
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

MATCH-LADDER: AN EFFICIENT EVENT MATCHING ALGORITHM
IN LARGE-SCALE CONTENT-BASED PUBLISH/SUBSCRIBE SYSTEM

Menglu Xu
Pin Lv

Haibo Wang

Science and Technology on Integrated Information System Laboratory in Institute of
Software Chinese Academy of Sciences, University Chinese of Academy Sciences

4# South Fourth Street, Zhong Guan Cun
Beijing, 100190, CHINA

ABSTRACT

To resolve high-performance content-based event matching problem for large-scale publish/subscribe
systems, we have focused on how to use some priori knowledge to improve the efficiency. In this paper,
by theoretically analyzing the inherent problem of the matching order of predicates, we propose a
matching algorithm called Match-Ladder which based on the best matching order. The Match-Ladder can
achieve better trade-off between time efficiency and the usage of memory space. It has been verified
through both mathematical and simulation-based evaluation.

1 INTRODUCTION

Publish/subscribe is an appealing communication primitive for large-scale dynamic networks due to the
loosely coupled interaction between the publishers and subscribers. In this paradigm, subscribers express
their interests in data by registering subscriptions with the system, in order to be notified of any
forthcoming events (issued by publishers) matching their subscriptions. The matching procedure is
performed by brokers, which are also responsible for the event delivery. In this way, publishers and
subscribers are completely desynchronized in time and space. There are two kinds of publish/subscribe
system: topic-based and content-based. In the topic-based system, such as IBM’s MQSeries (IBM 1997),
each event was divided into a number of fixed topics. Each event belongs to a specific topic. A publisher
must specify their domain topics in advance, while subscribers can subscribe their contents to the
particular publishers. In the content-based system, due to the subscriber could provide a finer granularity
to find interested events, the content-based publish/subscribe networks (CBNs) are especially useful for
processing data which supplied by the publisher is constantly changing and updating a large number of
subscribers quickly with the latest event data at the same time. And in recent years, CBNs are more and
more extensively used in many applications, such as stock quotes, web advertisement (Fontoura et al.
2010), network monitoring system (Fawcett and Provost 1999), microblog and so on.CBNs are composed
of several components, such as topological structure, event model, subscription scheme, event matching
algorithm, forwarding engine and some other facilities. Among them, the highly efficient event matching
is a critical component of CBNs.
 So far, there are many event matching algorithms. We could divide them into two clusters according
to the data structure used in the algorithms. The first one is tree-based algorithms (Aguilera et al. 1999;
Gao, Li, and Zhao 2011; Gough and Smith 1995; Kale et al. 2005), the search-tree (Gough and Smith
1995) and parallel-search-tree (Aguilera et al. 1999) are the typical representatives of this algorithms.
Although these algorithms may improve the matching efficiency, they are difficult to cancel the
subscription in the tree structure and they have a combinatorial explosion in the number of times each

922978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Xu, Lv, and Wang

predicate is stored (Ma 2009). As a result, they are not suitable for large-scale systems. The second one is
table-based (Chen et al. 2011; Xu, Lv, and Wang 2013; Xue and Jia 2013; Zhao and Wu 2011), its
advantage is easy to maintain the subscriptions and the structure is very simple, but some of them only
use the predicate’s cover relationship to reduce the number of matching times to improve the efficiency,
but ignoring other priori knowledge such as the popularity and the filter ability of the predicate which
could influence the matching sequence of predicates. According to the filter ability of predicate, we have
presented an event matching algorithm(PPEM) (Xu, Lv, and Wang 2013), the problem in PPEM is that it
only considered the filter ability but ignored the popularity of predicate. In order to study the influence of
those priori knowledge on the matching efficiency, firstly, we model the matching process and then find
the method to get the best matching sequence to improve the efficiency; secondly, we propose a matching
algorithm called Match-Ladder that lends itself to very efficient matching by using the best matching
sequence. Our main contributions in this paper are:

• According to the filter ability and the frequent degree of one predicate, we have theoretically

proved that different matching order of predicates in one subscription would affect the efficiency
of the event matching process.

• A data structure which is designed to be simple while supporting the best predicate matching
order and the most usual match on different kinds of events.

• An efficient matching algorithm for processing events in real time which can handle a large
number of volatile subscriptions and supports high event rates (several millions per day).

The remaining sections of this paper are organized as follows. In section 2 we present the system

model. Section 3 discusses the predicate matching sequence. A simple data structure and its
corresponding algorithm are presented in Section 4. Some experimental results are shown in Section 5.
Finally our conclusions are presented in Section 6.

2 THE PUBLISH/SUBSCRIBE MODEL

We first give some definitions used in the publish/subscribe system model.

Definition 1 (Event) An event is composed of a set of attributes 1 2, , , ,na a aL where ,ia is a pair

<name, value>.
Definition 2 (Predicate) A predicate is a triple <name, op, value>, where name is an attribute

name, op is an operator symbol which is used to limit the value.
Definition 3 (Subscription) A subscription is a conjunctive predicates, in form of 1 2, , , mp p pL .
Definition 4 (predicate filter ability) The filter ability PA of a predicate is associated with its

operator type and value.
The filter ability of predicate could be used to evaluate the matching cost of predicate.
Definition 5 (predicate popularity) It is the frequent degree of a predicate that occurs in all the

subscriptions (shortly for PP).
Definition 6 (Predicate cover relation) Predicate 1p covers predicate 2p , if and only if for any event

E matched by 1p , E must be matched by 2p .
Although cover relation maintenance is rather a complex work, it’s very useful for reducing the

matching times. As long as we choose suitable data structure (like map in C++) to represent the cover
relation, it will make more advantages than disadvantages.

Definition 7 (Matching Problem) An event matches a subscription if all the predicates in the
subscription are satisfied by the value of the corresponding attributes contained in the event.

923

Xu, Lv, and Wang

 In the following section, we will study two problems: the first one is how the predicate filter ability
and popularity could affect the matching order of predicates, the other one is whether the matching order
of predicates could affect the efficiency of event matching algorithm or not.

3 THEORETICAL ANALYSIS OF MATCHING ORDER

In this section, we will discuss the matching order of predicates and analysis how to obtain a best
matching efficiency by changing the matching order of predicates.
 Considering a conjunctive subscription 1 2{ }nS p p p= ∧ ∧ ∧L , each predicate associates a

corresponding iPA and iPP . Suppose the matching order is from left to right, we first evaluate 1p . If 1p
matches successfully, then, 2p will be processed. We can get the matching cost of subscription S:

1 1 2 2
1 1 1

k m n

k i m i n i
i i k i

CS pa pp pp pa pa pp pa pp pa pp
= = + =

= + + + + + + +∏ ∏ ∏L L L

The matching cost uses the knowledge about the popularity and filter ability of predicates in the

system. By switching the matching order of any two predicates, we have the following result:
Lemma 1 Matching cost difference by switching the matching order of any two predicates kp , mp of

a conjunctive subscription is
1

1 1

() ()
k m

k k m m i m k j
i j

pa pp pa pp pp pa pa pp
−

= =

− + −∏ ∏
.

The proof of Lemma 1 is presented in the appendix. The result of Lemma 1 not only claims that the
abstract math model of the matching process is independent of the concrete matching algorithm, but also
indicates that the predicate matching order could affect the efficiency of any matching algorithm. Since
predicate matching sequence is very important, how to obtain the best matching order? The following
Theorem 1 gives the answer.

Theorem 1 By sorting the matching order of predicates of a conjunctive subscription satisfying with
increased / (1)pa pp pp• − , we can achieve the shortest matching time(The proof of Theorem 1 is shown
in the appendix).

In this section, we have presented that the predicate matching order could affect the matching
efficiency and we also acquire the method to get the best matching order by using some priori knowledge
like predicate’s property. In the next section, we will present a matching algorithm which uses this
matching order to improve efficiency.

4 EVENT MATCHING ALGORITHM

The Figure 1 presents the data structure used in the Match-Ladder algorithm, it mainly contains three
components: Subscriptions ID list, Match ladder and Multi-index. We will introduce their functions
respectively.

924

Xu, Lv, and Wang

Figure 1: Data Structure of the Match-Ladder.

4.1 Data structure of Match-Ladder

4.1.1 Subscriptions ID list

The subscription IDs are stored in the list in sequence. The program creates a unique ID for each
subscription automatically, which is used to identify the subscription. To maintain the subordination
relation of the predicates and subscriptions, every predicate has a subID attribute to indicate that it
belongs to which subscription.

What’s more, due to the predicate match order, we know which predicate is the first or the last one in
the subscription. This is very useful in the initial and matching phase, and we will describe this in detail in
the back.

4.1.2 Match ladder

From up to down, the attribute names are increased by its match order. That is to say:

1 1 1 2 2 2/ (1) / (1) / (1)n n npa pp pp pa pp pp pa pp pp− < − < < −L .
When the matching sequence was determined, the content in the match ladder will remain

invariability. Each layer has a pointer which points to a multi-index structure to store the predicates of the
same attribute name. The content in the multi-index will change all the time.

4.1.3 Multi-index structure

The predicates have the same attribute name are stored into multi-index structure according to their
operator type (Xue and Jia 2013). If the comparison operator is “=”, the value of the predicate will be
stored into a hash table, and for other comparison operators, the predicates will be stored by the coverage
relationship. This structure can guarantee that repetitive predicates are stored only once by adding a subID
list that stores all the subscriptions identification that contains the predicate.

subID1 subID2 …… subIDn

Subscription ID list

Match Ladder
Multi index

Attribute 1

Attribute 2

……

Attribute M

>=
>

=

<=
<

Hash table

v1

v2

v3

925

Xu, Lv, and Wang

4.2 Preprocessing procedure

In order to organize the subscriptions into the data structure of the algorithm, we need a preprocessing
before matching. In the beginning, all the structures are empty. The preprocessing procedure includes four
steps to add each subscription into the subscriptions ID list, match ladder and the multi-index structure.

Step 1: Compute the predicate match order by its attribute’s filter ability and frequent degree.
Step 2: Assign a unique ID for each subscription, and save the ID in the subscription ID list. Then,

sort the predicates of the same subscription according to the order. This step assures that all the predicates
of the same subscription will be matched in order and we could know which predicate is the last one in
the subscription when matching with the event.

Step 3: Put all the attribute names into the match-ladder in order.
Step 4: Put the first predicate of every subscription into the multi-index structure.
Figure 2 shows the contents of the data structure during the preprocessing.

Figure 2: Example of initialize Match-Ladder.

4.3 The Match-Ladder Algorithm

After preprocessing, the first predicate of every subscription has been stored into match-ladder. For each
layer in the match-ladder, we will get a multi-index structure. If the new event has the attribute name and
the multi-index of this layer isn’t empty, then we will follow these steps to find the subscriptions
satisfying the new event:

If the operator type is equal, do the hash table lookup directly, and for other comparison operators, get
the first match of the current predicate in the new event, thanks to the coverage relationship between
predicates, its subsequent binding will also meet the match.

When we get the match predicates, we will judge whether the predicate is the last one in the
subscription or not. If it is the last one, the subscription satisfies the new event; otherwise, we will add the
next predicate of the current predicate into the corresponding layer of the match ladder according to its
attribute name. The Pseudo code is showed in the following.

Matching algorithm based on Match-Ladder
Input: A new Event E
 Match ladder after being initialized CurMatchLadder
Output: matchSubs

926

Xu, Lv, and Wang

matchSubs := {}
For each layer k of the Match ladder
 AttrName := the attribute name in layer k
 if E doesn’t have AttrName OR the multi-index in layer k is empty then
 continue
 else
 Pe :=getPredicate(E,AttriName)
 operator op in layer k
 MatchPredicates :=MatchByOperator(predicates in layer k, op,Pe)
 For each predicate mp in MatchPredicates
 For each ID in mp.SubID list
 Subscription S :=getSub(ID)
 if mp is the last one in S then
 matchSubs.add(mp.SubID)
 else
 Predicate np :=getNextPredicate(S)
 CurMatchLadder.add(np)
 EndFor
 EndFor
EndFor

4.4 Performance analysis

Assuming the attribute number of an event or a subscription schema is c and the total number of
subscriptions is S.

Space complexity: The space requirement of our algorithm is obvious, that is the storage for all the
subscription. So the space complexity in our algorithm is ()O cS .

Time complexity: Because the attribute number is c (It’s a very small constant), the match ladder
structure has c layers. Supposing the Match Predicates has L predicates and the size of each matching
predicate’s subID list is K, the worst time complexity of our algorithm is ()O cLK .

5 EXPERIMENTATION

Our simulation is based on OverSim (OverSim 2014), a discrete event simulator written in C++ and a
popular choice for simulating application-layer protocols in large-scale scenarios. We implemented the
ferry (Zhu and Hu 2007) which is a p2p framework as the overlay of OverSim, and constructed the event-
based system simulation based on it. Because the mainly task of the simulation is to evaluate the
effectiveness of matching algorithms, we use other components in ferry and only modify the matching
component.

5.1 Implementation and Methodology

To study the effectiveness of our matching algorithm, we have implemented three major matching
algorithms in our simulation system.

1. The Match-Ladder algorithm.
2. PPEM algorithm (Xu, Lv, and Wang 2013).
3. The Match Bucket algorithm (Chen et al. 2011).

To fairly compare the performance of each algorithm, all experiments were conducted on the same

computer with Intel(R) Core(TM) 2 Duo 2.93 GHz CPU, 2 GB RAM running Windows XP SP2. What’s
more, we choose the same network model and event scheme as ferry in our simulation. The network
model is derived from the King Dataset, which includes the pair wise latencies of 1024 DNS servers in
the Internet measured by King Method (Gummadi, Saroiu, and Gribble 2002). The event scheme is

927

Xu, Lv, and Wang

derived from a stock quotes model proposed in Meghdoot (Gupta et al. 2004). The scheme is defined as
follows:

{ : ,2 / / 98,31/ / 2013},
{ : , , },
{ : ,0,500},
{ : ,0,500},
{ : ,0,500},
{ : ,0,500},
{ : ,0,310000000}

S

Date String Jan Dec
Symbol String aaa zzzz
Open Float
High Float
Low Float
Close Float
Volume Integer

=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎭⎩
The scope of each attribute is defined and we also endowed each attribute a frequent degree to

represent the possibility that the attribute will appear in the subscriptions and events:{p(Date)=10%;
p(Symbol)=96%; p(Open)=49%; p(High)=80%; p(Low)=78%; p(Close)=44%; p(Volume)=28%}. The
subscriptions are generated based on the frequent degree of attributes and some predefined templates
introduced in Meghdoot. Events are randomly generated according to the frequent degrees of attributes.

The simulation parameters are as follows unless otherwise noted: network size of 1000 nodes;
subscription of 10000; events of 10000.

5.2 Results

Figure 3 shows the matching time per 10000 events publishing with subscription number increased from
1000 to 10000. Match Bucket consumes the most matching time and the matching algorithm PPEM in our
previous paper is slightly better than the Match Bucket. The best one is that we proposed in this paper
Match-Ladder. As shown in Figure 3, with the increase of subscription number, it grows much more
slowly than the other tow algorithms.

Figure 3: Event matching time of different subscription number.

The usage of memory space is shown in the Figure 4. By the data, it is easy to find that the memory
space of the Match-Ladder algorithm is the lowest. So considering both the matching time and the usage
of memory space, the conclusion is that the Match-Ladder performs better than the other two algorithms
in both time efficiency and the usage of memory space.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

Subscription number

M
at

ch
in

g
tim

e
(m

s)

Match Ladder
Match Bucket
PPEM

928

Xu, Lv, and Wang

Figure 4: Memory space for different subscription number.

As previously documented in Theoretical analysis of Matching order section, the matching order of
predicates is independent of the concrete matching algorithm, that is to say, the predicates’ matching
order could affect the efficiency of any matching algorithm, not just the Match-Ladder algorithm
proposed in this paper. So in the next experiment, we will change the predicates’ matching order for both
Match-Ladder algorithm and Match Bucket algorithm.

In Figure 5 and Figure 6 (the event number is 1000), the different match order of predicates in one
subscription does really affect the efficiency of matching algorithm. What’s more, through the data in
Table 1, it is not hard to find that the matching time of the worst match order is twice as long as the best
match order. So all the results indicate that the match order is a significant factor for improving the
efficiency of any matching algorithm.

Figure 5: The matching time of different match order for Match-Ladder algorithm.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

15

20

25

Subscription number

sp
ac

e
m

em
or

y
(M

B
)

Match Ladder
PPEM
Match Bucket

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

40

45

subscription number

m
at

ch
in

g
tim

e

The best match order
The worst match order
The random match order

929

Xu, Lv, and Wang

Table 1: The ratio of matching time between the worst and the best order.

Subscription
number 1000 2000 3000 4000 5000

The worst/
The best 199.75% 203.32% 208.17% 197.36% 207.56%

Subscription
number 6000 7000 8000 9000 10000

The worst/
The best 207.41% 212.80% 217.22% 208.35% 208.36%

Figure 6: The matching time of different match order for Match Bucket algorithm.

6 CONCLUSIONS

In this paper, firstly, we have theoretically proved that the matching order of predicates affects the
efficiency of the matching process, and we also acquire the method to get the best matching order by
making use of the property of predicates; secondly, we have presented an efficient matching algorithm
Match-Ladder based on the best matching order.

Our experimental results show that the Match-Ladder algorithm is much better than the PPEM and
the Match Bucket algorithms in performance of large scale publish/subscribe systems and the Match-
Ladder also requires low memory under different circumstances. In addition, the results also verify the
Lemma 1, namely, the predicate matching order could affect the efficiency of any matching algorithm.
But the weak point of the Match Ladder algorithm is that the calculation of the frequent degree of
predicates in every subscription is time-consuming. In the future, we will speed up the calculation process
by digging the priori knowledge. What’s more, we will also research on how to apply our algorithm to
approximate matching problem in the distributed systems.

ACKNOWLEDGMENTS

This paper is supported by the National High Technology Research and Development Program of
China(863 Program) under Grant No. 2012AA011206.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

40

45

Subscription number

M
at

ch
in

g
tim

e
(m

s)

The best match order
The worst match order
The random match order

930

Xu, Lv, and Wang

A THE PROOF OF LEMMA 1

Suppose the original matching order of the subscription is 1 2 k m np p p p pL L L , so the original
matching cost is:

1 1 2 2
1 1 1

k m n

k i m i n i
i i k i

CS pa pp pp pa pa pp pa pp pa pp
= = + =

= + + + + + + +∏ ∏ ∏L L L

 By switching the matching order of any two predicates ,k mp p . The new matching cost CS’ is:

CS ' = pa1 + pp1pp2 pa2 +!+ pam ppm ppi +!+ pak pp j +!+ pan ppi
i=1

n

∏
j=1

m

∏
i=1

k−1

∏

 The matching cost difference between the two matching order is:

1 1

1 1

1

1 1

'

() ()

() ()

k m

k k m m i k k m m j
i j

k m

k k m m i m k j
i j

CS CS

pa pp pa pp pp pa pp pa pp pp

pa pp pa pp pp pa pa pp

− −

= =

−

= =

−

= − − −

= − + −

∏ ∏

∏ ∏

 ■

	

B THE PROOF OF THEOREM 1

Suppose there is a matching sequence 1 1 2 1:[, , , , ,]k k nMS p p p p p+L L that can achieve the shortest

matching time and there exists 1 1 1/ (1) / (1)k k k k k kpa pp pp pa pp pp+ + +− > − between kp and 1kp + .
In Lemma 1, suppose m = k+1, so

1 1

1 1 1
1 1

1

1 1 1
1

'

() ()

[(1) (1)]

k k

k k k k i k k i
i i

k

k k k k k k i
i

CS CS

pa pp pa pp pp pa pa pp

pa pp pp pa pp pp pp

− +

+ + +
= =

−

+ + +
=

−

= − + −

= − − −

∏ ∏

∏
	

If we switch the matching order of kp and 1kp + , we can get a more shorter matching time. This
contradicts our assumption. Thus the matching order with increased / (1)pa pp pp• − can achieve the
shortest matching time. ■

REFERENCES

Aguilera, M. K., R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. 1999. “Matching Events in a
Content-based Subscription System.” In Proceedings of the Eighteenth Annual ACM Symposium on
Principles of Distributed Computing(PODC’99), Atlanta, Georgia, USA, 53-61.

Chen, J. M., S. G. Ju, J. G. Pan, Z. W. Zu, and Z. Y. Gong. 2011. “Content-based effective event
matching algorithm.” Journal on Communication 32(6):78-85.

Fawcett, T., and F. Provost. 1999. “Activity Monitoring: Noticing Interesting Changes in Behavior.” In
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Diego, California, USA, 53-62.

931

Xu, Lv, and Wang

Fontoura, M., S. Sadanandan, J. Shanmugasundaram, S. Vassilvitski, E. Vee, S. Venkatesan, and J. Zien.
2010. “Efficiently Evaluating Complex Boolean Expressions.” In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, Indianapolis, Indiana, USA, 3-14.

Gao, S., G. H. Li, and P. Zhao. 2011. “Marshmallow: A Content-Based Publish-Subscribe System over
Structured P2P Networks.” Computational Intelligence and Security(CIS), Hainan, CHINA, 290-294.

Gough, J., and G. Smith. 1995. “Efficient Recognition of Events in a Distributed Systems.” In
Proceedings of the 18th Australasian Computer Science Conference, 55-65.

Gummadi, K.P., S. Saroiu, and S.D. Gribble. 2002. “King: Estimationg Latency Between Arbitrary
Internet End Hosts.” Proceedings 2nd SIGCOMM Workshop on Internet Measurement, 5-18.

Gupta, A., O. D. Sahin, D. Agrawal, and A. E. Abbadi. 2004. “Meghdoot: Content-based
Publish/Subscribe over P2P Networks.” In Proceedings of the 5th ACM/IFIP/USENIX International
Conference on Middleware (Middleware’04), Toronto, Canada, 254-273.

IBM. 1997. “Internet Application Development with MQSeries and Java.” Palos Verdes: Vervante
Corporate Publishing.

Kale, S., E. Hazan, F. Y. Cao, and J. P. Singh. 2005. “Analysis and Algorithms for Content-based Event
Matching.” ICDCSW ’05 Proceedings of the Fourth International Workshop on Distributed Event-
Based Systems (DEBS), Washington, DC, USA, 363-369.

Ma, J. G. 2009. “Research on Key Techniques for Large-Scale Data Dissemination Oriented
Publish/Subscribe System.” Ph.D. thesis, Institute of Software Chinese Academy of
Sciences.[Accessed December 3, 2008].

OverSim. 2014. http://www.oversim.org/.
Xu, M. L., P. Lv, and H. B. Wang. 2013. “Predicate Priority Based Event Matching Algorithm in

Publish/Subscribe System.” the Forth IEEE International Conference on Networking and Distributed
Computing, HongKong, HK, CHINA.[Accessed December 6, 2013].

Xue, T., and Q. Jia. 2013. “A Fast Matching Algorithm for Content-Based Publish/Subscribe Systems.”
In Proceedings of the 2012 International Conference on Communication, Electronics and Automation
Engineering, Advances in Intelligent Systems and Computing 181:997-1001.

Zhao, Y., and J. Wu. 2011. “Towards Approximate Event Processing in a Large-Scale Content-Based
Network.” In Proceedings of the 2011 31st International Conference on Distributed Computing
Systems, Minneapolis, MN, USA, 790-799.

Zhu, Y., and Y. Hu. 2007. “Ferry: A p2p-based architecture for content-based publish/subscribe services.”
IEEE Transaction on Parallel and Distributed Systems 18(3): 672-685.

AUTHOR BIOGRAPHIES

MENGLU XU is currently pursuing her Master's degree at the Science and Technology on Integrated
Information System Laboratory in Institute of Software Chinese Academy of Sciences, University
Chinese of Academy Sciences. She holds a B.S. degree in Automation from the Xiamen University in
Xiamen, China. Her research interests involve pattern recognition, network control, and distributed
computing. Her email address is lumengxu@gmail.com.

PIN LV is an Associate Professor at the Science and Technology on Integrated Information System
Laboratory in Institute of Software Chinese Academy of Sciences. He received a Ph.D. degree in
Computer Application Technology from Institute of Software Chinese Academy of Sciences. His research
deals with Modeling and Simulation. His email address is lvpin@iscas.ac.cn.

HAIBO WANG is a Senior Engineer at the Science and Technology on Integrated Information System
Laboratory in Institute of Software Chinese Academy of Sciences. He received a M. S. degree in
Computer Application Technology from Northwestern Poly technical University. His research deals with
middleware. His email address is haibo@iscas.ac.cn.

932

