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ABSTRACT

Type 2 Diabetes Mellitus (T2DM) and its complications account for 11% of the global health expenditure
(IDF 2012). Different primary, secondary, and tertiary preventive interventions promise better health
outcomes and cost savings but are often studied separately. This paper proposes a simulation model for
T2DM that comprehends the nonlinear interactions of multiple interventions for various stages of T2DM
on population dynamics, health outcomes, and costs. We summarize the model, then demonstrate how we
addressed the important challenge of fitting input parameters given that data needed to be combined from
disparate sources of data sources in a way that calibrates input parameters to output metrics over a range
of decision variables (a form of model calibration to achieve a response model match to clinical data). We
present preliminary numerical results to inform policies for T2DM prevention and management.

1 TYPE 2 DIABETES MELLITUS AND DISEASE MANAGEMENT INTERVENTIONS

Type 2 Diabetes Mellitus (T2DM), or adult onset diabetes, is a metabolic disorder characterized by high
blood glucose resulting from insulin resistance and relative insulin deficiency. The disease progresses
slowly and T2DM is often diagnosed only after a hospitalization due to a major complication. Major
complications of T2DM include coronary disease, kidney failure and retinopathy (IDF 2012).

The diabetes prevalence in the USA increased from 2.5% to 6.9% between 1980 and 2010 (CDC 2012).
In the United Arab Emirates (UAE) more than 20% of the population has been diagnosed with diabetes
and the fraction with prediabetes exceeds 15% (Hajat et al. 2012). Other Gulf Cooperation Council (GCC)
countries also have a high prevalence. T2DM currently affects some 366 million people globally and is
expected to affect 552 million people within the next 20 years (IDF 2012).

In contrast to people with Type 1 Diabetes, the majority of those with T2DM do not usually require
daily insulin injections. Diabetics in the initial stages of T2DM are generally prescribed a healthy diet
and increased physical activity, the combination of which can stop the disease from further progression
(Williams 1994). The preventable nature of T2DM and its escalating societal burden strongly motivates
the implementation of preventive policies. Health authorities in many countries are actively engaging in
multiple levels of preventive actions including primary prevention (awareness programs for the general
population), secondary and tertiary prevention (disease management programs) for people diagnosed with
T2DM (Gillett et al. 2010, Lancet Editorial 2010, Hajat et al. 2012).

Waugh et al. (2010) note that early screening presents a chance to offer lifestyle suggestions and
treatment to people with prediabetes who would otherwise develop diabetes. However, the benefits of
primary prevention interventions have not yet been fully quantified. Given this observation, we develop
a system dynamics model for optimizing a portfolio of preventive care interventions in a way that is not
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directly amenable with typical Markov model or decision tree approaches to health economics (Brennan,
Chick, and Davies 2006) because of relevant nonlinear dynamics described below.

A number of T2DM models have previously been developed at the population, cohort and intra-personal
levels that account for a number of risk factors and outcomes. Many of these models are calibrated using
results from the United Kingdom Prospective Diabetes Study Group (UKPDS), a group that has developed
a comprehensive database of risk factors for T2DM (Stratton et al. 2000, Stevens et al. 2001).

This paper presents an overview of the system dynamics model we have used to assess the interactions
of the preventive care interventions under consideration. In one way, our model is broader than the UKPDS
work in the way that it simultaneously models several interventions and their interactions. In another way,
the model is simpler than the UKPDS work in that fewer covariates are included: their effects are averaged
for simplicity. This paper also describes how we fit the many parameters of our model to the situation
in the UAE, a process which required nonstandard techniques because of the multiple sources of data for
both system inputs and system outputs as measured at several values of decision variables. We also present
preliminary results of our numerical analysis. Structural results and further policy questions are pursued
in Aral, Chick, and Grabosch (2014).

2 MODEL FOR T2DM PREVENTION AND DISEASE MANAGEMENT INTERVENTIONS

We use a discrete-time deterministic system dynamics model to describe the dynamics of T2DM in a
population and to optimize a portfolio of potential prevention and disease management interventions.
§2.1 summarizes the system dynamics model for T2DM progression. §2.2 describes how interventions to
influence T2DM progression are modeled. Financial and health objective functions are found in §2.3.

2.1 Disease Progression, Self-Management and Disease Control

The model is portrayed graphically in Figure 1. Stocks are referred to by their number (in parenthesis). Each
stock corresponds to different combinations of disease progression, compliance with best-practice disease
management recommendations, and levels of the clinical indicator HbA1c (an important measure of good
blood glucose management). Healthy individuals may be either at high or low risk for developing T2DM
(stocks 1 and 2, respectively). Disease progression is modeled by states for impaired glucose tolerance
(IGT), also called prediabetes; early stage diabetes (T2DM before any major complication); and late stage
(presence of one or more major complication). The percentages give the estimated fraction of adult UAE
nationals in each stock, as described in §3 below along with citations for data sources.

The presence of an arc indicates a potentially nonzero flow rate (other than birth and death flows,
which are not shown). §2.2 describes these flows and §3 describes how we estimated their rates.

2.2 Interventions and System Dynamics

A number of activities may be undertaken in order to reduce the overall burden of T2DM by modifying
the progression dynamics of the disease. Here we consider four levels of preventive interventions.

1. Primary Prevention: Awareness Programs for the general public to decrease diabetes incidence rate,
also serves to increase the diagnosis rates for undiagnosed diabetes.

2. Secondary Prevention for diagnosed pre-diabetics: Disease management programs aimed at delaying
or preventing the progression to early stage diabetes.

3. Secondary Prevention for diagnosed early stage diabetics: Disease management programs aimed
at delaying or preventing major complications.

4. Tertiary Prevention for diagnosed late stage diabetics: Disease management programs aimed at
delaying or preventing further major complications.
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Figure 1: T2DM Progression from Left to Right, Levels of Behavioral Compliance, and Level of Glycemic
Control Measured by HbA1c. Percentages reflect the population distribution in Abu Dhabi prior to the
so-called Weqaya public health screening programme.

Typically, a primary prevention program (here, indexed by k = 1) takes the form of an awareness campaign
that encourages both healthier lifestyles and screening. For example, a multi-channel media campaign
communicating the risk factors for diabetes and promoting preventive actions in coordination with free-of-
charge opportunistic screening would classify as a primary prevention program. Secondary prevention for
people diagnosed with IGT/prediabetes (k = 2) or with diabetes (k = 3) and tertiary prevention for people
with late stage diabetes (k = 4) are targeted disease management interventions designed for diagnosed
patients at different stages of the disease.

At each time t, a decision is made to set the intensity of each type of intervention. To model this,
we let zt = (z1,t,z2,t,z3,t,z4,t) denote the vector of the intensity of interventions (k = 1,2,3,4) at time t. We
require each zk,t to be a nonnegative and real-valued rate of interventions/person/year. For example, z2,t = 4
represents 4 interventions per year per person diagnosed with IGT. A planner who has a planning horizon
of τ years is then interested in selecting a policy z• = (z0,z1, . . . ,zτ−1).

Let Ft be a disease progression matrix with flow rates fi, j,t = fi, j,t(zt) from stock j into stock i at time
period t. The fi, j,t are functions of the interventions zt at time t. An increase in z1,t increases the flow rate
into the healthy low risk stock and increases the flow rates from undiagnosed stocks into diagnosed stocks
at time t. An increase in zk,t for k = 2,3,4 increases flows into compliant stocks at time t and thereby results
in lower (improved) HbA1c levels for the populations that they target. Thus, an increase in zk,t (for k = 2,
3) also decreases flows to more advanced stages of T2DM.

We describe the birth-death process with bi, j, the rate of new entries to stock i per individual in stock
j, and with di, the death rate for individuals in stock i. This determines the net birth/death rate Bi, j,t = bi, j
for i , j and Bi,i,t = 1+bi,i−di. Thus, birth-death rates can model risk factors for disease stage and disease
management state, but are assumed to not depend on time and intervention intensity.

The counts of people in the NC = 23 stocks in Figure 1 at time t are denoted with the column vector
xt, for t = 0,1, . . .. The population dynamics are thus described by the flow equation

xt+1 = Ptxt,

where the flow rate matrix Pt = FtBt depends on both birth/death rates and flows between disease states.
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2.3 Performance Objectives and Optimal Stationary Policies

Different objective functions to evaluate the performance of an intervention policy z• may include financial
objectives (e.g., the NPV of intervention and treatment costs), health objectives and willingness to pay
objectives which combine financial and health objectives. Both discounted and long-run average performance
objectives might be considered. This section describes how we account for these objectives.

Expenditures due to T2DM include the cost of the interventions (as outlined in §2.2) and treatment costs
(blood glucose measurement devices and consumable strips, regular primary care visits associated with
full compliance, drugs, insulin, etc.). We include the average per capita costs attributable to T2DM-related
complications in treatment costs.

The total cost of interventions in period t is modeled by C(zt)Gxt, where zt is a row vector of intervention
decisions, C(zt) the vector of per capita costs of interventions in period t and G is a matrix of zeros and
ones such that Gk j is 1 if intervention k applies to subpopulation j and 0 otherwise. We denote the average
annual cost of treatment and complications per person in stock i by ci, and set c′ = (c1,c2, . . . ,cNC ).

The discounted financial burden of prevention and treatment is an important economic measure of the
burden of disease in a population. If the discount factor is β ∈ [0,1) and the initial population is x0, then
the total discounted cost over τ periods due to interventions and treatment is

J$,τ(z•) =

τ−1∑
t=0

βt (c′+C(zt)G
)
xt.

The population xt at time t depends upon the flow rate matrices Pt−1,Pt−2, . . . ,P0 and the initial population
x0. Each Pt may depend on zt, xt and t.

A commonly used measure of health is the quality adjusted life year, or QALY (Gold et al. 1996). We
let qi be the QALY per life year per person in stock i, and set q to be the vector of those values. The total
discounted QALYs from a policy z• over τ time periods is

JQALY,τ(z•) =

τ−1∑
t=0

βtq′xt.

Financial outcomes and health outcomes can be combined with a willingness to pay (WTP) parameter λ.
QALYs are monetized at the rate of λ dollars per QALY. This motivates a discounted WTP objective,

Jλ,τ(z•) = J$,τ(z•)−λJQALY,τ(z•).

An alternative to the discounted costs are average costs through time. Average costs are of particular
interest for long-run sustainable performance goals. We denote the corresponding average performance
objective function with a V . For example, the time average per capita cost of treatment and interventions is
denoted by V$,τ(z•) = τ−1 ∑τ−1

t=0 ((c′+C(zt)G) (xt/(
∑NC

i=1 xi,t)) for finite τ. We define VQALY,τ(z•) and Vλ,τ(z•)
for average QALY and WTP objectives analogously.

Arbitrary feasible policies may be hard to implement. We therefore focus on fixed policies, whose
values are constant through time, i.e., policies for which zt = z for some feasible, fixed z.

In numerical experiments over a range of parameters (including many not reported here), we found
long run convergence in both population growth rates and in the fraction of individuals in each stock for
each given fixed policy. For a given fixed policy determined by z, we describe the long-run limits by:

r0,z = growth factor, with long-run population growth of 100(r0,z−1)%

ν0,z = long run fraction of people in each stock, limt→∞ xt/
∑NC

i=1 xi,t

The long-run average objective functions simplify with fixed policies. The long-run average annual
per capita cost of disease maintenance, treatment and interventions for a fixed policy z is:

V$,∞(z) = (c′+C(z)G)ν0,z. (1)
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Similarly, the long-run average QALYs per capita per year for a fixed policy z simplifies to VQALY,∞(z) = q′ν0,z
and the long-run average WTP per capita per year is Vλ,∞(z) = (c′+ zG−λq′)ν0,z.

Optimality. A feasible fixed policy z which minimizes the objective function for figure of merit
` ∈ {$,QALY,λ} and type η ∈ {J,V} is denoted by z∗,η`,τ when it exists and is unique. For example, z∗,V$,τ

would be a policy that minimizes long-run average costs. We allow τ =∞ to denote the limiting case as
τ→∞, when the relevant limit exists.

We found a unique optimal policy within the class of fixed policies for each objective function in
our numerical experiments. From (1) we see that an optimal policy for long-run average per capita costs,
z∗,V$,∞ , depends on the long-run population distribution but not on the initial population, x0. The optimal
fixed policy for a discounted objective function, however, depends on x0.

3 PARAMETER ESTIMATION FOR THE T2DM MODEL

The structure of the model in Figure 1 is chosen to comprehend features of disease progression, the effect
of interventions on compliance with self-management of T2DM, and their effects on the clinical indicator
HbA1c (which is measurable and has been associated with costs and risks of complications due to T2DM).
There are no known studies which provide estimates for all parameters relevant to each of those features
for the same population, and the fitting of input parameters to achieve an output response at each of several
decision variables is a nonstandard estimation problem.

We therefore chose a hybrid approach to parameter estimation. When directly relevant medical, public
health or financial data were available, we used standard estimation techniques as described in §3.1. Given
the importance of the T2DM challenge in Abu Dhabi and the GCC more broadly, we tried to find the most
relevant parameters for the adult Emirati nationals in Abu Dhabi. In cases where the data specific to that
population were not available, we first searched for data from the UAE, then from the GCC, then globally.
For parameters for which no data sources were available, we used a calibration process described in §3.2.

3.1 Parameters Estimated from Directly Relevant Sources of Data

This section describes the estimation of parameters which could be estimated from directly relevant data.
Initial Population Distribution: Table 1 summarizes the sources used to estimate the proportion

of individuals in each stock just prior to a recent, large-scale public health screening programme called
Weqaya. We thus describe an estimation process which may be relevant to other Emirates, other GCC
countries, or other areas with high prevalence which have not yet had a full screening or which may be
planning such a screening. The Weqaya Screening of the Health Authority-Abu Dhabi (HAAD) began
in April 2008 and was in response to the increase in cardio-vascular problems in Abu Dhabi’s Emirati
population. To date, 96% of that population of 180,000 adults has been screened for risk factors related to
cardio-vascular problems including diabetes and obesity. The International Diabetes Federation estimated
that the undiagnosed diabetics constitute 62% of all cases (IDF 2006), and that half of the diagnosed
diabetic population is in the late stage of diabetes having developed complications. To the best of our
knowledge, the proportion of the undiagnosed population in early and late stage is not identified in prior
studies. Hence, the proportion of the undiagnosed population in the late stage versus early stage is fit by
the least-squares error minimization.

We use a conservative estimate for the proportion of healthy high risk (here, overweight to simplify):
we assume that all diabetics and pre-diabetics were de facto at high risk so that the proportion of people at
high risk of developing pre-diabetes is given by 70%−44% = 26%. The compliance rate (under the base
rate of intervention) of 40% among people with diabetes is based on a study of dietary habits in Saudi
Arabia. We assume that the overall compliance rate including the drug refill and doctor visit rates is the
same and is comparable between early and late stage diabetics. Harris et al. (1999) give the respective
proportions of each glycemic control group both for diabetics under insulin and diet alone. We assume that
insulin treatment is administered to those who do not comply with dietary modifications, and the patients
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Table 1: Parameters For Estimating the Diabetic Population Distribution in the UAE.

Parameter Value Source(s)
Fraction diabetic 21% HAAD (2011)
Fraction pre-diabetics+diabetics 44% Khoja et al. (2010)
Fraction pre-diabetic 23% (=44%-21%)
Fraction undiagnosed pre-Weqaya 62% Lasry and Silva (2010)
Fraction overweight 70% HAAD (2011)
Fraction healthy high risk 26% (=70%-23%-21%)
Fraction healthy low risk 30% (=100%-44%-26%)
Ratio of early/late stage 1 Lasry and Silva (2010)
Fraction late stage diabetics 10.5% (=21%/2)
Fraction early stage diabetics 10.5% (=21%/2)
Frac. compliant w/(good, fair, poor) glycemic control (73.2%, 11.9%, 14.9%) Harris et al. (1999)
Frac. non-compliant w/(good, fair, poor) glycemic control (26.5%, 22.1%, 51.4%) Harris et al. (1999)
Compliance rate 40% Khattab et al. (1999)

treated with diet alone are considered to be compliant. Given these assumptions, algebra gives the HbA1c
distribution for compliant and non-compliant diabetics. These proportions are assumed to be the same for
IGT, early and late stages.

The assumptions above result in the fraction of people in each stock that is given in Figure 1. These
fractions are used for the initial population state vector x0 for the numerical analysis.

Birth and Death Rates: Average birth and death rate data are locally available (Table 2). Statistics
Centre-Abu Dhabi (SCAD 2011) reports d = 2.11× 10−3 as the death rate for Emirati nationals, and
b = 0.0311 as the average birth rate. Death rates di for each stock are determined by using the relative risks
factors for death by disease state (as computed using parameters in Table 2) and population distribution
(x0 above) to result in the overall death rate, d=[1.678 1.165 2.383 2.383 1.492 1.165 2.383 1.492 1.165
4.218 4.218 2.496 2.063 4.218 2.496 2.063 4.762 4.762 2.976 2.459 4.762 2.976 2.459] ×10−3.

The modeled population is insured adults aged 18 or older, so “births” may arrive to healthy stocks
or those with T2DM. Christakisi and Fowler (2007) show that obesity (a prime risk factor for T2DM)
“spreads” through networks of individuals (i.e., families). To model the “spread” of T2DM through “births”
into unhealthy stocks, where a diabetic individual has a higher likelihood to give “birth” to a high risk or
diabetic individual, we model the nonzero birthrates bi, j to stock i due to individuals in j as follows:

bi, j = bxi,0/(x1,0 + x2,0), for i, j ∈ {1,2}
bi, j = bxi,0/(x1,0 + x2,0 + x3,0), for i ∈ {1,2,3}, j ∈ {3,4, . . . ,9}
bi, j = bxi,0/(x1,0 + x2,0 + x3,0 + x10,0), for i ∈ {1,2,3,10}, j ∈ {10,11, . . . ,16}
bi, j = bxi,0/(x1,0 + x2,0 + x3,0 + x10,0 + x17,0), for i ∈ {1,2,3,10,17}, j ∈ {17,18, . . . ,23}

Treatment and Intervention Costs: Treatment and intervention costs are largely available locally.
Table 3 summarizes data and references that we use to fit the annual treatment costs, c. Al-Maskari et al.
(2010), whose data is from Al-Ain in the Emirate of Abu Dhabi, indicates that the average medical care
cost for people with diabetes without complications is $1,605 (in 2005 US$), and gives the average cost
for micro and macro complications. We estimate the cost of the first complication by a weighted sum
of the corresponding costs of macro and micro complications. Gilmer et al. (1997) study the effect of
glycemic control on medical costs and estimate that patients with HbA1c levels of 7%, 8%, 9% and 10%
have costs that are 4%, 10%, 20% and 30% higher than those with an HbA1c of 6%. We assume these
percent increases are valid for both early and late stage diabetics. We model variable costs but not fixed
costs. These assumptions imply an estimated annual treatment cost (in US$) per capita c = [497 497 497
497 497 497 497 497 497 497 1,824 1,537 1,465 1,738 1,537 1,465 6,185 7,701.3 6,488 6,185 7,337
6,488 6,185], including health costs not related to diabetes.
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Table 2: Parameters for Estimating the Death and Birth Rates in the UAE for Various Stages of Diabetes.

Parameter Value Source(s)
Death Rate for nationals in Abu Dhabi (annual) 2.11/1000 SCAD (2011)
Increase in death rate in higher risk healthy group 0.44 Gonzalez and Hartge (2010)
Increase in death rate with IGT 0.42 Saydah et al. (1992)
Increase in death rate with diagnosed diabetes 1.11 Saydah et al. (1992)
Increase in death rate with undiagnosed diabetes 0.77 Saydah et al. (1992)
Increase in death rate with late stage diabetes over early stage 0.192 Saydah et al. (1992)
Increase in death rate per 1% increase in HbA1c for nondiabetic 0.28 Khaw et al. (2001)
Increase in death rate per 1% increase in HbA1c for diabetic 0.21 Stratton et al. (2000)
Average Birth Rate for nationals in Abu Dhabi 0.0331 SCAD (2011)

Based on reasonable but disguised data, the cost of primary prevention per person per contact is taken
to be C1(1) = $15. Based on the same source, the cost of disease management per person per intervention
for people with IGT, Early, and Late Stage diabetes are taken to be C2(1) = US$50, C3(1) = US$81, and
C4(1) = US$100, respectively.

QALY: QALY data for health outcomes are not locally available. We assume that the QALYs per person
per year for stocks without diabetes is 1. For the early stage we use a 0.78 QALY per year (Clarke et al.
2002). For late stages, we assume that a major complication results in a decrease of 0.1285 QALY on average
(derived from results in Clarke et al. 2002, with an assumption that each major complication is equally
likely), and that a 1 % increase in HbA1c increases the probability of developing complications by 21%
(Stratton et al. 2000), so q = [1 1 1 1 1 1 1 1 1 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.65 0.60 0.62 0.65 0.60 0.62 0.65].

3.2 Calibration of Flow Rate Parameters When No Directly Relevant Data Were Available

We use a calibration process for flow rate parameters for which no data is available. In summary, we posit
logistic curves for the effects of interventions on flow rates and quantified the long-run fraction of people
in each stock of the model for several relevant levels of intervention intensities. We compared population
and clinical metrics which are implied by those long-run fractions with the values that would be implied
by archival literature. We then fit the parameters of the logistic curves by finding the parameters of the
logistic curves which minimized a sum of squared error terms for both the subpopulation (stock) sizes and
for changes in the relevant clinical indicators as interventions vary.

Logistic curves for flow rates. For flow rates which may depend on intervention decisions (not births
or deaths or progression rates), we assume that the effect of interventions on the flow rates fi, j = fi, j(z)
are logistic functions of the intervention intensities (we remove the subscript t from zt and fi, j,t to reduce
notational complexity and to focus on fixed policies). See Robins and Rotnitzky (2004) and Greenstein
and Bonita (2000) on the use of logistic functions to model patient compliance behavior.

For example, consider interventions i = 2,3,4 (IGT, early, late). The flow rate from a non-compliant
stock to a compliant stock is presumed to be of the form 1/(1 + exp[−ai,1 −ai,2zi]), and flow rate from a

Table 3: Parameters Used in Estimating the Costs for Various Stages of Diabetes (in 2005 US$).

Parameter Value Source(s)
Per capita expenditure on health care in Abu Dhabi US$497 Al-Maskari et al. (2010)
Annual average cost in early stage diabetes US$1,605 Al-Maskari et al. (2010)
Average cost of drug therapy US$2,000 Muslim, N. (2010)
Costs due to microvascular complications US$3,453 Al-Maskari et al. (2010)
Costs due to macrovascular complications US$10,300 Al-Maskari et al. (2010)
Ratio of prevalence of macro/micro complications 0.6635 Al-Maskari et al. (2010)
Weighted annual cost of the first complication US$6,185 Al-Maskari et al. (2010)
Increased risk of complications per 1% Increase in HbA1c 0.21 Stratton et al. (2000)
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compliant to non-compliant stock is of the form 1− 1/(1 + exp[−ai,3 − ai,4zi]). The parameters ai, j were
assumed to be constant across the three levels of HbA1c benefitting from intervention i. The flow rate from
the healthy high-risk to healthy low-risk is 1/(1+exp[−a1,5−a1,6z1]). The flow rate from healthy low-risk
to healthy high risk is 1−1/(1 + exp[−a1,7−a1,8z1]).

Summands of squared error terms to be minimized. There are two main categories of summands
of squared error terms which we use for fitting the flow rate parameters ai, j above.

The first category is the relative squared error between the fraction of individuals in each stock at
time 0 (x0/

∑NC
i=1 xi,0) and the stationary distribution (ν0,zbase) that results from employing a base level of

interventions zbase. These summands would be
∑NC

i=1((ν0,zbase,i− xi,0)/xi,0)2 if the number in each stock could
be observed (relative squared errors are used in order to ensure proper fitting for the stocks with low
population fractions). Because the number of undiagnosed cases of T2DM may not observable, we recall
the estimated fraction of the population at time 0 in undiagnosed stocks 10 and 17 is 0.13, and replace
the two summands for i ∈ {10,17} with ((ν0,zbase,10 + ν0,zbase,17−0.13)/0.13)2. We assume base intervention
rates of zbase = (0.3,0.3,0.3,0.3) as minimal intervention rates for the fitting process.

The second category is associated with calibrating the flow parameters so that reasonable values of
clinical indicators are observed when the values of the decision variables z are changed. Those reasonable
values are indirectly influenced by z through the logistic curves for the flows. We have two main terms
in this category: one for HbA1c and one for the compliance rate to primary prevention. To calibrate
the effect of z on HbA1c, we assessed the average HbA1c of individuals with diagnosed T2DM when
targeted interventions were raised by one (i.e., z′ = zbase + [0,1,1,1]′) as predicted by the model compared
with values reported in the literature (this term enables us to fit the parameters for modeling the effect
of targeted interventions z2,z3,z4). The model’s results depend on the ai, j. Literature (Rhee et al. 2005)
shows empirically that each effective interaction with a qualified care provider has an effect of decreasing
the average HbA1c by 0.12% points. We assume that the same decrease in HbA1c is achievable for IGT,
early and late stage interventions in our context. For IGT interventions, we therefore include a squared
error term (

∑9
`=4 HbA1c,`(x`,0 − x`,1)−0.12)2 in the sum of squared errors. Here, HbA1c,` is the average

HbA1c level for individuals in stock ` and the summand is the expected decrease in average HbA1c in
the next time period (starting from t = 0) when increasing intervention intensity of z2 from 0.3 to 1.3. We
included similar terms for early and late stage interventions in the sum of squared errors.

We now consider the calibration of the flow terms associated with primary prevention, z1. Snyder
et al. (2004) suggest an increase by 6% in compliant behavior per contact from a primary prevention
intervention. Hence, we assume that the flow from the healthy high-risk stock to healthy low-risk increases
by 6%, and the flow from the healthy low-risk to healthy high-risk decreases by 6% with the first primary
prevention contact over the base rate. Primary prevention can also motivate people with undiagnosed
IGT and early stage diabetes to get diagnosed. This 6% increase in diagnosis rate by the first primary
prevention contact is used in fitting the logistic flow rates f4,3 = 1/(1 + exp[−a1,1 − a1,2z1]) and f11,10 =

1/(1 + exp[−a1,3 − a1,4z1]). For example, the contribution of a1,3 and a1,4 to the total squared error is
((1/(1+exp[−a1,1−a1,2×1.3]))− (1/(1+exp[−a1,1−a1,2×0.3]))−0.06)2, the contribution of the remaining
parameters to the total squared error are similarly defined.

Other constraints on flows. In order to respect risk ratios in the literature or to retain a level of
consistency in parameter estimation where data are not available, we use a few additional assumptions.
We constrain the ratio of flow rates from high risk and low risk to IGT to be 4.1 so as to match the risk
ratio from Mohan et al. (2008). We assume that the sojourn time for undiagnosed complications is 1 (i.e.,
a treated complication was assumed to imply a diagnosis during treatment), so the diagnosis rate for late
stage diabetics is f18,17 = 1. Non-compliant stocks with the highest HbA1c levels are assumed to have
the same disease progression rate as the undiagnosed cases ( f11,4 = f10,3 and f18,11 = f17,10), because best
practice disease management is not observed in those stocks.

For vertical flows within each of the three blocks of diagnosed stages (for each stage of disease) with
six stocks each, we use assumptions about how the rates are linked. We assume that a given vertical flow
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in one block of six equals the flow rate of the analogous vertical flow in the other blocks of six to simplify
calculations and to avoid overfitting. This transforms the fitting of 24 vertical flow parameters to the fitting
of 8 vertical flow parameters. These assumptions together with relative risk ratios of disease progression
summarized in Table 4 are used to constrain the flow rates.

Calibration summary. In summary, we calibrate flows (flow rate parameters or the parameters ai, j of
logistical models for flows which depends on an intervention) by choosing them to minimize the squared
error terms (as explained above) to assure good fit for a reasonable range of decision parameters to some
population and clinical metrics. We note that in general, such an optimization to calibrate parameters of
a system dynamics model may lead to nonintuitive or counterintuitive parameter estimates for flow rates.
In order to minimize such effects, we minimize the least squares while constraining flow rates to respect
several known relative risk ratios or other criteria to retain face validity.

Table 4: Parameters used in indirect estimation of vertical flow rates and relative risks of disease progression.

Average HbA1c for HbA1c > 8% 9.1% Harris et al. (1999)
High and Low Risk population 26%, 30% Table 1
Increase in Risk of comp. 1% HbA1c 21% Stratton et al. (2000)
Increase in Risk of comp. non-comp. 31% Gleason et al. (2011)
RR with healthy High Risk 4.1 Mohan et al. (2008)

4 PRELIMINARY NUMERICAL EXPERIMENTS

This section presents some preliminary results and insights based on the conceptual model in §2 for T2DM
progression as a function of a portfolio of primary and other disease management interventions, and on
adaptation of that model to the data from the UAE (as fitted in §3). In what follows, we chose a discount
factor β = 0.95 and a WTP parameter λ = 50K US$/QALY unless otherwise specified. Both of those
choices are compatible with standard practice. We normalize the initial population size x0 to 1 so that
objective function values reported for discounted figures of merit are per person at time 0.

Table 5 gives the optimal intervention intensity levels under several different objectives under the
assumption that the disease status of all individuals is known. While this might not be true in general,
the assumption is relatively reasonable for Abu Dhabi following the intensive Weqaya screening program
(Hajat et al. 2012). On the one hand, we see that primary intervention is not cost saving from the discounted
NPV perspective (z∗,J$,∞

1 = 0), but it is cost effective (z∗,Jλ,∞1 > 0). On the other hand, if we take the long-run
average per capita cost perspective, we see that primary prevention is both cost saving (z∗,V$,∞

1 > 0) and cost
effective (z∗,Vλ,∞1 > 0). Thus, a shift from a discounted NPV perspective to a long-run average per capita
cost perspective shifts the optimal decision from not providing primary prevention services to providing
primary prevention services. Table 5 also suggests that the discounted WTP perspective, which values
health and discounts future costs, tends to provide more focus on treating patients throughout the later
stages more so than the average cost WTP formulation.

We now explore what would happen if the number of individuals in each disease state were not as
accurately known as in Abu Dhabi. We could ask the question: “How would optimal policies change if
there was a way to immediately diagnose undiagnosed cases of IGT and T2DM?” Such an effect can be
modeled by setting f4,3 = f11,10 = 1 and f10,3 = f17,10 = 0 (rather than using their calibrated values above).

Table 6 gives the optimal fixed policies under different objective functions with immediate diagnosis
(no more than 1 time step undiagnosed). Differences in the optimal objective function values for the base
model and the case of immediate diagnosis help determine the maximum reasonable cost of immediate
diagnosis one might entertain. We therefore focus on differences in optimal policies as observed for the
purely financial objectives, and first examine the discounted cost J$,∞. The NPV per person for z∗,J$,∞

with immediate diagnosis (US$41,181) is higher than without immediate diagnosis (US$40,901). This is
because more diagnosed individuals implies more treatment and intervention costs.
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A greater practical difference is observed for the long-run average cost, V$,∞. While primary prevention
is an active part of the optimal portfolio when there is no immediate diagnosis, it is not an active part
of the optimal portfolio when there is immediate diagnosis (z∗,V$,∞

1 = 0 in Table 6). Thus, the benefit of
primary prevention for optimizing V$,∞ seems to be in its role in identifying undetected cases more than
in keeping healthy people to become or to remain at low risk. The reduction in primary prevention results
in a lower per person cost ($598.5/person/year instead of $630/person/year) if immediate diagnosis were
costless, but individuals would be at higher risk of IGT, and IGT prevalence would be higher.

The optimal policies for the two WTP objectives, (z∗,Jλ,∞ and z∗,Vλ,∞), are almost identical whether
immediate diagnosis is available or not. Thus, a WTP decision maker’s optimal policies do not strongly
depend on immediate diagnosis – the high rates of general awareness associated with those policies
(as expected from the monetizing of health) are sufficient for detecting new cases. Another interesting
observation is that under the immediate diagnosis scenario, optimal policies for J$,∞ and V$,∞ objectives
are aligned.

Table 5: Optimal Fixed Policies.

z∗,J$,∞ z∗,Jλ,∞ z∗,V$,∞ z∗,Vλ,∞
z1 0.0000 14.8471 3.8962 13.9260
z2 0.7086 0.9396 0.7475 0.9933
z3 0.6736 0.8722 0.7000 0.7458
z4 0.6829 0.8538 0.6003 0.7480

Table 6: Opt. Fixed Policies w/ Immediate Diagnosis.

z∗,J$,∞ z∗,Jλ,∞ z∗,V$,∞ z∗,Vλ,∞
z1 0.0000 14.8471 0.0000 13.9255
z2 0.7243 0.9396 0.7479 0.9935
z3 0.6977 0.8722 0.6958 0.7457
z4 0.6779 0.8538 0.5978 0.7072

5 DISCUSSION AND CONCLUSIONS

We develop a system dynamics model of the population level dynamics of T2DM progression which
accounts for healthy individuals with high or low risk, disease progression, and the influence that primary
prevention and disease management programs may have on disease progression. Although the dynamics
might reasonably be described by linear and Markovian dynamics, the transition rates themselves are
nonlinear in the intensity of disease management efforts. Furthermore, the data sources for informing the
model require nonstandard techniques. There is no single study which estimates all the relevant parameters
for a given population: some but not all parameters must be estimated indirectly.

We use an interesting combination of standard parameter modeling (e.g., for birth and death rates,
marginal costs, QALYs) and some least squared error estimation to calibrate parameters to match output
responses and the change in output responses as design parameters change. Such techniques might be
useful in other contexts where parameter estimation is used to calibrate input parameters when the output
must not only be calibrated for one set of values of decision variables, but also when the output response
must be matched for a range of decision variables.

Future work includes the derivation of mathematical properties for the optimal solutions, as well as
a deeper exploration of policy implications of the model. Relevant questions may include where to best
allocate additional funds if they become available, and a more thorough understanding of the implications
of choosing a discounted NPV or WTP perspective, which is common in health technology assessment, as
compared to a long-run average cost per capita perspective (Aral, Chick, and Grabosch 2014).
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