
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. D. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

A SIMULATION STUDY OF PRACTICAL METHODS FOR TECHNICAL DEBT
MANAGEMENT IN AGILE SOFTWARE DEVELOPMENT

Isaac Griffith Hanane Taffahi
Clemente Izurieta David Claudio

Department of Computer Science Department of Mechanical and

Montana State University Industrial Engineering
357 EPS Building Montana State University

Bozeman, MT 59717, USA Bozeman, MT 59717, USA

ABSTRACT

Technical debt is a well understood yet understudied phenomena. A current issue is the verification and
validation of proposed methods for technical debt management in the context of agile development. In
practice, such evaluations are either too costly or too time consuming to be conducted using traditional
empirical methods. In this paper, we describe a set of simulations based on models of the agile
development process, Scrum, and the integration of technical debt management. The purpose of this study
is to identify which strategy is superior and to provide empirical evidence to support existing claims. The
models presented are based upon conceptual and industry models concerning defects and technical debt.
The results of the simulations provide compelling evidence for current technical debt management
strategies proposed in the literature that can be immediately applied by practitioners.

1 INTRODUCTION

Technical debt embodies the dichotomy between decisions focusing on the long-term effects to the
quality of the software versus focusing on the short term effects on the time-to-market and business value
of the software. That is, while software should be delivered on time, any debt (sacrifice in quality) against
the quality of the software used to make that possible must eventually be repaid in order to ensure the
overall health of the product. This has become a growing concern since as early as 1992 (Cunningham
1992), and it was not until recently that industry and researchers worked to provide strategies for
incorporating technical debt management into the software development life cycle.

Currently, several basic methods for managing technical debt in practice have been proposed, yet
there is little empirical work supporting these claims (Ramasubbu and Kemerer 2013), due to the nature
of the problem making empirical studies prohibitive. Thus, simulation provides an excellent alternative to
evaluate proposed technical debt management methods, within the context of agile development
processes, in a cost and time sensitive way. The problem at hand is to determine, which technical debt
management strategy is superior and the most feasible to implement within an existing agile development
process model. To investigate the introduction of technical debt management strategies, we have selected
the Scrum agile development process (Schwaber and Beedle 2001).

This paper is organized as follows: Section 2 describes background concepts and related work.
Section 3 describes the conceptual model. Section 4 describes the experimental design and data collection
methods used in this study. Section 5 describes the results and analysis. Section 6 concludes the paper and
provides avenues of future work.

1014978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Griffith, Taffahi, Claudio and Izurieta

2 RELATED WORK

This research is centered around three major concepts: The first is software process simulation modeling,
which is a branch of empirical software engineering focused on simulating different aspects of the
software development life cycle. It is aimed at evaluating and assessing staffing requirements, predicting
release dates, etc. (Kellner, Madachy and Raffo 1999). The second is agile software development,
specifically Scrum which is one of the most widely used agile processes in the software industry. Finally,
the main focus of this research is on technical debt and technical debt management. This section describes
these concepts in more detail as well as relevant related work.
 Simulation has been widely used as a means of prediction and analysis in the software industry.
Kellner, Madachy and Raffo (1999) explored the area of Software Process Simulation Modeling (SPSM)
in order to understand the methods used as well as the problems to which simulation has been applied.
They also connected the use of simulation to that of empirical study. They identified that simulation can
be used for, or help facilitate, the following processes: strategic management, planning, control and
operational management, process improvement and technology adoption, understanding, and training and
learning. In conducting a survey of the literature, they found that most simulation studies conducted are
centered around the process or project level. A further study by Zhang, Ketchenham, and Pfahl (2008)
centered on the current trends in SPSM noted that of all the simulation modeling paradigms used, both
discrete-event and continuous simulation formed the mainstream paradigms. They identified the
following other less used simulation modeling paradigms: qualitative simulation, knowledge(rule)-based
simulation, role-playing games, agent-based simulation, discrete-time simulation, stigmergy theory, and
emergent/unbound systems. They looked into the levels at which simulation is used in software process
modeling noting three levels of abstraction (based on relationships modeled): system level, process level,
and entity level. At the system level, the process is modeled as a system defined by external parameters
which are allowed to vary continuously over time. The process level delves deeper than the causal
relationships of the system level and describes the process as a set of entities, resources, and the
relationships between them. The entity level is more in depth look at the process focusing on the actual
entities (e.g., software engineers) and the tasks they need to complete in the context of the process. They
note that there is a need to increase modeling and simulation at the process and entity level. A specific
instance of process level simulation is the work of Magennis (2011), which utilizes Monte-Carlo
simulation to evaluate the effects of changes to agile development processes. Another example of agile
process simulation is the work of Glaiel et al. (2013) which utilizes system dynamics (a form of
continuous SPSM) to describe and evaluate agile processes.
 Scrum is an agile development process which focuses around the use of a backlog (a priority queue of
new features or user stories to be implemented in the software). Scrum utilizes the concept of a sprint
planning meeting (constrained to an 8 hour time limit) to plan the next sprint (period of iterative
development typically consisting of 45 days) (Schwaber and Beedle 2001). The sprint is then conducted
with short meetings (known as stand-up meetings or scrums and constrained to 15 minutes in duration)
held each day to identify the work that has been completed the previous day and the work to be completed
during the current day. At the end of each sprint (or set of sprints) a release of the software occurs
bringing the newest features to the user. Although the intention of agile is to facilitate faster development
with a goal of higher quality, there is still a continual buildup of technical debt.
 Technical debt is a metaphor originally coined by Ward Cunningham (1992) as a way of explaining
the need to restructure software using a financial metaphor, for the benefit of management. Fowler et al.
(1999) suggests (as an argument towards the benefits of refactoring) that reducing technical debt should
motivate development teams to practice constant refactoring. Current research in the agile community
views the management of known and unknown technical debt as first class objects that once identified,
should be tracked (over their lifetime) as a part of a combined backlog (Gat and Heintz 2011) or a
separate technical debt list (Seaman and Guo 2011). Recently, Schmid has developed a formal framework
which divides technical debt into potential technical debt (any item which may be identified as TD) and

1015

Griffith, Taffahi, Claudio and Izurieta

Figure 1. Conceptual model for a discrete-event simulation of the Scrum agile process which includes

both defect and technical debt creation.

Project
Backlog

Release
Software

Create
Work Items

Next
Project

Next
Release Next Sprint

Release
Backlog

Sprint
Backlog

Construct
Software

Refactor
Technical

Debt

Create
Defects

and
Technical

Debt

Release
Planning

3 Releases 3 Sprints

effective technical debt (those potential technical debt items which are of concern and slated for
remediation) (Schmid 2013). For a deeper exploration of recent research, we refer the reader to a
comprehensive literature review by Tom, Aurum, and Vidgen (2013).
 Technical Debt Management comprises the actions of identification, assessment, and remediation of
technical debt throughout a software system. The current industry focus has been on identifying and
tracking debt as part of the working project backlog (Kruchten, Nord and Ozkaya 2012). An example of
such technical debt items are code smells, which are poorly designed areas of the software which strongly
indicate a need for refactoring (Fowler, et al. 1999). Essentially, we can interpret the creation of code
smells within a software system as taking on debt (Fontana, Ferme and Spinelli 2012), and the longer they
are allowed to remain (without refactoring) (Fowler, et al. 1999; Neill and Laplante 2006) the more
influence they will have on the code base (Counsell, et al. 2010) and project velocity (Power 2013). This
influence resonates through the code and makes the software harder to extend and maintain in the future,
thus causing software engineers to pay interest on the debt by increasing the amount of effort required to
affect a change (Nugroho, Visser and Kuipers 2011). The proposed strategies (which are the focus of this
paper) represent a set of basic practices that can be applied by any company within the industry. There are
more advanced processes such as basic cost benefit analysis (C. Seaman, et al. 2012), real options
analysis, net-present value, and total cost of ownership (Sullivan, et al. 1999), and portfolio approaches
(Guo and Seaman 2011) which have also been suggested, but they are outside the scope of this work.
 The purpose of this work is to present simulation as a method to evaluate the different strategies for
basic technical debt management proposed in the literature (Kruchten, Nord and Ozkaya 2012; Letouzey
and Ilkiewicz 2012; McConnell, Managing Technical Debt 2008). We utilize an agile development
context, Scrum, and show that technical debt management strategies can be evaluated. The proposed
models are evaluated using discrete-event simulation based on the work of Glaiel et al. (2013) but
focusing on understanding the process of technical debt management rather than the agile process as a
whole. The contributions of this work confirm the concepts proposed in the literature and the use of
simulation as a means to help managers evaluate their own TDM strategies.

3 CONCEPTUAL MODEL

The model we have developed is designed to simulate the Scrum development process (Schwaber and
Beedle 2001), as depicted in Figure 1, from the perspective of the Product Owner (or manager in charge
of a product). In general, the development of the product is done in an iterative fashion, each iteration is
called a sprint within which development commences.

1016

Griffith, Taffahi, Claudio and Izurieta

 A sprint typically has a duration of 30 or 45 days, and for this study we selected a sprint duration of
45 days. A release of the software can be composed of several sprints, we selected 3 sprints per release
for this study. A group of releases then composes a project or milestone for the system. For this study we
have selected 3 rele ases per project. The overall evolution of a system can be decomposed into several
projects, but in this study we have limited the number of projects to 1.

Table 2. Attributes associated with software engineers in the model.

Attribute Description

Type
A representation of the type of software engineer and is one of the following
values {Junior, Mid-Level, Senior}. The engineer's type determines their
available daily effort and their productivity.

Estimated Daily
Effort

An estimate of how much time (in hours) the software engineer has available to
put towards working on work items.

Productivity

A factor representing the normalized capability of a software engineer to
complete a work item according to that item's estimated effort. The values for the
types of software engineers in this model are:

• Junior: 2.0 - a junior software engineer takes twice as long as a mid-level
software engineer to complete a given task.

• Mid-Level: 1.0
• Senior: 0.5 - a senior software engineer takes half as long as a mid-level

software engineer to complete a given task.

Table 1. Attributes associated with work items in the model.

Attribute Description
Identifier A unique identifier to track this work item.

Type Represents the type of work to be completed and is one from the set {New Feature,
Bug/Defect, or Technical Debt (Major Refactoring)}

Priority

A number between 1 and 5 (highest has most priority) and which indicates the desire
of stakeholders for the work to be completed. Where a stakeholder is anyone who has a
vested interest in the software (Sharp, Finkelstein and Galal 1999). Represented as a
discrete distribution such that 25% are Priority 1 or Priority 2, 15% are Priority 3, and
10% are Priority 4 or Priority 5. In the case of defects the priority was adjusted such
that 50% are Priority 3(1), 35% are Priority 4(2), and 15% are Priority 5(3) for major
(minor) defects.

Effort
(man-hours)

An estimate of the time it will take for an average software engineer to affect the
change to the system. This estimate can be derived from one of many methods (e.g.
Planning Poker (Moløkken-Østvold, Haugen and Benestad 2008; Tamrakar and
Jørgensen 2012), the Delphi Approach (Rowe and Wright 1999), etc.). The effort is set
using a triangular distribution TRIANG(0.5, 1, 10)1, for New Features and Technical
Debt, while Defects are set using TRIANG(3,8,24) or TRIANG(1,2,3) for major and
minor defects, respectively.

Size (SLOC) An estimate of the change to the size of the system. The size is represented by a
triangular distribution of TRIANG(250,100,2500).

Engineer The software engineer assigned to this work item.

1. TRIANG(x,y,z) is the triangular probability distribution, where x is the minimum, y is the mode, and z is the maximum.

1017

Griffith, Taffahi, Claudio and Izurieta

The conceptual model consists of three types of objects: Work Items, Software Engineers, and
Backlogs. Each work item has the attributes described in Table 1. Each software engineer has the
attributes defined in Table 2. Each of the backlogs consists of the properties defined in Table 3.

Each project begins at the project or release planning stage. This is where the items to be worked on
are prioritized and cost and size estimates are provided. Once the estimates are provided the work items
move into the project backlog (an ordered list of work to be completed over the duration of the project).
This backlog is further subdivided into release backlogs which are further divided into the sprint
backlogs. Once a sprint begins the sprint backlog is locked from adding new items until the sprint is
complete. Once complete the sprint velocity is calculated to determine where the process can be
improved. Sprint velocity is a means to determine if the development team was on track when completing
the work assigned and provides managers the ability to predict the amount of work a team is capable of
handling. Sprint velocity is calculated as the ratio in work completed over work assigned between two
consecutive sprints. The same metric can be calculated for re leases as well as for projects.

At the end of a sprint any incomplete work items are moved from the sprint backlog back into the
release backlog. The release backlog is re-evaluated and the next sprint is planned. At the end of each

Table 4. Input parameters, their descriptions and default values used during simulation.

Input Description Value
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Maximum effort assignable to a sprint. 1800 man-hours
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Maximum effort assignable to a release. 5200 man-hours
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Maximum effort assignable to a project. 16200 man-hours

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Maximum number of sprints per release. 3 sprints
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Maximum number of releases per project. 3 releases
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Maximum projects per simulation. 1 projects
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 Initial amount of TD in the system. 1000 SLOC

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 Maximum sprint length in days. 45 days
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 Number of sprints between TD-only sprint

occurrences.
2 sprints

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 Percentage of sprint effort dedicated to TD. 15%
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 Initial size of the current system. 8500 SLOC

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 Minimum threshold for TD. 1000 man-hours
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 Maximum threshold for TD. 5000 man-hours

Table 3. Description of the backlogs used in the model.

Backlog Description

Project Backlog

The master list of all work to be completed on the project, and which is ordered
using a priority queue. We assume here that the priority also reflects those
dependencies between items (or dependencies on artifacts created by the
construction of the work items). The product backlog is decomposed into a set of
one or more release backlogs as a part of release planning.

Release Backlog
The master list of all work to be completed during a given release period, and it is
ordered similar to the project backlog. The release backlog is further decomposed
into one or more sprint backlogs.

Sprint Backlog The master list of all work to be completed during a given sprint, and is ordered
similar to the project and release backlogs.

1018

Griffith, Taffahi, Claudio and Izurieta

release, the product is delivered to the users. Any remaining work, at the end of a release, is returned to
the project backlog. The project backlog is then re-evaluated in order to plan for the next release. The
development process continues in this fashion while new work is continually added and evaluated in
release planning.

Finally, each newly completed work item can potentially generate new defects (bugs) and/or technical
debt. In the case of defects, several processes are typically in place to identify, track, and remediate these
issues, yet for technical debt there are typically no such processes in place for technical debt.

3.1 The Simulation Process

The general simulation process can be seen in Figure 2 while the input parameters used for each of the
models ca n be found in Table 4. The following narrative describes this process, utilizing the above
defined work items, software engineers, and backlogs.
 A release begins by first incrementing the CurrentRelease variable. If CurrentRelease < MaxReleases,
then we move items from the project backlog into the current release backlog. Once the release backlog
has enough items for MaxSprint sprints (at least MaxSprintEffort amount of work), then the sprint cycle

Figure 2. Diagram of the base model for the scrum software development process including defect and

technical debt incorporation.

Generate
Product
Backlog

WorkItems

Project
Backlog

Begin

currentRelease <
maxReleases

currentRelease = 1

Release
Backlog

[true]

currentSprint
= 1

currentSprint <
maxSprints

Sprint
Backlog

[true]

Process
Backlog

WorkItems

Record
Work

Complet
ed

End Sprint

Record
Work Not
Completed

Move
Incomplete

WorkItems to
next sprint

backlog

Increment
currentSprin

t

Record
Sprint

Velocity

Update TD

Reduce
Developer

Productivity

Record
Release

Work Not
Complete

[false]

Move
Incomplete

WorkItems to
next Release

Backlog

Increment
currentRelease

Record
Release
Velocity

Record
Project
Velocity

End

[false]

Each item generated
has a priority (1 – 5),
a cost estimate (in
hours), and a size
estimate (in Lines of
Code)

Has a set of n
developers
carrying out
tasks based
on their
productivity
(skill level in
lines of
code / hour)

Each
developer
works for 8
hours with 1
hour of break
and an initial
15 – 45
minutes of
meeting each
day

Triang(0, 2, 5) per
1000 LOC (does not
apply to refactoring
work)

Send To
User

Tech Debt
End

One Sprint
takes 45

days (8 hrs
per day)

[true]

currentProject <
maxProjects

CurrentProject =
1

[false]

Increment
CurrentProject

Release
Planning

Identify
Potential TD

Is Effective
TD?

Identify
Effective TD35%

Record
TD

1019

Griffith, Taffahi, Claudio and Izurieta

is started. Within the sprint cycle the following occurs: First, the CurrentSprint variable is incremented
and then the sprint backlog is filled to capacity (determined by the available effort of the current set of
software engineers (MaxSprintEffort)). Once the sprint backlog is filled, work items are then processed
by the software engineers. After all items in the sprint have been completed, or the sprint duration has
been exceeded, the sprint cycle ends and the next begins. If we have reached the MaxSprints condition,
then we start the next release. If we have reached the MaxReleases condition, then we begin the next
project. Finally, if we have reached the MaxProjects condition, then we end the simulation.
 During each sprint, as the software engineers are completing the work items, it is possible that each
completed work item will generate potential technical debt. The work items are still considered complete
but at the same time the model generates new technical debt items for processing. The simulation
generates TRIANG(0, 2, 5) number of new technical debt items per 1000 SLOC. In the base model, the
technical debt items are not tracked or actively identified and thus leave the system as a part of the
production product. It should be noted that for the technical debt generated we are counting the identified
(for models where active tracking is used) and unidentified (for all models) instances as variables of the
system. We specifically track technical debt, as a part of the simulation (not to be confused with the
technical debt list), to impose a penalty on software engineer productivity as shown in (1). The argument
for this reduction in productivity is based on the notion that technical debt embodies the impact of poor
quality on the cost of change to a system. Thus, if the cost of change increases while the number of
software engineers stays constant, the impact is that their productivity (ability to affect the change on the
system) must be decreasing, as defined by the following formula:

 𝐷𝐷 =
1

1 − �𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑧𝑧𝑧𝑧𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 �
 (1)

 This conceptual model assumes the following is true: The stakeholders and product owner have
assigned priorities to each of the work items with a value between 1 and 5. The new features to be
developed have been decomposed into the smallest workable units. In the base model, we assume that
technical debt is not a concern and that any refactoring is not intended to remove technical debt. We
assume that release re-planning occurs but is outside the scope of these models. We assume that the
estimates for cost and size are correct. Finally, we assume that the priority of the work items and their
order in the list also reflects the dependencies between them. That is, if a work item is dependent upon
other work items, then those it depends upon are listed before it in the backlog.

4 EXPERIMENTAL DESIGN

This section outlines the experiments and data generation methods used in conducting this simulation
study. We first describe the experiments conducted and then describe the data generation procedure.

Table 5. Summary of the models and strategies developed for comparative analysis.

Model TD Remediation Strategy Simulation
1. Base - Base

2. TD List Percent TDL-P
Sprint TDL-S

3. TD List with Active TDM Percent ATDM-P
Sprint ATDM-S

4. TD Thresholding Upper Threshold Only TDT-U
Upper and Lower Threshold TDT-UL

1020

Griffith, Taffahi, Claudio and Izurieta

4.1 Experiments

The experiments are designed to explore different methods of technical debt management which have
been proposed in the literature. Specifically we have identified four models which are used for
comparative analysis. The models have been developed in a hierarchical fashion, with each adding new
features on top of the previous model. The base model (Base) is an implementation of the conceptual
model, does not consider technical debt management, and is used to verify that the process is correct prior
to evaluating the other approaches. The second model (TD List) maintains a separate list of technical debt
items which allows for deliberate tracking of the technical debt items. The remaining two models use this
list and continuously monitor development of new instances of technical debt.

These two models, TD List and TD List with Active TDM, can use either a percentage based or sprint
based strategy to remove technical debt. In the percentage based method, a certain percent of sprint effort
is directed toward the removal of technical debt while the rest is directed toward defect or new feature
work. In the sprint-based method, every nth sprint’s entire effort is directed toward the removal of
technical debt. The final model is based on the concept of a technical debt threshold (McConnell,
Managing Technical Debt 2008), which is built upon the active monitoring model and utilizes a threshold
to identify when technical debt should be removed. This model has two possible threshold approaches:
the first begins technical debt removal once the current level has reached an upper threshold, and the other
utilizes both an upper threshold a lower threshold to stop the technical debt removal phase.

Using these models we construct and compare the results of each simulation and the various strategies
employed in order to determine which technical debt management strategy is superior. First, we compare
between strategies of each model, then we compare between model types using the best alternative at
each level for the between-level comparisons. In each of these comparisons we look at the following five
metrics: cost of completed items (CC), count of work items completed (WC), cost of effective technical
debt (ETD), cost of potential technical debt (PTD), and cost of total technical debt (TD). For CC, ETD,
PTD, and TD each is measured in source lines of code (SLOC). Each of these values are mean value for a
single simulation run averaged across all of the repetitions of the simulation. A summary of these models
can be found in Table 5.

4.2 Data Generation

Utilizing existing theoretical concepts and models we randomly generate new features, technical debt
items, and defect items, using the distributions previously noted. The generated features will have sizes
and effort estimates corresponding to values that would be achieved using the methods identified in
(Cohn 2006) and (McConnell, Software Estimation: Demystifying the Black Art 2006). The size and
cost/effort estimates for technical debt items are based on the models identified in (Marinescu 2012),
(Curtis, Sappidi and Szynkarski 2012), and (Nugroho, Visser and Kuipers 2011). The defects generated
during the process follow the empirical models described in (McConnell, Code Complete: A Practical

Table 6. Summary of the models and strategies developed for comparative analysis.

Comparison CC (SLOC) WC (Count) ETD (SLOC) PTD (SLOC) TD (SLOC)
TDL-S vs TDL-P 117.956 -9.544 14.164 -13.552 65.51860656
TDL-P vs Base -2536.8 1393.292 -528.332 -2310.236 -1921.886531
ATDM-S vs ATDM-P -645.264 350.604 -137.416 -617.648 -556.3476327
ATDM-S vs TDL-P -548.724 420.008 -105.564 -506.408 -462.0379918
TDT-U vs TDT-UL 2662.508 -1369.668 548.176 2325.976 1959.103512
ATDM-S vs TDT-U -2565.968 1439.072 -518.784 -2220.152 -1869.516664
TDL-P vs ATDM-P 125.708 23.624 19.844 15.74 37.2169801

1021

Griffith, Taffahi, Claudio and Izurieta

Handbook of Software Construction 2004) which identifies the size and estimated effort required to
remove these defects.

5 RESULTS AND ANALYSIS

We conducted several simulations of the models described in the previous section. For each simulation
we conducted a total of 8125 replications. The number of replications was selected in order to reduce the
percent-error of the metrics of concern (most notably 𝑇𝑇𝑇𝑇) to within a half-width of 1.5%. The resulting
average of the mean metrics values for each metric of concern over the developed models can be found in
Table 6. Figure 3 depicts the mean metric values (excluding WC) between simulations, while Figure 4
depicts the change in CC, WC, and TD across simulations.
 Each comparison, whose values are shown in Table 6, was conducted using a two-tail t-test (𝛼𝛼 =
0.05). In the comparison between the sprint-only and percentage based TDM strategies on the TD-List
method, we found that the percentage based approach was superior. The reasoning behind this is that the
percentage based results showed that more work items were completed at a reduced cost, while more
technical debt (specifically effective technical debt) was removed. Using these results we then conducted
a comparison between the percentage based technical debt list combination and the base model (no
TDM). Here, not surprisingly, we see similar results, in that the percentage based technical debt list

Figure 4. Change in work completed, technical debt remaining and mean cost completed across

simulations

0

5000

10000

15000

Base TDL-S TDL-P ATDM-S ATDM-P TDT-U TDT-UL

M
an

-H
ou

rs
 a

nd
 C

ou
nt

 (W
or

k
C

om
pl

et
ed

)

Simulation
Mean Cost Completed Mean Count of Work Completed Mean TD Remaining

Figure 3. Comparison of metrics across simulations.

0

5000

10000

15000

Mean Cost
Completed

Mean Effective TD
Remaining

Mean Potential TD
Remaining

Mean TD Remaining

M
an

-H
ou

rs

Base TDL-S TDL-P ATDM-S ATDM-P TDT-U TDT-UL

1022

Griffith, Taffahi, Claudio and Izurieta

combination removes more technical debt and completes more work items at a reduced cost.

In the second set of comparisons we began by looking within the technical debt list with the
automated TD monitoring method. Here, we compared the sprint-only and percentage based approaches.
To our surprise, and contrary to the literature, the sprint-only method was found to be superior. This
indicates that the sprint-only approach completes more work for less cost but also reduces technical debt
(both potential and effective technical debt) better than the percentage-based approach. We note that
while the sprint-based automated TD monitoring approach is superior to its percentage-based competitor,
in practice this is not necessarily feasible due to such concerns as time-to-market or developer morale
(which are not considered in these simulations). We then compared both approaches to the percentage
based technical debt list combination. The results indicate clearly that the sprint-only automated TD
monitoring combination was superior. As for the percentage based automated TD monitoring the results
showed that although this approach does remove more technical debt than the technical debt list only
combination, it completes less work.

The final set of comparisons began by comparing the automated technical debt monitoring approach
with two thresholding strategies. In these comparisons we found that the use of an upper limit threshold is
superior to a ranged threshold and reduces the technical debt and effectively completes more work in a
more cost effective manner than a combined upper and lower threshold scheme. When comparing the
upper threshold strategy to the sprint-only strategy from the previous set of comparisons, we found that
the sprint-only strategy was superior. This result comes with a caveat, in that, in order to further validate
this result, sensitivity analysis needs to be conducted in order to both identify the best thresholds and to
identify how the thresholds actually affect the simulation. A similar sensitivity analysis needs to be
applied to both the percentage based approaches and to the sprint-only based approaches.

6 CONCLUSION

We described a set of models representing several different technical debt management methods and their
combinations. The context of this study was set in a model of the agile development process known as
Scrum. Our study shows that combining a prioritized list of technical debt items in parallel to the
development backlog, while continuously monitoring for both known and unknown technical debt items
and focusing either a percent of sprint effort or all of every nth sprints effort on technical debt remediation
sprints is the superior combination of practical technical debt management technique. This result provides
empirical support for several of the basic strategies for managing technical debt that have been recently
put forth in the literature. Yet, it brings into question earlier notions that development teams cannot stop
new feature work to only focus on technical debt. As noted earlier, this surprising result may be attributed
to the fact that we did not take into consideration such things as developer morale and time-to-market
concerns.
 It should also be noted that we did not try all combinations due to time constraints and that using
thresholds may still prove a viable technique. In future work we intend to continue to explore various
combinations as well as conduct sensitivity analysis on the various parameters associated with the
simulation (see Table 1). We are also looking to combine these models with more advanced approaches to
technical debt management as a means to evaluate how the addition of decision support can help effect
more efficient technical debt reduction while ensuring continual feature development. A final note on
future work is that once the sensitivity analysis is complete we will begin validation of the model using
data from several open-source and potentially industry projects.

REFERENCES

Cohn, Mike. 2006. Agile Estimating and Planning. Prentice Hall.
Counsell, S., R. M. Hierons, H. Hamza, S. Black, and M. Durrand. 2010. "Is a Strategy for Code Smell

Assessment Long Overdue?" Proceedings of the 2010 {ICSE} Workshop on Emerging Trends in

1023

Griffith, Taffahi, Claudio and Izurieta

Software Metrics. Cape Town, South Africa: ACM. 32-38.
http://doi.acm.org/10.1145/1809223.1809228.

Cunningham, Ward. 1992. "The WyCash Portfolio Management System." SIGPLAN OOPS Mess. 4 (2):
29-30. http://doi.acm.org/10.1145/157710.157715.

Curtis, B., J. Sappidi, and A. Szynkarski. 2012. "Estimating the Size, Cost, and Types of Technical Debt."
Managing Technical Debt (MTD), 2012 Third International Workshop on. 49-53.

Fontana, F.A., V. Ferme, and S. Spinelli. 2012. "Investigating the Impact of Code Smells Debt on Quality
Code Evaluation." Managing Technical Debt (MTD), 2012 Third International Workshop on. 15-22.

Fowler, Martin, Kent Beck, J Brant, William Opdyke, and Don Roberts. 1999. Refactoring: Improving
the Design of Existing Programs. Addison-Weseley.

Gat, Israel, and John D. Heintz. 2011. "From Assessment to Reduction: How Cutter Consortium Helps
Rein in Millions of Dollars in Technical Debt." Proceedings of the 2nd Workshop on Managing
Technical Debt. Waikiki, Honolulu, HI, USA: ACM. 24-26.
http://doi.acm.org/10.1145/1985362.1985368.

Glaiel, Firas, Allen Moulton, and Stuart Madnick. 2013. "Agile Project Dynamics: A System Dynamics
Investigation of Agile Software Development Methods."

Guo, Yuepu, and Carolyn Seaman. 2011. "A Portfolio Approach to Technical Debt Management."
Proceedings of the 2nd Workshop on Managing Technical Debt. Waikiki, Honolulu, HI, USA: ACM.
31-34. http://doi.acm.org/10.1145/1985362.1985370.

Kellner, Marc I, Raymond J Madachy, and David M Raffo. 1999. "Software Process Simulation
Modeling: Why? What? How?" Journal of Systems and Software 46 (2): 91-105.

Kruchten, Philippe, Robert L. Nord, and Ipek Ozkaya. 2012. "Technical Debt: From Metaphor to Theory
and Practice." Software, IEEE 29 (6): 18-21.

Letouzey, J., and M. Ilkiewicz. 2012. "Managing Technical Debt with the SQALE Method." Software,
IEEE 29 (6): 44-51.

Magennis, Troy. 2011. Forecasting and Simulating Software Development Projects: Effective Modeling
of Kanban & Scrum Projects using Monte-carlo simulation. CreateSpace Independent Publishing
Platform.

Marinescu, R. 2012. "Assessing Technical Debt by Identifying Design Flaws in Software Systems." IBM
Journal of Research and Development 56 (5): 9:1-9:13.

McConnell, Steve. 2004. Code Complete: A Practical Handbook of Software Construction. 2. Redmond,
Washington: Microsoft Press.

McConnell, Steve. 2008. "Managing Technical Debt." Best Practices White Paper, Construx.
—. 2006. Software Estimation: Demystifying the Black Art. Microsoft Press.
Moløkken-Østvold, Kjetil, Nils Christian Haugen, and Hans Christian Benestad. 2008. "Using Planning

Poker for Combining Expert Estimates in Software Projects." Journal of Systems and Software 81
(12): 2106-2117. http://www.sciencedirect.com/science/article/pii/S0164121208000885.

Neill, C.J., and P.A. Laplante. 2006. "Paying Down Design Debt with Strategic Refactoring." Computer
39 (12): 131-134.

Nugroho, Ariadi, Joost Visser, and Tobias Kuipers. 2011. "An Empirical Model of Technical Debt and
Interest." Proceedings of the 2nd Workshop on Managing Technical Debt. Waikiki, Honolulu, HI,
USA: ACM. 1-8. http://doi.acm.org/10.1145/1985362.1985364.

Power, Ken. 2013. "Understanding the Impact of Technical Debt on the Capacity and Velocity of Teams
and Organizations: Viewing Team and Organization Capacity as a Portfolio of Real Options."
Managing Technical Debt (MTD), 2013 4th International Workshop on. 28-31.

Ramasubbu, Narayan, and Chris F. Kemerer. 2013. "Towards a Model for Optimizing Technical Debt in
Software Products." Managing Technical Debt (MTD), 2013 4th International Workshop on. 51-54.

1024

Griffith, Taffahi, Claudio and Izurieta

Rowe, Gene, and George Wright. 1999. "The Delphi Technique as a Forecasting Tool: Issues and

Analysis." International Journal of Forecasting 15 (4): 353-375.
http://www.sciencedirect.com/science/article/pii/S0169207099000187.

Schmid, Klaus. 2013. "A Formal Approach to Technical Debt Decision Making." Proceedings of the 9th
international {ACM} Sigsoft conference on Quality of software architectures. New York, NY, USA:
ACM. 153-162. http://doi.acm.org/10.1145/2465478.2465492.

Schwaber, Ken, and Mike Beedle. 2001. Agile Software Development with Scrum. 1. Upper Saddle River,
New Jersey: Prentice Hall.

Seaman, C., Yuepu Guo, C. Izurieta, Yuanfang Cai, N. Zazworka, F. Shull, and A. Vetro. 2012. "Using
Technical Debt Data in Decision Making: Potential Decision Approaches." Managing Technical Debt
(MTD), 2012 Third International Workshop on. 45-48.

Seaman, Carolyn, and Yuepu Guo. 2011. "Measuring and Monitoring Technical Debt." Advances in
Computers 82: 25-46.

Sharp, H., A. Finkelstein, and G. Galal. 1999. "Stakeholder Identification in the Requirements
Engineering Process." Database and Expert Systems Applications, 1999. Proceedings. Tenth
International Workshop on. 387-391.

Sullivan, Kevin J, Prasad Chalasani, Somesh Jha, and Vibha Sazawal. 1999. Software Design as an
Investment Activity: A Real Options Perspective. Risk Books.

Tamrakar, Ritesh, and Magne Jørgensen. 2012. "Does the Use of Fibonacci Numbers in Planning Poker
Affect Effort Estimates?"

Tom, Edith, Aybüke Aurum, and Richard Vidgen. 2013. "An Exploration of Technical Debt." Journal of
Systems and Software (0). http://www.sciencedirect.com/science/article/pii/S0164121213000022.

Zhang, He, B. Kitchenham, and D. Pfahl. 2008. "Software Process Simulation Modeling: Facts, Trends
and Directions." Software Engineering Conference, 2008. APSEC'08. 15th Asia-Pacific. 59-66.

AUTHOR BIOGRAPHIES

ISAAC GRIFFITH is a PhD student in the Department of Computer Science at Montana State
University in Bozeman, MT with Clemente Izurieta as his advisor. He holds a B.S. in Computer Science
and a B.A. in Philosophy from Montana State University. His email address is
Isaac.griffith@msu.montana.edu.

HANANE TAFFAHI is a MS student in the Department of Mechanical and Industrial Engineering at
Montana State University in Bozeman, MT. She holds a B.S. in Engineering Management from Al
Akhawayn University in Ifrane. Her email address is hanane.taffahi@msu.montana.edu.

DAVID CLAUDIO is an assistant professor of industrial engineering in the Department of Mechanical
and Industrial Engineering at Montana State University, Bozeman, Montana. He received his Ph.D. in
Industrial Engineering from the Pennsylvania State University. His research interests include Human
Factors, Service Systems, Healthcare Engineering, and Decision Making. His email address is:
david.claudio@ie.montana.edu.

CLEMETE IZURIETA is an Assistant Professor in the Computer Science department at Montana State
University. Born in Santiago, Chile. His research interests include empirical software engineering, design
and architecture of large software systems, design patterns, technical debt, the measurement of software
quality and ecological modelling. Dr. Izurieta has approximately 16 years of experience working for
various R&D labs at Hewlett Packard and Intel Corporation. His email address is
clemente.izurieta@cs.montana.edu.

1025

