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ABSTRACT 

Public health agencies traditionally rely heavily on epidemiological reporting for notifiable disease control, 
but increasingly apply simulation models for forecasting and to understand intervention tradeoffs.  
Unfortunately, such models traditionally lack capacity to easily incorporate information from 
epidemiological data feeds.  Here, we introduce particle filtering and demonstrate how this approach can 
be used to readily incorporate recurrently available new data so as to robustly tolerate – and correct for – 
both model limitations and noisy data, and to aid in parameter estimation, while imposing far less onerous 
assumptions regarding the mathematical framework and epidemiological and measurement processes than 
other proposed solutions.  By comparing against synthetic ground truth produced by an agent-based model, 
we demonstrate the benefits conferred by particle filtering parameters and state variables even in the context 
of an aggregate, incomplete and systematically biased compartmental model, and note important avenues 
for future work to make such approaches more widely accessible. 

1 INTRODUCTION 

Despite the growing burden of chronic disease, infectious diseases still impose a heavy burden on length 
and quality of life worldwide.  Such diseases are characterized by pronounced dynamics, being marked by 
patterns of change over time (Anderson and May 1991) such as the classic epidemic curves and patterns of 
waxing and waning. From the early days of infectious disease epidemiology (Defoe 2010) practitioners 
have placed great emphasis on deriving insight from empirical time series data capturing such patterns.  
Throughout the developed world, physicians are required to report incident cases of broad classes of 
notifiable diseases.  Public health agencies from the local to international level monitor such data for several 
uses, including emerging outbreaks and monitoring trends in burden of endemic infections.   
 One of the most important potential uses of such time series data is as an aid to planning, particularly 
to help inform decision making regarding interventions.  In the course of an outbreak, frequently public 
health agencies will carefully monitor incidence counts, and such data often figures directly into recurrent 
– for example, weekly – discussions concerning intervention options, whether they be targeted vaccination 
campaigns, advisories regarding hygiene or social distancing, or more heavy-handed measures such as 
recommendations for school or workplace closure.  
 While such empirical data offers great value for public health authorities, it is also associated with 
notable shortcomings.  Incident case count data can be extremely noisy, particularly for contexts marked 
by smaller population or low incidence or diagnosis rates.  The presence of such noise can confound ability 
to reliably infer trends and to assess with confidence the current epidemiological state of affairs.   
 More fundamentally, while time series data can aid assessment of the past and current situation, such 
data in isolation offer no direct capacity to predict what lies ahead.  Among the foremost interests of public 
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health authorities are understanding – in light of all available evidence, including recent data – both as to 
how an outbreak will play out in the status quo (in the absence of further intervention) and timely and robust 
evaluation of the tradeoffs between multiple intervention options. Unfortunately, neither of these insights 
are directly offered by the data in epidemiological time series.   
 To secure such insights regarding outbreak evolution, policy makers increasingly turn to 
complementing insight from such time series with modeling.  While there are a variety of model types of 
relevance, the most popular and widely studied (Anderson and May 1991) modeling approach to inform 
decision making concerning both intervention options and epidemic evolution is based on dynamic models, 
whether they be aggregate in character (compartmental, System Dynamics), or individual-based (e.g., via 
agent-based methods).  Over the past century (Kermack and McKendrick 1927), such modeling types – 
which captured the mechanics of transmission – have proven general and flexible vehicles for 
understanding how outbreaks and epidemics evolve, and for studying the impact of a variety of intervention 
strategies  (Anderson and May 1991).  
 Unfortunately, dynamic models are also traditionally associated with an important set of shortcomings.  
While such models are often grounded by data – such as epidemiological time series data – the associated 
calibration processes often require much time and typically entail manual oversight or intervention.  More 
significantly, such models often include omissions, simplifications and misestimates that inevitably lead 
the dynamic model predictions to diverge from empirical data.  The presence of these shortcomings reflect 
many factors:  Limited availability of data available to the modeler, approximations for certain processes, 
and the inevitable need to exclude a variety of processes and factors from the model.  Moreover, there are 
a variety of effects involving the vagaries of weather, human behavior, economic behavior – often 
characterized stochastically in fine-grained models – whose prediction lies outside of even the most 
sophisticated existing models.  As a result of such stochastic factors, systematic distortions, omissions, even 
highly articulated and precisely calibrated models – such as those sought in the MIDAS project and for 
national-level outbreak response planning – will inevitably begin to diverge from observed data.  While 
dynamic models will often offer great predictive ability in the short-term, their medium- and long-term 
predictive capacity of even detailed models can be greatly impaired. 
 In short, public health planners are left with two terribly fallible tools.  Epidemiological time series can 
give great insight into the current context, but can be highly noisy, and offer little guidance in isolation as 
to what to expect in the status quo or from interventions.  Well-calibrated dynamic models can allow for 
highly accurate shorter-term projection of status quo or intervention scenarios, but offer longer-term 
projections that can be expected to diverge from empirical patterns and traditionally lack a reliable and 
automated means of keeping current with the latest in empirical data.   
Past research has sought to address this quandary.  Some authors have applied the long-established and 
well-codified (Gelb et al. 1974) extended Kalman Filtering as a tool for creating a consensus estimate from 
empirical data and model predictions.  While capable of performing updates to both state and parameter 
estimates (Qian et al. 2014) Kalman Filtering is hamstrung by several factors.  The first is heavy reliance 
on strong distributional assumptions concerning both processes noise and measurement error – assumptions 
that can prove highly problematic in cases with low counts of incident infection.  Secondly, in the presence 
of non-linearity, the Kalman Filter reliance on a linearization-based approximate can in some cases lead to 
strong divergence of the estimate from the underlying situation. Thirdly, the covariance matrix estimate of 
model state cannot be readily translated into similar dispersion estimates around arbitrary model outputs.  
Finally, the Kalman Filter relies upon the capacity to formulate the dynamic model as a series of state 
equations.  While this approach works well with classic compartmental models, it is incompatible with the 
growing numbers of models using agent-based and other formulations.     
 We leverage here well-studied computational statistics techniques to demonstrate and evaluate a 
technique that combines the best features of empirical data and dynamic models while mitigating the 
characteristic weaknesses of both.  The approach uses sequential Monte Carlo methods in the form of 
particle filtering (Andrieu et al. 2010) to combine insights from noisy empirical data (on the one hand) and 
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dynamic models that exhibit growing systematic errors, omissions, and stochastic divergence over time (on 
the other) to yield a more reliable consensus estimate.  Like Kalman Filtering (Gelb 1974) this consensus 
estimate takes into account the relative reliability of empirical data and the model, and considers the fact 
that the dynamic model is likely to exhibit growing inaccuracy over time.  However, in contrast to Kalman 
Filtering, the approach here is not hampered by strong distributional assumptions concerning process and 
measurement error, does not assume that the dynamic model is formulated using state-equations, and –in 
contrast to the restrictive MLE estimates and covariance provided by the Kalman Filter – provides samples 
from the posterior over model states and arbitrary model outputs.  While particle filtering has been applied 
to a wide variety of previous domains, it is seen very few previous applications in the public health area in 
general, and in infectious disease prevention and mitigation (Dukic et al. 2012). In addition to introducing 
the technique to additional segments of the infectious disease modeling community, we contribute here – 
using synthetic ground truth data – the first evaluation of the application of the approach to the public health 
area of which we are aware. 
 The balance of the paper is organized as follows.  Section 2 provides a general introduction to the 
particle filter.  Section 3 discusses the dynamic model and the simple particle filter formulation used for 
this study.  Section 4 describes the experimental setup used to evaluate the performance of the particle filter 
for this study, and introduces the experiments conducted.  Section 5 presents the results from those 
experiments.  Section 6 discusses the formulation used here and the implications of the experimental 
findings and concludes. 

2 INTRODUCTION TO PARTICLE FILTERING 

Particle filtering is a popular numerical method for optimization problems in general state space methods, 
especially in non-linear non-Gaussian scenarios. The state space model provides a flexible framework for 
modeling one or more time series of the form {𝑦𝑦𝑡𝑡}𝑡𝑡=1:𝑇𝑇 and has two major components: (1) the observation 
equation for the probabilistic model of 𝑦𝑦𝑡𝑡 conditional on the state variable 𝑥𝑥𝑡𝑡, denoted by 𝑔𝑔(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡) and (2) 
the state equation characterizing the evolution of the state variables, which is a Markov process for 𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1, 
,denoted by 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1).  In general, the state variables will be latent, meaning that they cannot be directly 
observed.  Please note that for ease of presentation, our discussion suppresses explicit mention of the 
parameters in the two model parts. That is, within this presentation, we assume that the parameters are 
known. For estimation of both latent variables and unknown parameters, please see Andrieu et al. (2010) 
for some recent work. 
 A main challenge is to find efficient methods for on-line estimation for the state variables when the 
observation 𝑦𝑦𝑡𝑡 comes in one or more sequences, and in the context of stochastics in state evolution. Work 
half a century ago recognized that an important restricted case of this problem termed the linear state space 
model is amenable to treatment by simpler methods:  Specifically, when both 𝑔𝑔(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡) and 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1) are 
linear Gaussian conditional distributions (i.e., when both process stochastics and measurement errors are 
characterized by Gaussian errors), the computationally frugal Kalman filter (Gelb 1974) can be shown to 
be offer optimal estimation of the posterior 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡). Such methods – which provide MLE mean and 
covariance estimates of system state – can be heuristically generalized via linearization to handle non-linear 
non-Gaussian distributions in the form of the Extended Kalman Filter (Gelb 1974), although the resulting 
estimates are no longer provably optimal, and can be subject to significant estimation error.  A more flexible 
method without that avoids reliance on either Gaussian error assumptions or the local linearization 
technique is the particle filter, proposed by Gordon et al. (1993). 
 Particle filters aim to obtain a numerical approximation of the joint distribution {𝑝𝑝(𝑥𝑥1:𝑛𝑛|𝑦𝑦1:𝑛𝑛)}𝑛𝑛=1:𝑇𝑇 
sequentially. The technique achieves significant computational economies by its recursive formulation, in 
which samples for later points of time are dependent on the estimates of the samples derived for earlier time 
points.  Such a formulation is of particular importance in the context of process stochastics, which generally 
make intractable naïve sampling from the latent distributions of state variables over time by application of 
Markov Chain Monte Carlo algorithms.   
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 Before giving the algorithm details, we first briefly introduce importance sampling method, which is 
closely related to particle filtering method.  Like other Monte Carlo techniques, particle filtering focuses 
on sampling from a distribution – that is, drawing values from the sample space of the distribution with a 
frequency proportional to their probability density.  Suppose that we wish to sample from target distribution 
𝑝𝑝(𝑥𝑥), but that this is difficult. One can sample {𝑥𝑥(𝑖𝑖)}𝑖𝑖=1𝑛𝑛 from an importance proposal distribution 𝑞𝑞(𝑥𝑥), 
which retains the key features of p(x). Then the target density can be approximated by �̂�𝑝(𝑥𝑥) =
∑ 𝑤𝑤�𝑥𝑥(𝑖𝑖)�𝛿𝛿𝑥𝑥(𝑖𝑖)(𝑥𝑥),𝑛𝑛
𝑖𝑖=1  where 𝑤𝑤(𝑥𝑥) = 𝑝𝑝(𝑥𝑥)/𝑞𝑞(𝑥𝑥) and is called importance weight and 𝛿𝛿𝑥𝑥(𝑖𝑖)(𝑥𝑥) is the delta-

Dirac mass located at 𝑥𝑥(𝑖𝑖). 
 The particle filter derives the first part of its name from the fact that it maintains a set of particles 
representing an approximation to the distribution of the state variables whose evolution is described by the 
process model.  Each such particle is associated with a weight (reflecting the probability of occurrence of 
that particle) and a state, as defined by the state variables associated with the process model.  Other than 
the possibility of being replaced by a copy of another particle, the state associated with a given particle 
evolves completely independently of the state of other such particles. 
The general particle filter algorithm leverages the approach of importance sampling (Murphy 2012) and 
can be summarized as follows.  Let 𝑁𝑁 be the number of particles. 

 
1. At time 𝑡𝑡 = 1, for 𝑖𝑖 = 1,2, … ,𝑁𝑁 

(1) Sample 𝑋𝑋1
(𝑖𝑖) from 𝑞𝑞1(𝑥𝑥1|𝑦𝑦1); 

(2) Compute a weight for each particle 𝑤𝑤1
(𝑖𝑖) = 𝑝𝑝(𝑥𝑥1)𝑔𝑔(𝑦𝑦1|𝑥𝑥1)

𝑞𝑞(𝑋𝑋1
(𝑖𝑖)|𝑦𝑦1)

.  

      Normalize the weights  𝑊𝑊1
(𝑖𝑖) = 𝑤𝑤1

(𝑖𝑖)

∑ 𝑤𝑤1
(𝑖𝑖)𝑁𝑁

𝑖𝑖=1
. 

2. At time 𝑡𝑡 ≥ 2, perform a recursive update as follows 
(1) Advance the sampled state by sampling 𝑋𝑋𝑡𝑡

(𝑖𝑖)~𝑞𝑞𝑡𝑡(𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡,𝑋𝑋1:𝑡𝑡−1
(𝑖𝑖) ) and set 𝑋𝑋1:𝑡𝑡

(𝑖𝑖)=(𝑋𝑋1:𝑡𝑡−1
(𝑖𝑖) ,𝑋𝑋𝑡𝑡

(𝑖𝑖)); 

(2) Update the weights to reflect the probabilistic and state update models 𝑤𝑤𝑡𝑡
(𝑖𝑖) =

𝑤𝑤𝑡𝑡−1
(𝑖𝑖) 𝑝𝑝(𝑋𝑋𝑡𝑡

(𝑖𝑖)|𝑋𝑋𝑡𝑡−1
(𝑖𝑖) )𝑔𝑔(𝑦𝑦𝑡𝑡|𝑋𝑋𝑡𝑡

(𝑖𝑖))

𝑞𝑞(𝑋𝑋𝑡𝑡
(𝑖𝑖)|𝑦𝑦𝑡𝑡,𝑋𝑋𝑡𝑡−1

(𝑖𝑖) )
.  

Normalize the weights 𝑊𝑊𝑡𝑡
(𝑖𝑖) = 𝑤𝑤𝑡𝑡

(𝑖𝑖)

∑ 𝑤𝑤𝑡𝑡
(𝑖𝑖)𝑁𝑁

𝑖𝑖=1
. 

3. Resampling step: 

For any time 𝑡𝑡, if the effective sample size is too small (i.e., the variance of the weights is 
too high, 1

∑ (𝑊𝑊𝑡𝑡
(𝑖𝑖))2𝑁𝑁

𝑖𝑖=1
<K), resample 𝑋𝑋𝑡𝑡

(𝑖𝑖) and set 𝑊𝑊𝑡𝑡
(𝑖𝑖) = 1

𝑁𝑁
. Here K is a threshold value for 

the variation of the weights. 
 
 Please note that the resampling step is used to mitigate a well-known drawback in which variance of 
the state estimates increases as time evolves (see an example in Section 3.3 in Doucet and Johansen (2009)). 
The idea of resampling is to remove the particles with low weights and duplicate the particles with high 
weights. Because it is driven by weights reflecting fitness of a particle, recurrent resampling tends to lead 
to a sort of “survival of the fittest” of particles within the particle filter. 
 Another fact worth noting is that formula for updating weights based on a new measurement yt can be 
simplified to 𝑤𝑤𝑡𝑡

(𝑖𝑖) = 𝑤𝑤𝑡𝑡−1
(𝑖𝑖) 𝑔𝑔(𝑦𝑦𝑡𝑡|𝑋𝑋𝑡𝑡

(𝑖𝑖)) if one choses 𝑞𝑞�𝑋𝑋𝑡𝑡�𝑦𝑦𝑡𝑡,𝑋𝑋𝑡𝑡−1� = 𝑝𝑝(𝑋𝑋𝑡𝑡|𝑋𝑋𝑡𝑡−1).   In this case, the state 
update process between measurements proceeds in a process that does not explicitly consider later 
measurements.  The weight update occurring at each measurement point then simply multiplies the weight 
associated with each particular by the likelihood of observing the measured data conditional on the state of 
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that particle. This approach – termed the Condensation algorithm (Isard and Blake 1998) and used in our 
example below – offers significant benefits in that the process model can be formulated independent of the 
vagaries of measurement, but can be highly inefficient in cases in which measurements occur infrequently 
when compared to the speed at which the state diverges due to the stochastic process (Murphy 2012). 

3 MODEL FORMULATION 

Within this study, we present an example application of a particle filter for a simple compartmental (System 
Dynamics) transmission model for a communicable illness, and then evaluate the performance of that 
particle filter when operating using synthetic empirical data produced by a much more complex situation 
whose ground truth is precisely known.  We present here the formulation of the compartmental model and 
the accompanying particle filter; discussion of additional components involved in the generation of the 
empirical data and evaluation is deferred until the next section. We took advantage of the hybrid modeling 
capabilities of AnyLogic by simultaneously running both the particle filtered System Dynamics 
implementation and the ground truth model as two parts of a single overarching model within in AnyLogic 
6.8.1. 
 Beyond the standard formulation of the particle filter (in terms of resampling, etc.) the application of 
the particle filter to the model presented here includes 3 components, described in following sub-sections. 
 

• Dynamic model: An aggregate System Dynamics (compartmental) infection transmission model. 
• Probabilistic model: A probabilistic model specifying the likelihood of observing the specified 

empirical data for a given point in time in light of the state of that dynamic model at that same 
point in time 

• Measurement update rule: A measurement update rule specifying how the weight of the particle 
is updated in light of the probabilistic model 

3.1 Dynamic Model 

We describe here our dynamic model to be used with the particle filter.  The state equations for the model 
are given as follows: 

IPoisson cS t
S E I RS

t
IPoisson cS t

S E I R EE
t

E II i

IR

β

β

τ

τ µ

µ

   ∆  + + +  = −
∆

   ∆  + + +  = −
∆

= = −

=









 

 It is notable that the model includes a stochastic process associated with incidence of infection.  This 
process reflects the small number of cases that occur over each small unit of time (∆t).  As a result, the 
model exhibits multiple possible trajectories.  Compartmental parameters are specified in the following 
table 1: 
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Table 1: Insert Table caption here. 

Variable Name Notation Value Units 
Mean Latent Period in 
Weeks 

τ 0.42857 (i.e., 3 days) Week 

Total Population Size N 1000 Person 
Probability of Infection 
Transmission Given 
Exposure 

β 0.005 Unit 

Mean Time to 
Recovery in Weeks 

µ 1 1/Week 

Contacts per Week c 375 1/Week 
 
 The model runs for 31 weeks.  Numerical integration is carried out using the Euler method with a time 
step of 10-5. Primary model outputs examined here are susceptibles, the incidence case rate (in 
Persons/Week), and the count of infectives.  

3.2 Particle Filter 

3.2.1 Particle Characteristics 

Recall that each particle for a particle filter at time t (𝑋𝑋𝑡𝑡) is associated with a complete copy of the system 
state at that point in time.  In this case, each particle at a point in time is associated with a value for each 
state variable (S, E, I, R).  Dynamic models are typically approximations to more complex underlying 
situations, and often quantities commonly treated as fixed within such models (e.g., contact rate) evolve 
over time (e.g., as an infection spreads from core areas of a scale-free network to more peripheral regions).  
In order to investigate the capacity to use particle filtering to adapt to values of parameters whose effective 
values evolve over the course of a simulation, we further associate each particle with a value for the 
parameter c.  Each particle in such scenarios is thus associated with a vector [S, E, I, R, c]T. 

3.2.2 Weight Update Rule 

The particle state evolves over time.  For this simple implementation of the particle filter, we make use of 
the previously contributed condensation algorithm (Isard and Blake 1998) in which the state at time t (𝑋𝑋𝑡𝑡) 
is simply generated by sampling from the stochastic process model 𝑝𝑝(𝑋𝑋𝑡𝑡|𝑋𝑋𝑡𝑡−1) – that is, using the notation 
of the previous section, 𝑞𝑞�𝑋𝑋𝑡𝑡�𝑦𝑦𝑡𝑡,𝑋𝑋𝑡𝑡−1� = 𝑝𝑝(𝑋𝑋𝑡𝑡|𝑋𝑋𝑡𝑡−1).  In concrete terms for our example, this means that 
between measurements at times t-1 and t, we simply simulate forward each particle according to the state 
equations specified above.   For the condensation algorithm, the weight update rule for a new datum 
received at measurement time t simply involves multiplying the existing weight by the likelihood of 
observing that datum (in our case, the number of reported cases within a week) given the system state 
associated with that particle; that is, using the notation above, 𝑤𝑤𝑡𝑡

(𝑖𝑖) = 𝑤𝑤𝑡𝑡−1
(𝑖𝑖) 𝑔𝑔(𝑦𝑦𝑡𝑡|𝑋𝑋𝑡𝑡

(𝑖𝑖)).   
 In the cases where the effective sample size falls below 25% of the nominal sample size, resampling 
from particles is performed in accordance with Step 3 of the particle filtering algorithm presented in 
Section 2. 
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3.2.3 Likelihood Function 

In the example model, observations provide weekly counts of individuals leaving the latent and incubation 
state and developing symptoms and becoming infective.  In the model, we ignore the lag effects, and treat 
this as given by the rate of the “Incubation” flow (measured in incident individuals per week becoming 
cases, and abbreviated as it).  Following Dorigatti et al. (2012), we treat the likelihood of observing yt 
individuals within that week given an estimated weekly count of incident individuals it as follows: 

𝑝𝑝(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡) = 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑖𝑖𝑡𝑡) = �𝑦𝑦𝑡𝑡 + 𝑟𝑟 − 1
𝑦𝑦𝑡𝑡

� 𝑝𝑝𝑦𝑦𝑡𝑡(1− 𝑝𝑝)𝑟𝑟 

where 𝑝𝑝 = 𝑖𝑖𝑡𝑡
𝑖𝑖𝑡𝑡+𝑟𝑟

 is the probability that a given reported case is in fact a true incident case and r is a dispersion 
parameter. This formulation associates a non-zero probability density of observing reporting cases both 
above and below the posited number of actual cases (as captured by the stock and flow model). We note 
that in addition to the desire to approximate an important real-world processes involving case identification, 
use of a negative binomial (rather than a classic binomial) formulation is important for the robustness of 
the particle filtering in the context of process models stochastics.  A more obvious alternative likelihood 
formulation – applied by the authors in the context of MCMC (Osgood and Liu 2015) – would treat the 
likelihood of observing a given count of reported cases in light of the particle as given by a binomial draw 
from it incident cases. While conceptually simple, a likelihood formulation causes problems because it 
exhibits 0 probability of yielding a reported cases count greater than the posited rate of those undergoing 
incubation associated within that particle.  Situations where all particles are associated with rates of 
incubation smaller than the empirically observed data can trigger weights identically equal to zero across 
all such particles, causing a singularity during weight renormalization.  This consideration provides a strong 
motivation for the negative binomial formulation used here. 

4 EVALUATING PARTICLE FILTER PERFORMANCE 

Given the highly aggregate character of the dynamic model described in section 3.1, the literature provides 
much reason to wonder (Kneeling and Eames 2005) about the degree to which – with particle filtering or 
without – that model is capable of robustly and reliably estimate model state using data arising from a far 
more complex underlying epidemiological process.  Such concerns are magnified in the context of 
systematic biases in aggregate model parameters that frequently result from incomplete knowledge of the 
situation.  While aggregate models can frequently be calibrated to characterize data arising from 
epidemiological processes (Rahmandad and Sterman 2008), such calibrated models may not accurately 
capture intervention tradeoffs, and reliably performing such calibration is difficult and burdensome when 
modelers initially lack empirical data and such data accumulates incrementally over time.  In this section, 
we seek to investigate the capacity of particle filter to mitigate the effects of aggregation and biases in the 
aggregate model to estimate current epidemiological state. 
 While the particle filter described in the previous section can be applied to data from real-world 
outbreaks, it is difficult to assess the resulting accuracy improvements absent additional data concerning 
the underlying epidemiological situation – data that are often unavailable or infeasible to obtain.  To more 
rigorously evaluate the effectiveness of that particle filter, we sought to construct a carefully designed test 
context in which the underlying epidemiological situation (the “ground truth”) is precisely known, but 
which – like the external world – exhibits far more complex underlying dynamics than are depicted in the 
dynamic model. 
 Specifically, we evaluated the particle filter introduced above by comparing its estimates of 3 outcomes 
(count of susceptibles, the incidence case rate (in Persons/Week), and the count of infectives) against 
corresponding quantities drawn from an agent-based transmission model representing the richer underlying 
epidemiological processes. That “ground truth” model is discussed next. 
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4.1 Agent-Based Ground Truth Model 

We constructed an agent-based transmission model with a population size identical (1000) to that of the 
aggregate model.  Within the ABM, agents representing individual people were scattered according to a 
spatial Poisson process across a space of size 500 by 500.  Experiments were conducted to evaluate the 
accuracy of the particle filter when agents were connected by four different types of networks:  Distance-
based, scale free, small world (with 95% of connections local), and Poisson.  Parameters for all networks 
were set to yield a similar number (30) of connections per agent.  The behavior of each agent was 
characterized by a probabilistic process.  Specifically, a single index infective began in the infective state; 
all remaining agents began in a Susceptible state.  Infective agents sent “exposure” messages to a neighbor 
(selected with uniform probability from their immediate connections) 350 times per week (50 times per 
day).   Each such exposure event between an infective and susceptible conferred a probability of 0.01 of 
infection. A memoryless transition process was followed when proceeding from the latent (“Exposed”) to 
the infective state, and from the infective to the recovered states, with rate constants identical to that used 
in the aggregate model; as in the aggregate model, time in those states was thus exponentially distributed, 
with respective mean resident times being identical in the two models.  
 Every week, two observer processes (Railsbeck and Grimm 2011) were undertaken.  The first of these 
processes was used to generate the synthetic regular (noisy) reporting counts treated as empirical data within 
the particle filtering.  Within that process, we assumed that each case emerging from latency and incubation 
into the infectious state would present for care and be reported.  Reflecting the presence of further 
measurement noise, we further assumed that individuals not in the infectious state exhibit a certain 
probability per week of presenting for care with symptoms that would be erroneously reported as incident 
cases of illness.   
 While the first type of observer process associated with this model provided synthetic empirical data to 
be used by the particle filter, the second type of observer process was used to collect ground truth data for 
evaluation of the accuracy of the particle filter.  Specifically, every week we collected across the population 
a count of susceptibles, infectives, exposed, and incident cases within the past week; these values were then 
used in the particle filter to compare to respective aggregate quantities.   
 To evaluate the performance of the particle filter under a variety of conditions, we ran scenarios for 
each network type (mentioned above).  Because some of the networks involved in the agent-based “ground 
truth” model exhibit heterogeneity in connection counts – and, by extension, in the effective contact rate 
over time – for each such network, we further considered handling the contact rate c in the aggregate model 
in four different ways when performing particle filtering:  As fixed at some incorrect value (375), as fixed 
at some correct value (350), as drawn from a continuous uniform distribution between 20 and 1200, or 
drawn initially from that range and then allowed to vary over time according to multiplicative random walk 
as described in Section 3.2 and with per-unit-time standard deviation 10. 
 Thus, for each combinations of the 4 network types, we ran 6 scenarios:  Two baseline scenarios without 
particle filtering (one for a case of a correctly estimated contact rate, one for a biased contact rate), and then 
4 with particle filtering (fixed correct contact rate, fixed biased contact rate, contact rate drawn from a 
distribution, and contact rate drawn from a distribution and then allowed to evolve according to a random 
walk).  For each of these 24 scenarios, we ran an ensemble of 100 realizations. 
 The primary metric examined for the scenarios was a measure of discrepancy between the aggregate 
model estimates and the ground truth (as produced by the ABM model).  The discrepancy metric was chosen 
to penalize both bias and dispersion in the aggregate simulation model results when compared with the 
ground truth value.  Specifically, each week, we sampled 1000 times from the particles, where – in 
accordance with importance sampling practice – the probability of selection of a given particle was treated 
as proportional to its weight.  For each such sample, we computed – and summed into a single number – 
the square of the differences between the value of the S, E, I, R state variables in the aggregate model and 
count of individuals who are in the corresponding disease state in the ABM.  This number was normalized 
by the count of observations [31] and the count of particles sampled in each such observation [1000].  Once 
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discrepancies were computed for all weeks, a square root was taken to yield a quasi-linear discrepancy 
measure. 
 In light of the stochastic nature of the aggregate model, we compared discrepancies associated with 
each scenario using per-scenario boxplots and non-parametric hypothesis testing between scenarios.  For 
hypothesis testing, 1-Sided Mann-Whitney U Tests were performed to assess whether a given scenario 
using a specific network in the ground-truth model yielded discrepancies significantly below those of one 
or more reference scenarios for the same network.  We specifically sought to examine the statistical 
significance differences observed in results between particle filtering scenarios and their corresponding 
scenarios absent particle filtering (but with the same network).  Again within the context of identical 
ground-truth networks, we further sought to compare the statistical significance of the difference particle 
filtering with a distribution of contact rates against particle filtering with a correct contact rate, and of a 
particle filter with a distribution of contact rates and with a random walk in contact rates against a 
corresponding particle filter without a random walk. 

5 RESULTS 

Figures 1-4 each present boxplots showing discrepancies from ground truth of each scenarios for a 
particular network type. In each plot, the vertical axis shows the accumulated discrepancy, and successive 
columns indicate the scenario in the following order:  A) No Particle Filtering with a biased contact rate 
estimate, B) No Particle Filtering with a correct contact rate estimate, C) No Particle Filtering drawing the 
contact rate from a uniform distribution (with an expected value different than the true contact rate), D) 
particle filtering with a biased contact rate estimate, E) particle filtering with a correct contact rate estimate, 
F) particle filtering with a drawing the contact rate from the same uniform distribution, and, finally, G) a 
similar particle filtering scenario where the initial contact rate is drawn from the same distribution, but then 
evolves according to a random walk.  The final two cases are the only ones in which c serves as state 
variable of the particle filter differing across particles. 

 

 
Figure 1: Scenarios for Scale Free Network. 

 
Figure 2:  Scenarios for Random Network. 
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Figure 3: Scenarios for Small World Network. 

 
Figure 4: Scenarios for Distance-Based Network. 

While results differ significantly by network type, a few general patterns can be discerned.  Even for 
scenarios associated with a correct contact rate estimate (with or without the particle filter), a significant 
discrepancy was observed.  This reflects the strong mediating influence of network structure on contagion 
(Keeling 2005, Keeling and Eames 2005), the limited capacity of random mixing to capture the effects of 
such structure, and the presence of significant stochastics within both the aggregate and ABM models.  
 For all networks, particle filtering reduced the discrepancy by several times compared to both the 
baseline case with a biased estimate of the contact rate and over the baseline case with a correct estimate of 
the contact rate.  The occurrence of any type of particle filtering conferred a pronounced benefit – often by 
binary order of magnitude – even in the context of a fixed, bias contact rate.  However, very significant 
additional benefit – often a factor of 2 or more – extended from use of particle filtering with a distribution 
of contact rates. Although not documented here, even if particles are initialized to a minimally informative 
distribution of contact rates (as here, uniformly distributed between 20 and 1200), the “survival of the 
fittest” associated with particle filtering’s weighting and weight-based resampling tends to concentrate 
effective contact rates within a region of much tighter support.  While commonly associated with state 
estimation, the particle filtering here performs a very effective form of parameter estimation. 
 By contrast, with the exception of the distance based networks – i.e., propinquity-enforcing networks 
where connections between two individuals are made only when those individuals lie within a certain 
distance of one another – very limited benefit extended from further incorporating a random walk in contact 
rates, beyond the basic provision of a distribution in in contact rates.  For some networks (e.g., Poisson 
random and perhaps scale free), use of a random walk in contact rates appears to adversely affect results.   
 Table 2 reports the median discrepancy values for each scenario and network type in the underlying 
network.  Table 3 indicates statistical significance of the differences between the particle filter results of a 
given network and corresponding (non-particle filtered) results for that same network.   In all cases, the 
results were significant. 
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Table 2:  Median Discrepancy by Scenario and Ground-Truth Network Type. 

  No particle filtering With particle filtering 
 Scenario Biased 

Contact  
Rate 

Correct  
Contact 

Rate 

Contact 
Rate 

Distrib. 

Biased 
Contact  

Rate 

Correct  
Contact 

Rate 

Contact 
Rate 

Distrib. 

Contact 
Rate 

Distrib. 
& 

Random 
Walk 

U
nd

er
ly

in
g 

N
et

w
or

k 

Scale-Free 
Network 

517.8 602.35 594.41 206.41 255.95 83.84 98.85 

Poisson 
Random 
Network 

647.42 714.59 654.44 348.35 371.17 80.09 105.77 

Small World 
Network 

584.28 633.26 648.75 258.14 308.61 167.42 137.73 

Distance Based 
Network 

427.17 512.73 647.76 185.1 212.67 260.8 158.3 

 

Table 3: Wilcoxon p-values for particle filtering scenarios when compared to stated reference scenarios. 

 Correct 
Contact 

Rate 

Biased 
Contact 

Rate 

Static Contact Rate 
Distribution 

 

Contact Rate Distribution and Random 
Walk 

Reference 
Scenario 

Correct 
without 
PF 

Biased 
without 
PF 

Distrib. 
without PF 

Correct c 
without PF 

Distrib. 
without PF 

Correct c 
without PF 

Distrib. with PF  

Scale-Free 
Network 

7.254e-
12** 

5.078e-
11** 

2.706e-
09** 

1.969e-
08** 

7.254e-
12** 

7.254e-
12** 

0.8676 

Poisson 
Random 
Network 

7.254e-
12** 

7.254e-
12** 

8.792e-
09** 

3.685e-
09** 

7.254e-
12** 

7.254e-
12** 

0.9254 

Small 
World 
Network 

7.254e-
12** 

7.254e-
12** 

1.415e-
09** 

1.415e-
09** 

7.254e-
12** 

7.254e-
12** 

0.4521 

Distance 
Based 
Network 

1.451e-
11** 

1.442e-
06** 

2.706e-
09** 

3.455e-
05** 

7.254e-
12** 

7.254e-
12** 

0.000129** 

6 CONCLUSIONS 

In the increasingly rich data environment heralded as the era of “Big Data” and characterized by the “4 
V’s” – data velocity, volume, variety, veracity – a growing number of public health decision makers are 
grappling with the problem of leveraging structured understanding of the world in the context of incoming 
time series of data.  While machine learning and classic statistical models form important elements in 
making sense of the growing volumes of available data, dynamic models provide a key element in 
delivering vale in this world due to their ability to capture causal theory and to address decision-making 
needs by virtue of their capacity to reason in the context of counter-factuals.  The results shown in the 
previous section suggest that – over a variety of network types – particle filtering may be able to very 
significantly enhance the accuracy of model-based estimates of underlying epidemiological phenomena.  
These strengths persist even in the face of – and can help correct for – the distortions inevitably 
accompanying model aggregation (Osgood 2004) and significant and systematic misestimates of model 
parameters present within such models.  Within the cases examined, particle filtering was able to aid not 
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only in estimation of model state, but also in estimating model parameters, and – reflecting the presence of 
underlying heterogeneity and more complex epidemiological processes in the system from which data is 
drawn – adapting to evolution in the effective value of parameters that would otherwise be treated as static.  
It is notable that applying a contact rate distribution during particle filtering confers clear benefits for at 
least some network types; this allows more accurate contact rate estimates to emerge during the simulation, 
through the “survival of the fittest” process typical of the particle filter.  By contrast, allowing that contact 
rate to evolve dynamically was associated with demonstrable benefit for only distance based networks. 
 It is notable that the particle filtering methods examined here were able to confer these benefits – 
including recurrent incorporation of newly emerging data – in a fully automated fashion.  The results raise 
the tantalizing possibility that particle filtering may allow rough, quickly assembled aggregate models that 
are recurrently and automatically regrounded by emerging data may be able to serve as reliable projection 
and intervention-evaluation vehicles.  This envisioned “closed loop” modeling can help reduce the chance 
that a model – once delivered – gathers dust, and instead enhances the chance that they will serve as living 
documents as part of an on-going decision support system offering reliable projection abilities even in the 
face of highly unexpected eventualities that lie outside the scope of the model. 
 The prospects of the approach are particularly attractive because of the conceptually straightforward 
nature of adapting models for use with the particle filter, and the simple implementation involved, and the 
notable generality of the method when compared with the stiff restrictions – distributionally, in terms of 
model formulation – associated with some other predictor-corrector methods.  Just as it is accepted wisdom 
that even the best mental model of a route from one city to another would not allow one to drive that distance 
with one’s eyes closed, so it may become accepted that it is suspect to rely upon a dynamic model to plan 
in a fashion that does not readily adapt to incoming data. 
 Many priorities remain for future work.  It will be important to evaluate similar, stylized models against 
more sophisticated “ground truth” models.  Experience in applying particle filtering in other contexts also 
suggests that particle impoverishment may result from prolonged time series (Murphy 2012) while it 
remains unclear how strong this risk is in the context of stochastic processes, it merits investigation.  In 
addition, the simple measurement updating scheme used here – based upon the condensation scheme (Isard 
and Blake 1998) – may perform poorly when used with much longer times between measurement updates.  
It is also not clear that an aggregate and biased model whose state is sampled via particle filtering will yield 
accurate estimates of intervention tradeoffs when used to evaluate policy scenarios.  Finally, in some 
scenarios associated with high-variance random walks in the contact rate, we encountered conditions where 
round-off causes the weights of all particles to be treated as zero; implementation of a different approach 
to weight normalization will be required for such cases. 
 A distinct class of needs relates to software (and particularly API) support for particle filtering.  While 
this technique offers sufficient generality to be used with a wide range of modeling architectures – System 
Dynamics, agent-based modeling, discrete event simulation, etc. – the requisite software support is often 
not present to make its application feasible.  For example, most agent-based modeling packages and discrete 
event modeling lack APIs supporting creating a model stratified by particles.  Given the memory demands 
associated with agent-based models, naïve attempts to apply particle filtering for such models could easily 
encounter severe difficulties.  As a key final area of future work, we wish to advance the suggestion that 
creators of frameworks consider putting in place mechanisms for easily and transparently creating particle 
filters together with the models represented in those frameworks. 
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