optimal front 

Let us give an intuitive explanation of the uniform-cover distance by using Figure 5. Assume that S is 
the set of Rank1 solutions obtained from a GA. For each Pareto-optimal solution, the uniform-cover 
distance guarantees the existence of a nearly-optimal solution in S. Namely, if ucd(S|T) = δ, then the GA 
can generate solutions whose multi-objective values are within δ from the optimal ones. On the other 
hand, to achieve a uniform-cover distance δ, a GA must generate a solution set that contains at least one 
solution within the distance δ uniformly for every Pareto-optimal solution. We can also replace the “max” 
in Equation (3) with the average for all t ∈  T, which we call the averaged UCD for simplicity 
 

 

Figure 6: Full search result for the small case 

4.1 The Small Case: Four Types of Actions on Five Locations 

We compared the standard GA, final-objective GA, and the historical-objectives GA on the small case, 
which has only 5 locations to impose 4 actions to regulate traffic. Because there are only 1024 different 
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scenarios, we can evaluate all simulation scenarios and obtain the objective values that are the congestion 
length after imposing the corresponding action of the scenario for one hour. Figure 6 depicts the 
distribution of the multi-objective values of all 1024 scenarios. The coordinate of each point in the figure 
denote the congestion length inside and outside CBD. It is easy to obtain the Pareto-optimal solutions 
from this case, as confirmed in the figure.  (Notice that the traffic simulator is actually a stochastic one, 
and therefore the objective values each time it runs on the same setting differ. However, by a preliminary 
test, we found out that their differences are small. Figure 6 only depicts the value of objectives for one run 
per simulation scenario.) 
 We ran the three GAs for 100 repetitions of different initial populations. All of the GAs started from 
the same initial population that contained 50 individuals. The populations of the GAs were evolved with 
crossover rate 0.2 for 40 generations, and their sizes were kept constant at 50. We set the mutation rate to 
zero because with non-zero mutation it would be difficult to distill the impact of selection from the 
mutation. 
 

 
Figure 7: Uniform-Cover Distance (UCD) comparison (average of 100 trials using the small case) 

Figure 8: Average UCD comparison (average of 100 trials using the small case) 
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Figure 9: Average of 2 objectives in search process (average of 100 trials the small case) 

Figure 7 and Figure 8 show, respectively, the Uniform-Cover Distance (UCD) and the averaged UCD 
of the solution sets of the three GAs at each generation. Figure 9 shows the intermediate changes of the 2 
objectives’ values (the average of the congestion length inside/outside the CBD) at each generation. 
These figures illustrate the advantages of the proposed method (the historical-objectives GA). For 
example, from Figure 7 we can see that after 12 generations, the UCDs of the populations in the proposed 
method were always lower than those of other GAs. Since these results are average of 100 trials, we 
believe they reach statistical significance. 

4.2 The Large Case: Four Types of Actions on Sixteen Locations 

We compared the three GAs on finding optimal scenario for the large case, which has 16 locations to 
impose the four actions. In contrast to the small case, the number of scenarios is too large and running all 
scenarios to obtain the Pareto-optimal solutions is nearly impossible so that we only computed their 
approximation. To obtain the approximated Pareto-optimal solutions, we ran all GAs for many times and 
recorded the multi-objective values of their solutions from the whole individuals whose scenarios were 
simulated. We then extracted the Rank1 solutions and regarded them as the approximated Pareto-optimal 
solutions.  

We ran the three GAs started from the same initial population that contained 160 individuals. The 
populations of the GAs were evolved with crossover rate 0.2 for 47 generations, and their sizes were kept 
constant at 160. We set the mutation rate to zero similarly to the small case. 
 

 
Figure 10: Maximum distance comparison (1 trial using the large case) 
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Figure 11: Average distance comparison (1 trial using the large case) 

Figure 12: Average of 2 objectives in the search process (1 trial using the large case) 

Figure 10 and Figure 11 show the comparison of the (approximate) UCDs and the average UCDs of 
the standard, final-objective, and historical-objectives GAs at each generation. From Figure 10, we can 
see that although the UCDs of the historical-objectives GA before the 37-th generations were higher than 
the other GAs, their values were significantly lower at the later generations. The averaged UCDs of the 
proposed GA were better at earlier generations, as evidenced by Figure 11. Figure 12 shows the 
intermediate changes of the 2 objectives’ values (average congestion length inside/outside CBD) at each 
generation. 

 
Figure 13: Rank1 solutions in 47 generations (the large case) 
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Figure 13 shows the Rank1 solutions of the three GAs from 1 to 47 generations. Figure 14 shows the 
Rank1 solutions of the three GAs in the 47-th (final) generation. Those figures show qualitative evidences 
of the superiority of the proposed GA to generate solution sets that are diverse and close to Pareto optimal 
quickly within several number of generations. 
 

 
Figure 14: Rank1 solutions in the final generation (the large case) 

5 CONCLUSIONS 

We showed how to use the changes of objective values of simulations to assist a genetic algorithm 
measure diversity of simulation scenarios. By experiments on a small-scale simulation scenario where the 
Pareto-optimal scenarios were known, we confirmed that the proposed genetic algorithm could produce 
better solutions in less number of generations. Similar results were also observed on a large-scale 
simulation scenario.  

There are several directions for future research. An agent-based traffic simulation can produce more 
aggregated states of its agents during the simulation. Finding out if such additional data can deliver better 
evolutionary algorithms is interesting. Other promising direction is to see if similar results hold for 
evolutionary algorithms on other types of simulations. 
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