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ABSTRACT 

Water is a key issue in sustainable urban development. SWIM (Simulating Water, Individuals and 
Management) is an agent-based model of water supply, management structure, and residential water 
consumer perception and behavior. Initial work applied data mining on newspaper articles to map 
networks of water management institutions and structures. SWIM extends this by linking an agent-based 
model of residential water consumption connected via networks of water managers to a global-scale 
hydrological model. In our case study, we focus on Tucson, Arizona, where management and social 
behaviors are well documented. Census data are used to create synthetic populations of consumers 
endowed with price sensitivity and behaviors impacting water use. Social networks, including those based 
on geographic proximity, allow water use behaviors to spread to others. We examine possible factors 
leading to recent attested declines in per-capita water use, leveraging ensemble runs on high-performance 
computing resources using the Swift parallel scripting language to strategically explore complex 
parameter spaces. 
 

1 INTRODUCTION 

Modern societies face increasing challenges in managing water, as the frequency and intensity of 
problems such as floods, water contamination, and water shortages continue to rise (UNESCO 2009). In 
many countries, including the United States, water management agencies are the forefront of managing 
and attempting to solve a variety of water issues. The prevailing systems of water management in the U.S. 
West and Southwest are fragmented and include a myriad of local, state, and federal agencies. Often 
authority in enforcing decisions differs, and even where there are strong authorities involved, jurisdiction 
of any agency is normally based on geographic boundaries that do not correspond to watersheds; 
alternative models include one large agency governing a given community (Kenney 1997). On the one 
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hand, aridity and growing cities would seem to create large-scale water shortages for communities of the 
West and particularly the Southwest. However, over the last two decades per capita water usage has, in 
fact, declined in some areas (Breyer et al. 2012).  

Understanding why water use is declining in some communities is difficult, as a myriad of reasons for 
decreases in per capita consumption are possible (Olmstead & Stavins 2009). Nevertheless, this is an 
important issue, as managers need to know what factors, such as pricing mechanisms or conservation 
campaigns, are effective if water conservation success is to be replicated in cities across the West and 
beyond. Furthermore, water systems are inherently complex, coupled social-natural systems, requiring 
careful examination to understand how they are affected by the physical constraints of climate, hydrology, 
and by social factors such as water use behaviors, perceptions, and  management decisions. In this paper, 
we propose a method that addresses such complex problems using Tucson, Arizona as our test case. The 
test case introduces the Simulating Water, Individuals, and Management (SWIM) agent-based model and 
demonstrates distributed ensemble Repast Simphony (North et al. 2013) agent-based modeling on large 
high performance clusters utilizing the Swift parallel scripting language (Wilde et al. 2011). This 
approach also applies the coupling of the agent-based model to a physical water balance model. We 
address possible reasons for the decline in per capita water use, and social and environmental reasons that 
lead to this decline. 

2 METHODS 

2.1 SWIM Model 

The SWIM model simulates residential water consumption at the household level, linked with a regional 
model of watershed hydrology. Households pass consumption norms to geospatially bounded collections 
of neighbors and via non-geographic social networks. Primary factors driving water usage by consumers 
include water prices and dynamics of social influence and interactions in a manner comparable to the 
technique employed in Athanasiadis et al. (2005). Water pricing is determined using historical data from 
the case study of Tucson. The physical system is provided water by the Water Balance Model (WBM) 
(Wisser et al. 2009), which is driven by local and regional weather processes and geography.  

2.1.1 Water Consumer Agents 

The primary entities in the SWIM model are water consumer agents. The consumption behavior of these 
agents is driven by water prices and social influences; social influence is transmitted via social networks, 
which encompass both geographically limited networks of neighbors and non-geographic associations. 
Exogenous factors, such as abrupt policy changes by water companies, can also lead to adjustments in 
water use rates. Neighbors influence social perceptions of water use, using a bounded confidence 
approach found in Weisbuch et al. (2002) that mimics the way that watching and perceiving what others 
in your neighborhood do could lead to an adjustment in one’s own water use. A household social network 
affects water use by converging social attitudes between the overall network and the household’s. In the 
current model the KE network is used (Klemm and Equiluz 2002). Price affects water use via an 
adjustable weight similar to that used in Athanasiadis et al. (2005). Additionally, there are seasonal and 
climatic factors that affect usage. The water use calculation is given by: 
 

 

𝑛 = 𝑝!"# ∗ 𝑝!   + 𝑠𝑓!"#   ∗ 𝑠𝑓! + 𝑒!"# ∗ 𝑒! 

𝑐   = 1 + 𝑑 ∗ 𝑇!""#!$ − 𝑇!"#$%&'$ − 𝑟 ∗
𝑃!""#!$ − 𝑃!"#$%&'$

10
 

𝑢 = 𝑏 ∗   𝑠 ∗ 𝑐 ∗ 1 − 𝑛 ∗ (1 + 𝑜) 

(1) 
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where the overall water conservation “nudge” factor (n) is based on the price influence (pinf) and 
associated price weight (pw), social factors influence, via social networks and local neighborhood 
influences (sfinf), and their associated weight (sfw), and exogenous effects (einf) and weight (ew). The 
climatic factor (c) is affected by seasonal and regional variations using degree percent change (d), average 
annual temperature (Tannual) of the current simulation year, and the baseline temperature (Tbaseline) over all 
the simulation years, percent decrease of water based on precipitation (r), annual precipitation (Pannual) of 
the simulation year, and baseline precipitation (Pbaseline) over all the simulation years. Water usage is then 
calculated based on baseline water use (b), a seasonally adjusted water use factor (s), climatic factor, 
nudge factor and water use noise (o). The seasonally adjusted water use factor is derived from data on the 
average monthly deviation from a yearly average over the course of the simulation time span. The 
resultant factor is roughly sinusoidal function yielding a fractional increase or decrease for each simulated 
month. The water noise factor is based on typical monthly household water usage noise profiles, as 
described by Tucson Water. The noise factor used in the current model runs yields an up to 30% variation 
for individual households in month-to-month water usage. Figure 1 depicts the influences between the 
factors affecting household water use. 

 
Figure 1: The water consumer agent water use influence diagram. The solid arrows are the direct 
influences in calculating an agent’s water usage. The dashed lines heading from water use to price and 
social factors indicate the influence that water use exerts, via water bills for price and via habituation for 
social factors. The self loops indicate the persistence, or inertia, of price and social factors within each 
agent over time. 

2.1.1.1 Social Factors, Social Networks, Neighborhoods and Bounded Confidence  

Household agents have a “social factors” property (sfinf (1)) that reflects the social perceptions on water 
use held by the household and can be thought of as the propensity of the household to conserve water. 
While this propensity to conserve reflects a ‘conservation ethic,’ it is important to note that we consider 
this property of household agents quite broadly: it subsumes, for example, the physical properties of a 
home, such as the presence and size of a yard or the efficiency of faucets, toilets, and irrigation systems. 
For this study, we consider all of these in the aggregate and counterpose them collectively against the 
price factor (see below). Social factors are captured in a single value that ranges from -1 to 1; as a 
household’s social factors property increases, the household’s water use will tend to decrease and vice 
versa. For the simulation runs presented in this paper the households are initialized with random sfinf  
drawn from a normal distribution with mean 0 and standard deviation 0.5, clipped to the -1 to 1 range. 
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 There are three ways in which social factors evolve during a simulation; household-to-household 
(HH) interactions, household-to-neighborhood (HN) interactions, and habituation. In the SWIM model, 
households are connected through social networks. As part of the model initialization process, households 
are passed to a network constructor, which connects the households based on a specified network 
generation algorithm. While the current model utilizes the KE network (Klemm and Equiluz, 2002), it is a 
simple matter of specifying an alternative network generator to create other types of networks. The 
network connections define the HH’s allowed interactions. At a specified interval households connected 
to each other will interact and, in doing so, will potentially modify their social factors properties. As part 
of the model initialization, households are also assigned neighbors based on the existence of other 
households within a specified radius. The presented model uses a radius of 400 meters. These neighbors 
are the basis of HN interactions. Unlike the dyadic HH interactions, HN interactions depend on the 
relationship of a household’s social factors property to the average value of a neighborhood’s social 
factors property. 

In both HH and HN interactions, social factors are adjusted based on the bounded confidence 
mechanism (Weisbuch et al. 2002). The idea behind bounded confidence is that if the opinions held by 
two entities about a concept are within a certain threshold of each other, they will tend to converge in 
opinion over time. If, on the other hand, the opinions are further apart than the threshold, they are 
considered sufficiently divergent and, as a result, they remain unchanged. In the case of HH interactions, 
two households connected via their social network will interact and depending on their social factors at 
that specific time, will either move slightly closer to each other in opinion or remain unchanged. When 
HN interactions occur, a household will move slightly closer to the mean social factors property of its 
neighbors, or maintain its previous social factors. 

As a household uses water, social factors are adjusted due to habituation as well. At specified 
intervals, yearly in the current model, the social factors are adjusted to reflect the notion that a 
household’s concept of normal water consumption will be affected by what a household is habitually 
consuming. 

2.1.1.2 Household Data 

Each household agent has the following demographic properties: income, household size, age of the head 
of household, race and the location (latitude and longitude) of the household. These properties, as well as 
an additional id property, are initialized from a synthetic population produced by RTI International for the 
Models of Infectious Disease Study (MIDAS; Wheaton 2012). RTI’s synthetic population database 
(Wheaton et al. 2009 and Wheaton 2012) includes geospatially explicit persons and households (as well 
as the workplaces and schools of these persons, although that information is not utilized in the current 
model). The persons and households are synthesized from US Census Bureau TIGER Data, Summary 
File 3 Data, and the Public Use Microdata Sample. Each synthetic household is geo-located. The location 
data is synthesized from Census block locations, using the LandScan population density dataset to assign 
each household a location within it’s Census block. The SWIM model uses the synthetic household 
population for Pima County Arizona, filtered to include only those households within the area served by 
Tucson Water. 

Of the properties initialized from the synthetic database, only id and location are currently used by the 
model. The id is used to uniquely identify households and the location is used when constructing the geo-
spatial neighbors of each household (see Figure 2). The inclusion of the additional properties opens up 
avenues for exploring water use models that can use household size, income and other factors in future 
work. 

The households’ initial values for baseline water use (b in (1)) are randomly initialized using a right 
skewed beta distribution. The particular parameters used for the beta distribution (α = 1.045, β = 3.919) 
were chosen to most closely match the distribution of households in the 5 pricing tiers (see Section 
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2.1.1.4) and the mean household water consumption in Tucson for the year 1997, the first year for which 
we had access to the distribution of households in pricing tiers. One of the model parameters adjusts the 
maximum value of the beta distribution, bmax, and was varied in our numerical experiments to calibrate 
the model (see Section 3). 
 

 
Figure 2: The spatial distribution of households in the RTI International synthetic population database 
restricted to Pima County, Arizona and filtered to include only those households within the area served by 
Tucson Water. 

2.1.1.3 Anchor and Adjust Price Model 

Agents have a memory of bills received; this affects the price factor calculated. Upon receiving a bill, the 
household agent will update the current value for its price effect, and will add the bill to its memory. The 
relationship of the bills that a household receives with the price effect can depend on a number of factors. 
The agent compares the value from the current bill to the average of the preceding N bills. If the current 
bill’s value is higher than this average, the price factor pinf is increased according to: 

 𝑝!"#!!! = 𝑀𝐴𝑋(𝑝!"#!
𝐶
𝐶!  

− 1 𝑀, 1) (2) 

 
where C is the current bill value, CN is the average bill value over the preceding N months, and M is a 
scaling factor. If the bill’s value is lower than the calculated average, price factor is allowed to decay 
according to: 

 𝑝!"#!!! = 𝑝!"#!(𝑀𝐼𝑁(1 − 1 −
𝐶
𝐶!

!
),Γ) (3) 

 
where Γ is a default decay multiplier and γ is a parameter of the model. For the simulations presented in 
the paper, the values for Γ and γ are .95 and 1.0 respectively. (Other values for these variables are 
possible and ranges of them may be explored in future work, but for the model runs presented here they 
are held constant.) The effects of equations (2) and (3) are that if the price increases above the recalled 
average, the price effect will be increased by a fraction that is equal to the fractional price increase 
multiplied by the scaling factor M; if the price is below the recalled average, the price effect will decay, 
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minimally by Γ but perhaps by more if the drop is large. In either case, the new price factor is limited to 
values between zero and one. 

2.1.1.4 Water Prices 

Water pricing is one of the key levers that water managers can use to try to manage or reduce 
consumption (Olmstead 2013). In practice, however, the impact of pricing on water consumption is 
complex. While price increases can reduce consumption in some areas (for an example see Athanasiadis 
et al. 2005), in other places water prices are so low that even large percentage changes in price are 
irrelevant to customers (Martin and Kulakowski 1991). Moreover, managers’ ability to price water is 
limited by the fact that water is essential and may be considered a public good; pricing water out of reach 
of poorer citizens would be unacceptable, and pricing it at its ‘real’ cost may be inappropriate or 
politically impossible (Olmstead and Stavins 2009). 

A common practice that is relevant for our Tucson case is tiered pricing. Residents pay a low rate for 
an initial volume of consumption per month; once a threshold is reached, a higher rate is applied to the 
amount consumed above the threshold. Tucson’s pricing structure has had multiple tiers for over two 
decades. The tiers used have allowed the average customer to pay the lowest rate; for a long time 
customers whose usage went above 15 Hundred Cubic Feet (CCF) per month begin to pay at a higher 
rate, and there are now three blocks above this with thresholds at 30, and 45 CCF. More recently in 2012, 
the lowest threshold has dropped further, to 10 CCF. The increase in rates at a threshold boundary can 
exceed 300%. The intent, clearly, is to discourage high usage while keeping normal and necessary use of 
water inexpensive for the majority of residents. 

Tucson has implemented a number of additional billing components that make the typical resident’s 
water bill even more complex. The bill includes a service fee, which is a flat fee that is based on a 
residence’s tap size. It also includes a sewage charge. Because sewage is not directly metered, the volume 
of sewage is estimated from the water usage; however, because usage in the summer rises in ways that are 
not directly connected to sewage, the sewage estimate is calculated for the months of December – 
February, and this value is used for 12 months beginning the following July. Also, Tucson charges an 
additional fee if water usage in summer months (beginning in May) exceeds a fraction (e.g., 145%) of the 
metered winter use during the previous November-April.  

The exact fractions, thresholds, and rates have changed several times over the past 20 years. The 
SWIM model implements the Tucson billing framework and uses values from historical data, adjusted for 
inflation to real dollars. Customer usage, including the usage needed for calculation of summer penalties 
and for sewage rates, is tracked based on each household’s water use.  

2.2 Model Validation via Ensemble Modeling 

As presented in the previous sections, the SWIM model has a number of parameters. A large portion of 
the current model development work involves sensitivity analyses of the model parameters for calibration 
and validation. Given the large number of simulation runs that are needed for proper parameter space 
coverage and adequate statistics, two batch simulation methods have been employed for large scale 
concurrent ensemble modeling. 

2.2.1  Distributed Batch 

The Repast Simphony toolkit (North et al. 2013) comes with built-in distributed batch capabilities 
(Collier and Ozik 2014). Repast Simphony’s batch run functionality iterates through parameter space 
combinations that the user provides and performs a run using each combination. These runs can be 
performed in parallel on a local machine (e.g., a laptop or desktop), on remote machines (secure shell 
[ssh] accessible resources), in the cloud (e.g., Amazon EC2, Microsoft Azure) or on a combination of the 
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three. Utilizing available desktop computing resources, we ran up to 10 computing instances in parallel, 
with each responsible for a number of simulation runs, the parameter space having been divided between 
the computing instances. While this is computationally adequate for exploratory work, the size of the 
parameter space forced us into considering more powerful computational resources for our more 
extensive parameter space explorations. 

2.2.2  HPC Cluster with Swift  

Swift (Wilde et al. 2011) is a free and open source parallel scripting language for running applications in 
parallel on multi-core, cluster, cloud and supercomputing resources (http://swift-lang.org). Swift reduces 
the effort needed to create parallel workflows. Short scripts are written to define analysis applications 
along with inputs and outputs of those applications. Swift can then run a large number of applications 
concurrently as soon as the necessary inputs are made available. In this way, in addition to large scale 
parameter sweeps, dynamic and adaptive workflows can be defined. The same Swift script can be run on 
multiple types of machines, with minimal configuration file differences. 
 We developed a Swift script (Swift version 0.94.1) for launching Repast Simphony InstanceRunner 
jobs, along with bash scripts to wrap the invocation of application calls (see repast.swift and 
repast_instance.sh here https://gist.github.com/jozik/5233968494b1fd16b639). Our intention was to 
develop complementary capabilities with Swift that most directly utilized existing batch mechanism in 
Repast Simphony. Repast Simphony batch runs utilizes a SessionsDriver object that distributes 
parameters to local and remote machines and monitor the progress of launched LocalDrivers on each of 
the resources. The LocalDrivers, in turn, launch a specified number of concurrent InstanceRunner jobs, 
which process a set of parameter combinations. That is, each InstanceRunner receives what amounts to a 
set of tasks in the form of parameter combinations and completes each one of these tasks before 
proceeding to the next, until all the assigned tasks are completed. The Swift script that we developed 
essentially replaces the functionality of the SessionsDriver for high-performance clusters, while also 
providing scheduling, load balancing and fail over recovery capabilities. We are also developing the 
ability to run adaptive parameter space exploration for use in optimization (e.g., simulated annealing) and 
general computational experimentation with Swift and Repast Simphony. 
 For our current work, the main impetus for using Swift was to carry out large-scale model calibration 
parameter sweeps on the computing resources available at the University of Chicago, specifically the 
Midway cluster at the University of Chicago Research Computing Center 
(http://rcc.uchicago.edu/resources/midway_specs.html). The cluster scheduling is managed by the 
SLURM resource manager (https://computing.llnl.gov/linux/slurm/). However, since Swift is responsible 
for most of the direct interactions with resource managers, the specific type of resource manager only 
minimally affects the configuration “site.xml” file that is provided to Swift when launching a job. 
Exploiting the capabilities of Swift and the Midway cluster, we were able to launch a parameter sweep 
job of 4320 parameter combinations, with each simulation run taking around 30 minutes, and run it 
efficiently on 512 computing resources in under 5 hours.  

2.3 Water Balance Model Integration 

The SWIM model is integrated with a global-scale hydrology model called the Water Balance Model 
(WBM), developed at the University of New Hampshire. The integration of SWIM with the WBM allows 
bridging local-scale water consumption with its impact on regional hydrology; in the future this may be 
extended to understanding human impacts on the global water cycle. 
 The WBM models the global movement of water through the hydrologic cycle. It simulates both the 
movement of water from land to the atmosphere and the flow of water horizontally throughout the land 
surface. It employs grid system that can be set to scales as fine as 6” and operates at a daily time step. Its 
core accounting system tracks water entering and leaving each grid cell, and permits the specification of 
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reservoirs, dams, snow and glacial melt, irrigation, and inter-basin transfers. A separate river network can 
be specified to more accurately model surface flow. 

The WBM provides to the SWIM model point sources of water. These correspond in the WBM to the 
water available on a single grid cell; in the ABM they are translated into water sources that can be made 
available to Water Managers, thus allowing the water tracked by the WBM to enter the simulated flow of 
the SWIM system. 
 SWIM and the WBM exchange information in a handshake that occurs on the daily time step at 
which both models run. SWIM initiates the exchange by sending a message to the WBM; this message 
contains the list of points (specified by latitude and longitude) at which SWIM will need to know the 
value for water available. The WBM responds with a list of these points and the water that is available at 
them, corresponding to the amount of water (in cubic meters) that is available at that point for that 
simulated day. SWIM calculates the net amount of the water available that will be extracted at that point 
and responds to the WBM with a list of points at which water was taken, and the amount taken from each. 
All of the SWIM messages, including the initial one, use the same format, so that this response acts as the 
prompt for the next message from the WBM. If SWIM adds a new point to the list, the WBM will 
respond with the water available at that point during the next simulation day. The WBM considers the 
amount taken to be urban use, and calculates its movement through the rest of the hydrological cycle (e.g. 
transpiration to the atmosphere) using its built-in algorithms. Future SWIM/WBM integration work will 
explore the possibility for SWIM to supply figures to WBM based on more specific, not solely restricted 
to urban, behaviors of agents.  

3 RESULTS AND DISCUSSION 

The initial goals for the SWIM model have been to both calibrate it to the Tucson case study data and to 
determine the salient mechanisms required to adequately characterize water usage patterns at an aggregate 
level, specifically for the purposes of understanding aggregate water usage trends. In order to do this, we 
sought to first determine  model parameter combinations that yielded water usage consistent with water 
usage data from Tucson. 
 The model was run for a time span of two decades, from January 1, 1993 to December 31, 2012, with 
a temporal resolution of one simulation ‘tick’ per day (7305 total ticks). Due to the large number of 
simulation runs that were anticipated and the exploratory nature of the initial investigations, rather than 
use the full set of Tucson households, we uniformly sampled 20% of the population, yielding in the 
vicinity of 52,000 households per simulation. At this sampling level, each simulation run took about 30 
minutes to complete. The parameters that were varied were the price weight, pw in (1) (0.0 to 0.2 in steps 
of 0.04), the social factors weight , sfw in (1) (0.0 to 0.2 in steps of 0.04), the maximum value of the initial 
beta distribution of household baseline usages, bmax in Section 2.1.1.2 (1450 to 1600 in steps of 50 
Gallons / day), the price scaling factor, M in Section 2.1.1.3 (0.3 to 1.5 in steps of 0.3). For each 
parameter combination we also ran 6 different random seed runs, for a total of 6 x 6 x 4 x 5 x 6 = 4320 
simulation runs. Had we restricted ourselves to desktop computers for these runs, assuming on the order 
of 10 parallel processes, the job would have taken at least 4320 / 10 * 30 minutes = 216 hours. Instead, 
distributing the model runs over 512 parallel processes on the Midway cluster at the University of 
Chicago’s Research Computing Center, enabled these runs to be completed in under 5 hours.  
 The model runs yielded a large spread of aggregate daily water usage outputs. At this stage of our 
investigations we have been most concerned with being able to match the general year over year trend 
seen in residential consumer water demand in Tucson. As such, the model outputs were aggregated into 
average monthly usage and further into 12-month rolling averages. The 4320 simulation runs were 
collapsed into 720 unique model parameter combinations by averaging the 6 stochastic variations for each 
model parameter combination. 
 The resulting 720 rolling average trajectories were compared to the Tucson average household 12-
month rolling average for the same time period as the model runs. The SWIM model works by initializing 
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the synthetic population of agents at one point in time and evolving the population while observing how 
climatic, economic, social and other factors affect the water usage. As such, our interest was in finding 
simulation parameters that yielded good initial agreement first, and out of the best candidates observe if 
the general trends of the data are being followed. The motivation is that if, under the currently applied 
mechanisms, the simulation is not able to follow observed trends, we are forced to consider additional 
mechanisms since the model is effectively incomplete. We would thus build complexity into the model 
out of necessity, an important guidepost when considering the potential for a combinatorial explosion of 
parameter and mechanism combinations. 
 Figure 3 shows the top 10 best fitting runs in magenta and the top 40 best fitting runs in yellow where 
the fit was evaluated on the first 6 years (1994-1999) of the rolling average Tucson data, which is in blue. 
While we do find that there exist trajectories within the parameter space that we covered that closely 
mirror the first 6 year span of Tucson’s average household water use, it is qualitatively evident that the 
general downward trend in the data after 1999 is not observed. It is possible that further parameter sweeps 
involving alternative values for the parameters that were already varied as well as for the parameters that 
were kept constant in these model runs would generate the overall downward trend. However these 
experiments suggest, and in the authors’ opinion this is the more likely scenario, that price, climatic 
effects and passive social factors diffusion are simply not enough to capture the dynamics observed in the 
empirical data. 

 

 
Figure 3: Top 10 (magenta) and top 40 (yellow) simulation runs in terms of first 6 year fits to the Tucson 
data (blue). 

Given these results, there are a number of logical next steps to pursue for further development and 
validation of the SWIM model. First, Tucson Water and other water managers often employ informational 
campaigns to promote water conservation efforts. These campaigns can target the general population 
(e.g., public service announcements, billboards, campaign mascots [see 
http://www.tucsonaz.gov/water/pete_the_beak]) or they can be more targeted (e.g., messaging through 
specific neighborhood associations, focused on specific water use activities). They can promote 
conservation practices (e.g., xeriscaping, gray water recycling) as well as the adoption of conservation 
technologies (e.g., low-flow shower heads; also see Millock and Nauges 2010). We will exploit the 
disaggregated nature of the SWIM agent-based model to run experiments that implement active attempts 
at influencing household social factors. We would potentially see that the households affected by the 
informational campaigns would act as social factors diffusion sources, acting against or in concert with 
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the other factors affecting household water usage in the model. When the SWIM model is adequately 
validated for a locale, it may open up the possibility to be used as an in silico laboratory for evaluating 
future potential water conservation campaigns. 

Second, water related legislation can also sharply curtail water use, especially in peak summer 
periods. For example, many municipalities forbid activities such as watering of lawns and filling pools 
when certain emergency conditions are met. While the emphasis of the current paper has been on 12-
month rolling averages and annual temperature and precipitation effects, it would be possible to increase 
the resolution of the experimentation to account for seasonally sensitive restrictions to see if sharp 
declines in water consumption can be tied to these events. 
 Third, while initial investigations have focused almost exclusively on highly aggregate model 
outputs, there are a number of areas that a deeper investigation into water usage patterns may help 
calibration and validation efforts. One such area is the examination of households’ movement between 
price tiers over time. Most of the price increases in Tucson have mainly targeted the highest tiers of water 
users, while also affecting, to a lesser degree, the lower tiers. Validating the model by comparing price 
effects on the distributions of households in these pricing tiers with empirical data on the distributions 
over time may help create a more accurate picture of price effects on consumption. 

4 CONCLUSIONS 

High-performance computing and the use of the Swift language have opened a new window into the 
investigation of the determinants and dynamics of residential, urban water use. Here we have presented 
the SWIM model of household water consumption and its deployment on a high-performance computing 
platform. Our test case has focused on the household water consumption agents in SWIM, and has been 
grounded in our initial case study of Tucson, Arizona. We have shown that the use of the high-
performance platform has allowed us to productively explore a very large parameter space very rapidly, 
allowing us to experimentally calibrate our model and work toward an insight into the factors that drove 
the real-world case on which the model has been based. 
 Future work will include examining factors such as informational campaigns by water authorities, the 
diffusion of water conservation technologies, and water related legislation. This future work will also 
include extending the model to other urban regions in the West to investigate why some regions are 
experiencing water use declines while others may be increasing. For instance, urban heat islands have 
been postulated as one set of influences on residential water use (Guhathakurta & Gober 2007). Building 
on the methods presented here, such spatial and behavioral interactions could be investigated further. 

In all of these future directions, powerful computational resources and techniques will need to be 
employed. Swift will form a key component of this, providing the ability to move our Repast simulations 
onto platforms that permit greater numbers of runs to be performed quickly and to efficiently evaluate the 
results produced. We will continue to utilize high-performance computing resources and develop more 
sophisticated adaptive parameter space exploration. The results from these cases will help us to better 
understand the relationship of technology and water use, such as the role of technology induced 
environmental distancing (Alessa et al. 2010), whereby one can begin to address how and which 
technologies may promote or detract from water conservation.  
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