
Proceedings of the 2014 Winter Simulation Conference 

A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds. 

 

 

 

ASSESSING THE RELIABILITY OF THE RADIATION THERAPY CARE DELIVERY 

PROCESS USING DISCRETE EVENT SIMULATION 

 

 

 Lukasz Mazur 

 Katharin Deschesne 

Pegah Pooya Prithima Mosaly 

Julie Ivy Gregg Tracton 

  

Industrial and Systems Engineering Radiation Oncology Center 

North Carolina State University North Carolina Cancer Hospital 

380 Daniels Hall 101 Manning Drive 

Raleigh, NC 27695, USA Chapel Hill, NC 27599, USA 

  

  

Nishant Singh 

 

William G. Enloe High School 

Raleigh, NC 27601, USA 

 

 

ABSTRACT 

This paper presents a discrete event simulation-based analysis of the Radiation Therapy (RT) care 

delivery process at the Radiation Oncology Center of the University of North Carolina (UNC) at Chapel 

Hill with the goal of assessing process reliability and patient safety. The use of quality assurance (QA) 

checklists in radiation oncology is a widely recognized method for detecting potential human and non-

human errors before they reach the patient. In this study, data on patient safety events (“an incident that 

reached the patient, whether or not the patient was harmed”) and near misses (“an incident that comes 

close to reaching the patient but is caught and corrected beforehand”) were collected through a 

comprehensive safety program and used to estimate incident rates and the reliability score for each QA 

checklist.  

1 INTRODUCTION 

Patient safety has become one of the major concerns of healthcare providers due to the growing 

complexity of healthcare work systems and processes. In 1999 the Institute of Medicine published a 

report entitled “To Err is Human: Building a Safer Heath System” that attracted national attention. The 

report revealed 44,000 to 98,000 deaths from medical errors occur each year in the United States which is 

equivalent to a large airplane crash every day in a year (Borgstede and Zinninger 2004; Donnelly et al. 

2010). A study by McGlynn et al. (2003) indicates that American patients receive only 50% of the 

recommended medical care processes. Scientific and technological advances and challenges associated 

with translating them into widespread practice, the increase in the prevalence of chronic conditions, and a 

poorly organized delivery system are some known contributing factors that have adversely affected the 

quality of care in the US (Daniels et al. 2005). 

 One of the most complex settings in healthcare is radiation therapy (RT) treatment (Arnold et al. 

2010). During the last decade, the planning and delivery of RT has greatly changed due to the  
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introduction of new advanced technologies. This emergence of new technologies along with the 

increasing patient volume brought opportunities for new types of incidents (Huang et al. 2005). A front 

page New York Times article in 2010 spotlighted RT errors with the potential to harm patients and raised 

concerns about patient safety in the RT process (Ford and Terezakis 2010). It is estimated that each year 

more than 740,000 patients receive radiation in the United States (Ford and Terezakis 2010). The actual 

incident rate and the seriousness of patient safety issues in RT are not clear due to lack of information on 

incidents that have occurred. Because of legal concerns, often, only the people who were directly 

involved with an incident have information about it (Fraass 2008, Ford et al. 2012a). Ford and Terezakis 

(2010) estimated an incident rate of 1 in 600 patients while a study by Arnold et al. (2010) reported 

incident rates ranging from 0.06% to 4.66% depending on the incident calculation method. Although 

several studies have shown that serious RT incidents are occurring infrequently and the majority of 

incidents have little or no clinical consequence (Bissonnette and Medlam 2010), there is always room for 

improvement because of the nature and severity of consequences which could be death in some cases 

(Fraass 2008).   

 While humans are one component of medical error, many medical errors stem from faulty systems 

and processes. Therefore, it is crucial to use process-improvement methods to identify and eliminate 

process inefficiencies. Several researchers have discussed the benefits of developing and implementing a 

comprehensive quality assurance (QA) program as one of these process-improvement methods in 

radiation oncology for resolving safety issues (Kutcher 1994; Yeung et al. 2005; Donnelly 2010;). The 

studies indicate that using a QA checking program can help detect and reduce errors during the various 

stages of the RT process and improve safety performance as well as the safety culture (Donnelly 2010). A 

QA program is a “quality plan” which establishes the specific quality practices, resources, and activities 

associated with the service it provides. This requires a team of care providers that is committed to a policy 

of quality throughput for all activities it performs. “The team leader must create a ‘quality system’ known 

as a QA comprehensive program that provides the organizational structure, responsibilities, procedures, 

processes and resources for meeting the quality requirements of patient management” (Kutcher 1994). As 

a part of a QA checking program an internal system of incident reporting must be established aimed at: 

(1) documenting and classifying events, (2) evaluating the impact of events on patients in terms of dose 

errors, and (3) assessing the effectiveness of the checking procedure in a QA checking program (Yeung et 

al. 2005).  

 Discrete event simulation (DES) has been found to be an effective and flexible technique for 

modelling and analyzing health systems and processes (Katsaliaki and Mustafee 2011). In this paper we 

use DES to analyze and assess the reliability of the radiation therapy care delivery process along with the 

QA program that is implemented at the Radiation Oncology Center of the University of North Carolina 

(UNC) at Chapel Hill.  

  The next section reviews the relevant literature followed by the sections that describes the case study 

and the simulation model. The discussion on simulation results is presented and recommendations for 

future work are provided in the last section. 

2 RELATED WORK 

Medical errors and their impact on patient safety has been the focus of many recent studies in RT 

practice. A medical ‘error’ is defined as a preventable adverse effect of care (Zhang, Patel, and Johnson 

2002). Examples of medical errors include misdiagnosis or delayed diagnosis, administration of the 

wrong drug to the wrong patient or in the wrong way, giving multiple drugs that interact negatively, 

surgery/RT on an incorrect site, failure to remove all surgical instruments, etc. 
 An incident is defined as “an unwanted or unexpected change from normal system behavior which 

causes or has the potential to cause an adverse effect to persons or equipment” (Ford et al. 2012a). This 

includes  both incidents that come close to reaching the patient but were caught and corrected beforehand 

by means of timely intervention (near misses), and the incidents that reached the patients, whether or not 
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the patient was harmed. Although implementation of a QA checking program can reduce the frequency of 

errors significantly, it is impossible to eliminate all the errors and increasing the number of checking 

points known as QA checklists does not necessarily enhance the effectiveness of a QA program (Yeung et 

al. 2005). Ford et al. (2012b) defined the error-detection effectiveness of a QA checklist as the number of 

incidents that each QC checklist could detect divided by the total number of incidents. They evaluated the 

commonly used QA measures in radiation therapy at two academic radiation oncology clinics and 

concluded that a small percentage of errors cannot be prevented by any of the standard formal QA checks 

that are in widespread use.   

 Some studies have argued that the current paradigm for QA programs which was originally developed 

for conventional three-dimensional conformal radiotherapy needs to be re-evaluated because of the 

emergence of new technologies such as intensity- modulated radiation therapy (IMRT) and image-guided 

radiation therapy (IGRT) that has influenced the practice significantly (Palta, Liu, and Li 2008). Palta, 

Liu, and Li (2008) suggested that each facility offering IMRT must develop its own guidelines for QA of 

IMRT planning and delivery systems. Fraass (2008) discussed two incidents that lead to patient deaths in 

IMRT practice and emphasized the need to use more effective and organized approaches to understand 

the RT process and analyze it failure modes.  Ford et al. (2009) used failure mode and effects analysis 

(FMEA) as a systematic risk analysis technique to find and improve failure modes with high risk 

probability number (RPN) in the delivery process of external beam radiography. However, the scoring 

system in FMEA is somewhat subjective and relies upon human assessment. To the best of our 

knowledge, there are no studies in the literature that present quantitative method for analyzing the risks in 

the RT process.  

 In this paper a process map representing the essential steps and workflow path in the RT delivery care 

process of UNC Cancer Center is used to create the simulation model of the process including the QA 

components. Computer simulation has been  applied to many real world problems in healthcare settings. 

Katsaliaki and Mustafee (2011) have conducted comprehensive literature reviews on the simulation 

research in healthcare and highlighted the importance of simulation in providing insights to deal with 

these systems. However, few researchers have used simulation to improve the RT process. The majority 

of simulation studies in the radiotherapy context have focused on long delays and waiting times due to 

inefficient scheduling and resource allocation policies. Ogulata et al. (2008) developed a “slack capacity” 

approach for scheduling patients in RT and conducted a simulation analysis to determine the appropriate 

scheduling parameters. A discrete incident simulation model by Kapamara et al. (2007) is used to analyze 

patient flow in the radiotherapy treatment process revealing the intricacies and potential bottlenecks of the 

process. Ebert et al. (2013) proposed an approach to find optimal waiting times and maximize the 

efficiency of radiotherapy treatment using the patient population rather than an individual. Their analysis 

suggests that tumor doubling time is the key factor in determining optimal waiting time.  

 Mont Carlo simulation was used in a study by Munro and Potter (1994) to estimate the 95% 

confidence intervals on projected waiting times. A Monte Carlo analysis by Thomas (2003) is used  for 

calculating the required level for patient capacity to meet target waiting times. In a more recent study by 

Werker et al. (2009)  used DES to model the planning section of the radiation therapy treatment process at 

the British Columbia Cancer Agency and recommended improvement in waiting times in the process. To 

the authors’ knowledge this is the first study to use simulation to address the issue of patient safety in RT 

practice and to quantify the impact of a QA program.  

3 CASE STUDY 

3.1 Radiation Oncology Center of UNC at Chapel-Hill 

The UNC Radiation Oncology Center is part of the North Carolina Cancer Hospital which is the state’s 

only public cancer hospital. It was opened in September 2009 and is the clinical home of the UNC 

Lineberger Comprehensive Cancer Center. NC Cancer Hospital physicians treat patients from every 
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county in North Carolina with more than 135,000 patient visits each year.  The Radiation Oncology 

Center offers the following radiotherapy treatment methods 1) external beam radiation therapy, 2) 

intensity-modulated and image-guided radiation therapy 3) Tomo-therapy 4) cyberKnife robotic 

radiosurgery and 5) Brachytherapy.  

3.2 External Beam Radiation Therapy Process 

This study focuses on the external beam radiation therapy (EBRT) which is commonly used to treat 

patients with cancer. The goal  is to design and deliver high-energy photon beams to malignant tumors 

while minimizing risks to neighboring healthy tissues. The potential for errors in EBRT is high, as the 

planning and delivery processes include numerous handoffs between RT professionals, each interpreting 

and entering information through multiple electronic systems. Further, the consequences of an error can 

be significant. The process can be divided into seven main stages shown in Figure 1. The blue color 

indicates that the patient is present during the process.  

Start
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Figure 1: High level external beam RT process map. 

 The first step is a consultation visit with a physician to review the patient’s medical history and 

develop a care plan for him/ her. The plan may include radiation therapy alone or in combination with 

surgery, chemotherapy or both. If radiotherapy is identified as an appropriate method of treatment, the 

patient will be scheduled for a Computer Tomography (CT) simulation session which is a procedure to 

map the three-dimensional shape of the tumor and normal tissues.  In the Pre-treatment Planning and 

Verification stage, the treatment field information obtained from the Simulation and Imaging stage will be 

used to calculate dose and optimize dose distribution. The radiation oncology physician reviews and 

approves the treatment plan. Depending on the cancer type and patient characteristics, a course of 

treatment is usually delivered in five sessions per week for several weeks. During the treatment course, 

the patient’s radiation chart consisting of patient identification, treatment plan, clinical assessment during 

treatment, treatment summary, follow-up and QA checklists must be reviewed at least once a week by 

different people in the department. 

3.3 QA Checklists   

As a part of the QA program, checklists are used throughout the process to prevent, control, or mitigate 

undesired safety incidents. Each QA checklist consists of a number of elements that have to be checked. 

Table 1 presents the description of QA checklists and the elements they check. There is a total of 35 QA 

elements each referring to a specific outcome of a process step. QA 7 and QA 8 consist of the same 

elements,  however QA 7 is completed after each treatment session by a physicist while QA 8 is 
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completed once a week during weekly physicists chart checking. Table 2 shows the description of the top 

six critical QA elements used in QA checking program of our  study.  

Table 1: QA checklists. 

QA Checklist Number Description QA Elements 

QA 1 Dosimetrist (dose calculator) pre-planning 1-3 

QA 2 Dosimetrist plan review 4-12 

QA 3 Physicists pre-treatment checks 2-7, 9-20 

QA 4 CT Simulation therapists: chart write-up 2, 10-20 

QA 5 Radiation therapists - QA day 10, 11, 15, 21-25 

QA 6 Radiation therapist daily treatment 25, 26, 27 

QA 7 & 8 Physicists perform weekly chart checks  2, 4-20, 28-35 

Table 2: QA elements. 

QA Element Number QA Element Description 

1 Review attending MD contours 

2 Confirm TxPlan (treatment plan) note is valid (approved by attending) 

5 Verify total dose and fractional dose 

6 Verify spatial dose distribution 

8 Verify DVH (Dose Volume Histogram), hot and cold spots 

10 Check that Rx (prescription) is approved by attending physician 

 

 In order to understand and analyze the complex RT process effectively, the high-level process map in 

Figure 1 is divided into more detailed and more granularly-defined process steps. Table 3 shows the steps 

in each stage labeled A through S, the number of steps and the QA checklists embedded in each group.  

Table 3: Process steps and QA checklists in each step. 

Stage Group Number of Steps QA Checklists  

Treatment Decision and Patient 

Assessment 

A 6 0 

B 12 0 

Simulation and Imaging 
C 2 0 

D 12 0 

Pre- treatment Planning and 

Verification 

E 4 0  

F 2 0 

G 14 QA 1- QA2 

H 3 0  

J 8 QA3 

K 1 QA 4 

L 3 0 

Treatment Delivery 

M 12 QA5 

N 1 0 

P 12 QA 6 

On- Treatment Planning and 

Verification 

Q 1 QA7- QA8 

R 1 0 

Chart Checking S 6 0 
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3.4 Good Catch Program  

Incidents that occur throughout the process may cross the QA checklists and not be discovered until later 

in the process. QA checklists are not 100% reliable and may not detect all errors. To improve quality and 

patient safety in the UNC Radiation Oncology Center, the Good Catch Program was implemented as part 

of a comprehensive QA program to provide a system of reporting, analyzing and managing incidents that 

have a negative impact on patient safety and the care delivery process. The phrase “Good Catch” is used 

to provide a positive connotation and disseminate a “no blame” environment for reporting incidents and 

system issues to the staff. GC refers to all incidents that happen throughout the RT care delivery process 

including the incidents that reached the patient regardless of causing or not causing harm or the incidents 

that came close to reaching the patient but were caught and corrected beforehand. 

 For each Good Catch (GC), a systematic root-cause analysis is performed to identify: a) where a GC 

started/was caught in the process; b) the number of QA checklists it crossed; c) the root-cause(s) and d) 

the action(s) needed to be taken for preventing future occurrence and improve the overall process. 

Employees are encouraged to actively report good catches and a summary of all GCs are reported in 

monthly QA meeting to make the staff aware of the continuous improvement efforts.  

  Incidents can lead to rework and unsafe conditions in the process. Depending on the incident type and 

its severity, the magnitude of rework varies. For incidents that reach the patient usually re-planning and 

re-treatment is required. The rework not only affects the patient directly involved in the incident and 

increase his/her treatment duration but it also increases the treatment waiting time for other patients which 

can cause tumor progression (Chen et al. 2008). 

4 SIMULATION MODEL 

4.1 Input Data 

The input data used to create the simulation model comes from historical data and data obtained during 

several meetings with care provider and department staff. We used Arena input analyzer to analyze the 

collected data. The distribution of patients and treatment times by cancer types are shown in Table 4.  

Table 4: Patient Mix. 

Type of Cancer Percentage Treatment time (Number of Sessions) 

A 10.2% 16 

B 18.1% 22 

C 6.3% 14 

D 12.5% 24 

E 19% 30 

F 8.1% 19 

G 8.2% 17 

H 17.6% 16 

 

  Table 5 shows the sample mean, standard deviation and the fitted distribution to the throughput and 

Good Catches data based on a sample observations for 150 days.  
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Table 5: Throughput and good catches data. 

 Number Scheduled Number Treated 
Number of Good 

Catches per Day 

Sample Mean 109 99.4 1.23 

Sample Standard 

Deviation 
11.4 12 1.27 

Distribution Weibull Weibull Weibull 

Expression 81.5 + WEIB(1.92, 1.43) 62.5 + WEIB(1.92, 1.43) 
-0.5 + WEIB(1.92, 

1.43) 

4.2 Model Assumptions 

4.2.1 New Patients’ Arrival Schedule  

Historical data indicates that 17% percent of the total numbers of patients that are scheduled each day are 

new patients (average of 19 new patients). The arrival rate for new patients is assumed to be that 3 

patients arrive every hour from 7:00 to 11:00, 2 patients arrive every hour from 11:00 to 14:00, and 1 

patient arrives from 14:00-15:00.  

4.2.2 Lead Times and Processing Times  

The key assumptions regarding the lead times and processing times are as follows:    

 

 It is assumed that for all patients the Treatment Decision and Patient Assessment are completed 

on their first visit to the Radiation Oncology Center and the Simulation and imaging appointment 

will be scheduled for between 4-8 days later (The time interval is assumed to follow a uniform 

distribution (4,8) ).  

 The patient comes for the first treatment session 5-9 days later (the treatment waiting time is 

assumed to follow uniform distribution(5,9) ).  

 The patient goes through N sessions to complete one course of treatment depending on the cancer 

type (refer to Table 4). Treatment sessions runs on consecutive days, i.e. a patient complete five 

sessions in a week.  

 If an incident begins in a pre-treatment planning step and is detected later sometime after the 

patient starts his simulation (which means the incident reached the patient), depending on the 

incident, some of the treatment planning steps must be repeated and a new treatment plan has to 

be developed for future treatment sessions. In this case, the waiting time until the next treatment 

session is assumed to be 1-2 days (uniform distribution(1,2) ). 

 All processing times are assumed to follow uniform distributions with parameters that are 

estimated based on several interviews with department staff. 

4.3 Calculating Incident Probability 

At the beginning of a day, the total number of incidents is drawn from the following Weibull distribution : 

-0.5 + WEIB(1.92, 1.43). Based on the GC data and incident distribution, we estimate how many times in 

a day an incident may happen during a particular step (incident frequency). At each step the incident 

probability for each type of patient per day is calculated as shown in Table 6:  
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Table 6: Calculating incident probability. 

New Patients Imaging/ Simulation patients Treatment patients 
𝑒𝑣𝑒𝑛𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

19
 

𝑒𝑣𝑒𝑛𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

15
 

𝑒𝑣𝑒𝑛𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

75
 

  

The denominators indicate the average number of each type of patients  in a day.  

4.4 Calculating Reliability Score of  QA 

We define the reliability score of a QA checklist as its ability to detect a incident. Analysis of GC, 

indicates how many QA checklists was crossed before the GC was caught. If a QA consists of 𝑁 elements 

and each element on average goes “wrong” 𝑀 times a day, we can conclude the QA must detect an 

average of 𝑁 ∗ 𝑀 incidents each day. If according to the analysis of GC, the QA was crossed 𝑇 times in 6 

months (which would be 
𝑇

120
 times a day) the reliability score is computed as follows:  

 

Reliability Score =  1 −
𝑇

120

𝑁∗𝑀
 

4.5 Patient Flow Modeling  

There is a total of 80 steps in the patient care delivery path. For the sake of simplicity, some of the non-

QA steps are combined together and ultimately 40 steps are used in the simulation model. The patient 

flow between two consecutive non-QA steps (A & B) with a QA step between them, is shown in Figure 2. 

New patients arrive at the center based on the arrival rates shown in Section 4.2 and are assigned a cancer 

type based on the probabilities shown in Table 4. A dynamic incident probability is assigned to the step as 

shown in Table 6. Each patient is assigned a binary state variable that is a vector of size 40 and keeps 

track of the source of the incidents that may happen at each step throughout the process. When the patient 

passes through a QA step, the QA first checks whether there is any incident associated with the patient or 

not. If so, the second decide module checks if the QA checklist includes the QA element associated with 

the incident (i.e. the QA has the right element to detect the incident). Finally, based on the reliability score 

of the QA checklist, the last decide module determines whether the QA checklist detects the incident or 

not and then updates the patient state variable that keep tracks of incidents. If the incident was not 

detected patient proceeds to the next process step.  

 

Process Step  A
 

Error 
Probability

QA Step QA Reliability

Process Step B

Error Occurred

Error Was Not Detected
Error Did Not Occur 

Error Was Detected

Does the QA have the right 
element?

Yes

No

 

Figure 2: Patient flow between QA and non-QA steps. 
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4.6 Model Validation 

The primary technique that we used to validate the model’s accuracy in representing the actual RT 

process is Historical Data Validation technique (Sargent 2010). We compared the simulation results to the 

part of the historical data that was not used in the model, in order to verify its performance. As an 

example, the results for a simulation run length of 6 months shows that during each day, on average of 16 

patients complete their consultation visit, 74 patients complete a treatment session and the rest visit the 

center for simulation and imaging. The total of 103 patients is close to 99 from historical throughput data.  

 To eliminate the effect of the “warming period” on results , based on the analysis shown in Figure 3, 

only the data after day 14 is used to compute the average number of patients in a day that complete their 

treatment.  

 

 

Figure 3: The number of patients that complete treatment in a day. 

5 RESULTS AND DISCUSSION 

5.1 Base Case 

In the base case scenario, our goal is to identify the steps that generate the most rework. Only one type of 

patient (Type B in Table 4) is considered to remove the effect of cancer type on treatment length. The 

analysis reveals that if the incidents that happen during the steps: 1) delineation of organs at risk (E2) and 

2) dose calculation (G6) are not detected until after the start of the treatment sessions, these steps will 

cause the maximum rework and consequently the maximum treatment duration. Table 8 summarizes the 

results and Table 9 shows the QA checklists that are able to detect the incidents occurring at these steps.  

Table 8: Maximum rework (days) for patient type B. 

Incident 

Maximum 

Rework - 

Average 

Maximum 

Rework - 

Minimum 

Maximum 

Rework - 

Maximum 

Half 

Width 

(days) 

 sub-optimal dose calculation 3.11 2.93 3.35 0.045 

sub-optimal delineation of organs at risk 2.97 2.52 3.41 0.062 

Table 9: The incidents that generate the most rework and the associated QA checklists.  

Incident Associated QA Checklist 

sub-optimal dose calculation QA 2 & QA 3 (element 5) 

sub-optimal delineation of organs at risk QA 1 (element 1) 
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5.2 Sensitivity Analysis  

In this section we conduct a sensitivity analysis on the reliability of QA 1 checklist based on the “worst 

case” scenario. We define the “worst case” as the case when an incident starts during the consulting stage 

or pre-treatment planning stage, crosses all the QA checklists and reaches the patient during the treatment 

delivery stage. Table 10 shows the time interval between “worst case” incidents for different QA 1 

reliability scores. The results clearly indicate that increasing the reliability score of QA 1, increases the 

time interval between the occurrence of “worst case” incidents.  

Table 10: Time interval between  “worst case” incidents. 

 QA 1 

Reliability 

 Time Interval - 

Average (Days) 

Time Interval - 

Minimum (Days) 

Time Interval - 

Maximum (Days) 

Half Width 

(Days) 

0.85 20.36 7.64 37.60 4.84 

0.90 28.42 7.64 109.66 10.32 

0.93  38.70 10.42 185.32 19.23 

0.95 (base case) 57.41 10.42 194.29 24.48 

0.97 69.47 10.42 194.29 25.80 

   

6 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 

In this paper we presented a discrete event simulation-based analysis to assess the effect of the reliability 

of QA checklists on the RT care delivery process. QA checklists are recognized methods in radiation 

oncology for detecting incidents before they reach the patient. To estimate the incident rates and the 

reliability score for the QA checklists in the case study, we used data from the Good Catch program (a 

comprehensive safety program at UNC).  

 The simulation results show those incidents that start early in the process, specifically during the 

delineation of organs at risk and dose calculation steps, generate the most rework. The results also 

indicate that increasing the reliability of the QA 1 checklist reduces the number of “worst case” incidents, 

i.e.,  increasing the time between “worst case” incidents.  

There are some limitations associated with this study: (i) we only considered one type of patient to 

identify the steps that cause the most rework, these results may be affected by the type of patient; and (ii), 

in order to assess the effect of different reliability scores on the time between “worst case” incidents, we 

only considered the QA 1 checklists and did not explore the effect of the reliability scores of other QA 

checklists on performance. Future work should address these limitations and explore the effect of 

changing the design of the process. It is important for incident prevention and detection to be designed 

into the process through an effective combination of QA checklists to reduce the chance that an incident 

reaches the patient.  
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