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ABSTRACT

In this paper, we present an iterative scheme integrating simulation with an optimization model, for solving
complex problems, viz., job shop scheduling. The classical job shop scheduling problem which is NP-Hard,
has often been modelled as Mixed-Integer Programming (MIP) model and solved using exact algorithms (for
example, branch-and-bound and branch-and-cut) or using meta-heuristics (for example, Genetic Algorithm,
Particle Swarm Optimization and Simulated Annealing). In the proposed Iterative Simulation-Optimization
(ISO) approach, we use a modified formulation of the scheduling problem where the operational aspects of
the job shop are captured only in the simulation model. Two new decision variables, controller delays and
queue priorities are used to introduce feedback constraints, that help exchange information between the
two models. The proposed method is tested using benchmark instances from the OR library. The results
indicate that the method gives near optimal schedules in a reasonable computational time.

1 INTRODUCTION

Simulation is used as an evaluation tool in many decision support systems. The framework of simulation-
based optimization, where a discrete-event simulation model is interfaced with an optimum seeking package,
is a popular methodology used for complex systems. Here, a discrete-event simulation model is integrated
with a meta-heuristic based solver. The simulation model evaluates the makespan for a given combination
of inputs suggested by the solver. This process goes on iteratively, for a specified number of iterations.

For large and complex systems with numerous interacting elements, simulation models alongside
analytic methods are used so that large number of alternatives are compared without damaging the actual
system or incurring huge costs. Simulation has an advantage over analytic techniques because it does not
require extensive use of simplifying assumptions, allowing it to better model the uncertainty in complex
systems (Glowacka, Henry, and May 2009). Simulation has been integrated with various analytic techniques
such as linear programming (Bang and Kim 2010), heuristic methods (Jeong, Lim, and Kim 2006), Data
Envelopment Analysis (McMullen and Frazier 1999). These hybrid models cover a large range of applications
including manufacturing systems, assembly lines, health care and supply chains. For some applications, fast
analytic models do exist. However, solutions are not always applicable to real systems due to randomness
that is not modelled in the analytic methods. Extensive use of these models is found in scheduling and
planning of manufacturing systems to attain feasible and realizable solutions.

A class of hybrid models using Mathematical Programming Representations (MPRs) instead of detailed
simulation models is presented by Schruben (2000). Schruben (2000) presents analytic methods to capture
the event-based dynamics of queuing systems, which can be an alternative to simulation models for queuing
systems. In this approach, discrete event simulation models are represented as event graphs. The state
trajectories of the event graphs are solutions to mixed integer programs or linear programs. Analytic models
specific to the problem are developed for the event graph that captures the system dynamics. These analytic
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models are shown to be solved quickly, as compared to conventional simulation methodology. Matta (2008)
extends the work by Schruben (2000) and presents an application of this hybrid model for flow lines with
buffers. An exact mixed integer linear model is compared with the proposed approximate LP model and
a stochastic programming model. The LP-approximate model is claimed to be fast and near-optimal.

Byrne and Bakir (1999) present a framework which combines analytic and simulation modelling methods
in an iterative hybrid approach. The analytical model is a linear programming(LP) formulation, while a
simulation model accommodated manufacturing system characteristics, such as queuing and transportation
delays. In this planning problem, the LP model runs first with deterministic inputs. Since the simulation
models the shop floor in detail, the realizability of the suggested ‘optimal’ plan is evaluated. The feedback
from the simulation is used to update the capacity constraint in the LP model. This loop is run iteratively
till some specified stopping criteria is achieved. Here, the mathematical program generates a solution that is
optimal, but not necessarily in the real system. The simulation model evaluates the realizability of a given
solution. Therefore, the system moves towards a realizable solution that need not be globally optimal.

Lee and Kim (2000) extend the work of Byrne and Bakir (1999) and present a hybrid method
combining the analytic and simulation model for an integrated production-distribution system in supply
chain environment. The solution procedure of independently developed analytic and simulation model
were used together to solve the problem. The focus was to obtain a realizable solution, which need not be
globally optimal.

Bang and Kim (2010) proposed a Hierarchical Production Planning(HPP) method in a semiconductor
wafer fabrication facility. An LP model is used for production planning at the higher level. At the lower
level, a list scheduling method is used for detailed scheduling and discrete-event simulation is used for
feasibility/desirability check of the production plan. An iterative method was proposed, in which waiting
times are updated and product types are regrouped for the next iteration according to the simulation results
of the current iteration, if the production plan obtained from the LP model is found to be undesirable during
the simulation run.

Mahdavi, Shirazi, and Solimanpur (2010) developed a simulation-based decision support system for a
stochastic flexible job shop. Here, a simulation model evaluates real time inputs from the shop floor. A
rule-based engine compares the output from the simulation model with the expected output. An analytic
model based on the Response Surface Methodology (RSM) computes the necessary changes to the system
in order to obtain the expected output. The proposed changes are run on the simulation model and this
process continues iteratively till the output of the simulation model matches the expected output. Once
again the focus being to obtain a realizable solution.

We reviewed several papers that used iterative schemes involving simulation and an analytic model. An
interesting factor is the number of times the simulation model interacts with the analytic model. The system
may be open loop (run once) or closed loop (iterative interactions). NP-hard problems like scheduling are
good candidates for iterative methods, where suitable feedback at each iteration brings the analytic model
closer to the optimum. Simulation when used at design level could be open loop, where multiple alternatives
are compared and evaluated. Open loop may have multiple runs of the simulation model. However, the
interaction between the simulation and analytic model is not iterative.

In this paper, we present an iterative modelling approach using a discrete-event simulation model and
an optimization routine to address the job shop scheduling problem. This architecture is based on the
hierarchical production planning problems framework implemented by Byrne and Bakir (1999). However,
we extend this approach to obtain an optimum solution. In the scheduling problem, the use of simulation
model ensures that any output from simulation is a feasible solution. Hence, the challenge is to move
towards optimality, given the quality of the solution. In the proposed method, a Linear Programming (LP)
model helps move towards optimality, after receiving inputs from a feasible solution given by the simulation
model. Identifying the information to be exchanged between the two models (LP and simulation) and the
mechanism to update the LP so as to move towards optimum are challenging tasks.
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1.1 Job Shop Scheduling Problem (JSSP)

The JSSP is a well known NP-hard problem. While exact methods exist to solve small and medium sized
deterministic problems (Pan and Chen 2003), the performance of these methods worsens drastically for
large sized problems. There are many variants of the job shop problem such as classical and flexible job
shop scheduling. In general, the objective of scheduling problems is to assign and sequence p operations
of n jobs on m machines so as to minimize makespan or maximal completion time. Attaining a global
optimal solution is NP-Hard, even without stochasticity. With hybrid models, that is, models using more
than one type of sub-models interacting with each other, we aim to find near optimal solutions within
reasonable computational time.

Apart from achieving optimum value of objective function, the solution may need to satisfy certain
criteria such as utilization of each machine above/below certain threshold, Time Between Departures (TBD)
below threshold value and number of tasks scheduled per machine below certain threshold (Mahdavi, Shirazi,
and Solimanpur 2010). These are often collectively called bottleneck resolution criteria and thresholds
depend on desired system performance.

The classical job shop scheduling problem (CJSSP) has a fixed input sequence for each job, where every
job has to visit every machine once and only once. The objective is to find a schedule for each machine
(order in which to process jobs) that minimizes the total completion time for the system (makespan). Pan
and Chen (2003) have presented an exhaustive literature survey of exact methods used to address the JSSP.
It is concluded that the Mixed Integer Programming (MIP) model proposed by Manne (1959) gives the
best performance for this class of problems.

Apart from exact methods, another popular solution approach for this class of problems is the use of
meta-heuristics. Different algorithms such as Genetic Algorithm, Simulated Annealing and Tabu Search
have been used (van Laarhoven et al. 1992; Klemmt et al. 2009). In general meta-heuristics use some form
of randomization, to explore the solution space and accept a sub-optimal solution with some probability.
The randomization helps them to escape local optima and makes it possible to move sooner towards a better
solution. The meta-heuristics treat the system like a black-box, making no assumption about its behaviour.

We propose a method that can escape local optima, similar to meta-heuristic based approaches. However,
it does not treat the system like a black-box. System specific knowledge can be included in the model in
the form of constraints, without worsening the performance. This is in contrast to the simulation-based
optimization models, where adding additional constraints can sharply increase the time required to obtain
even a feasible solution. The proposed method uses feedback from previous runs to move across the solution
space, as opposed to use of randomness by meta-heuristics. Due to this, the experiments are reproducible
and the solution remains unchanged, each time the model is run. The meta-heuristics need not guarantee
the same outcome for each run of the model.

In the following sections, we present a formulation for CJSSP based on the hybrid architecture described
so far. The iterative scheme is explained by presenting it in the form of an algorithm. The variables involved,
flow of information, stopping criteria and constraints are also explained in detail. The final algorithm is
referred to as ‘Iterative Simulation Optimization (ISO)’. While the scheme yields itself naturally to model
stochastic problems (due to the use of simulation model), the concept is demonstrated in this paper using
deterministic benchmark instances from the OR library (OR-library 2014).

2 SIMULATION MODEL

The operations of the job shop are modelled using discrete-event simulation, with each machine modelled
as a unit capacity resource with an infinite capacity queue in front of it. Every job is an entity of the model,
having a pre-defined sequence of machines and the process time on each machine associated with it. If an
arriving job finds a machine busy, it is placed in a queue before the machine. This simulation model is a
deterministic model and exactly 1 entity is created for each job.
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When this discrete-event simulation model is executed, it is observed that all the entities, that is, jobs
are created at time instance 0. The jobs then attempt to ‘seize’ or gain access to the first machine in their
sequence. Ties are broken arbitrarily. The entity which successfully seizes the machine begins processing
and the rest are put in a queue before the machine, ordered in first-come order (default). Once the job
finishes processing at a machine it proceeds to the next machine as per its sequence. If the job finds the
required machine busy, it joins the queue for that machine. Every job proceeds in this manner through the
job shop until all the machines in it’s sequence are visited. The simulation ends when the last job or entity
completes processing at the last machine in it’s sequence and the end time indicates the makespan.

As mentioned earlier the execution of the simulation model always yields a feasible schedule even
though it may be far from optimum, since the simulation model ensures that any machine can process only
1 job at a given time and the job sequences are strictly followed.

3 THE PROPOSED ISO APPROACH

In this hybrid approach, simulation is iterated with a Linear Programming model (LP). Figure 1 shows the
interaction between LP and DES model and the variables exchanged between them. The discrete-event
simulation model incorporates the system details governing the resource sharing and sequencing. The
schedule for the machines is obtained from the output of the Linear Programming (LP) model. The DES
model initially runs with all decision variable values set at zero. Selected data from the simulation run is
then passed on to the LP model, which updates corresponding constraints and suggests a new combination of
decision variables, that is, schedule.The DES model runs with the new schedule and this process continues
iteratively till the specified number of iterations is reached. The best observed schedule is reported in the
end, along with the corresponding values of decision variables.

DES

LP
solver

Objective,

Parameters

Decision
variables

Start

is stopping
criteria reached?

No

yes report
schedule

Stop

LP
model
updater

Figure 1: Iterative simulation-optimization.

For a deterministic job shop scheduling problem with fixed processing times, the solution space contains
all possible schedules for the machines. The feasible region is determined by the constraints on resources
(machines) such as: only one job can be processed on a machine at a time and the process at step l+1
cannot begin till the process at step l is complete (sequence constraints). These constraints are modelled
using simulation. Therefore, the simulation model defines the feasible set.

Now, in order to find a ‘good’ schedule that gives a smaller value of the objective function (makespan),
we need to intelligently search in the feasible region. For NP-hard problems such as the CJSSP, gradient
based searches such as steepest ascent or descent are inefficient because it is hard for these methods to
escape the local optima and move towards a different region in the feasible solution space. Meta-heuristics
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use some randomness to escape local optima and hence have shown better performance for such problems,
even though they do not guarantee reaching the optimal solution (due to the inherent randomness in the
method).

In the proposed ISO method, while the simulation model ensures feasibility, the optimization model
improves the objective function. The constraints the optimization model factor in the feedback from the
previous simulation run and further reduce the feasible region to search. During successive runs, different
areas of the feasible region are explored each time, determined by the changing constraints in the optimization
model. The presence of the simulation model ensures that all solutions are feasible. However, since the
constraints in the optimization model change dynamically, it is hard to prove that the optimal solution will
eventually be obtained.

The simulation model defines the feasible region and the optimization model provides the search
direction for a better solution. A few constraints are added to the optimization model to refine the search
by reducing the feasible region. Figure 2 shows the mapping of the solutions from the LP solver to the
solutions from the simulation model. The mapping is of ‘many-to-one’ type, where multiple optimization
solutions correspond to the same feasible schedule (simulation solution).

Optimization solutions
Simulation solutions
(feasible schedules)

Figure 2: Mapping of solutions.

4 DECISION VARIABLES

The job shop operations are captured by the simulation model. Now, we need to design the decision
variables appropriately so as to ensure that the entire sample space of machine schedules is explored. The
first natural choice of decision variable are ‘queue priorities’.

Queue priorities can be defined as the order of importance of the jobs on each machine. A set of queue
priorities is defined for every machine. Of all the jobs waiting in the queue of a machine, the highest
priority job is selected for processing first. Therefore, a job arriving later in the queue, but having a high
priority, will be processed before a job that was already present in the queue when it arrived.

Once a job finishes processing on a machine, it attempts to ‘seize’ the next machine in its sequence.
If this machine is idle, the job is taken up for processing. This behaviour is the default behaviour of the
simulation model and is referred to as ‘non-delay’ scheduling, indicating no delays in seizing of a resource,
once the resource and the job are idle. However, this behaviour need not always yield optimal schedules
and it has been observed that most often it is sub-optimal (Klemmt et al. 2009). To achieve the lowest
makespan possible, it may be essential to let a machine remain idle for an interval of time, even though a
job is available for processing on it. After some time, another job is allowed to seize the machine, ahead
of the other jobs waiting for it in the queue. This behaviour is called as ‘delay’ scheduling.

Some additional modelling is required to modify the default non-delay behaviour of the simulation
model and allow delay schedules. We introduce an infinite capacity delay module called as the controller
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delay and force every job to visit this buffer before proceeding to the next machine in its sequence. A
value of zero for delay indicates that the job is to be sent immediately to the next machine.

5 OPTIMIZATION FORMULATION

Since the literature survey identifies Manne’s MIP model (Manne 1959) as the best model for JSSP, it
is chosen as the starting point of the optimization part of the proposed scheme. The simulation and
optimization models incorporate different details of the system, with some overlap. The goal of the hybrid
formulation is to create a reduced solution space, so that scheduling problem can be addressed in a more
computationally efficient manner, with minimum compromise on the quality of solutions.

Simulation model covers the operational logic of the job shop, that is, the queues, resource sharing
etc. Hence the optimization model does not include any constraints related to job handling, sequencing
and queuing. The constraints that give a lower bound to the makespan are retained. However, they are
modified to include the same variables used in the simulation model. The value added time in the system
is called as the processing time. The non-value added time is the time that a job spends waiting for the
resource to get free. All such non-value added times are called delays.

Table 1 lists the notations used in the formulations.

Table 1: Parameters of proposed model.

Notation Definition
n number of jobs
m number of machines
pi j processing time of job j on machine i (minute)
S j Order in which job j visits machines (non-repeating set)
qi j priority of job j on machine i (ranks)
d̂i j controller delay for job j before machine i (minute)
d̃r

i j observed wait time of job j before machine i from rth sim. run (minute)
dr

i j suggested wait time of job j before machine i in rth opt. run (minute)
Cmaxr

sim makespan from rth sim. run (minute)
Cmaxr

opt makespan from rth opt. run (minute)

5.1 Optimization Model

As mentioned earlier, the objective of the problem is to minimize the makespan or the maximal completion
time of the job shop. Now, the actual system makespan is evaluated by the DES model, since it incorporates
the operational logic. In the optimization model, a proxy objective, similar to makespan is used. This value
is not the actual makespan of the job shop,since the resource sharing is accounted for in the optimization
model. Cmax is the time when the last job finishes in the system. The objective is to minimize this value.
Expression 1 gives the objective function for the LP.

There are three sets of constraints with two types in each set (one for jobs and one for machines). The
first set gives the lower bound for makespan as shown in constraints 2 and 3. The second set, giving the
lower bound for non-value added time in terms of d̃ is shown by constraints 4 and 5. The lower bound is
some fraction 1

k of d̃, the delays observed in the previous simulation run. The output is sensitive to the
choice of k.

The constant k is used in the optimization routine to constrain the non-value added time from optimization
(which is the output) with respect to the non-value added time from simulation. This constant can be
defined differently for the constraints over jobs and machines or the same value of k may be used for both.
Also, k may be static (pre-defined) for all iterations or dynamic (changes with each iteration).
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The formulation of the LP is presented next. The ISO model is tested on three benchmark instances
from the OR library, representing small, medium and large sizes of job shops. The domains for the decision
variables are decided based on the problem size. These domains and the values of parameter k giving the
best performance for each model size are noted below.

Decision variable domains
ft06 D = 30, km = 1.2, k j = 2.5
ft08 D = 80, km = 2, k j = 4
la26 D = 180, km = 5, k j = 8

min
dr

i j

Cmaxr (1)

n

∑
j=1
{dr

i j +
pi j

10
} ≤Cmaxr i = 1, ...,m (2)

m

∑
i=1
{dr

i j +
pi j

2
} ≤Cmaxr j = 1, ...,n (3)

km ∗
n

∑
j=1

dr
i j ≥

n

∑
j=1

d̃i j i = 1, ...,m (4)

k j ∗
m

∑
i=1

dr
i j ≥

m

∑
i=1

d̃i j j = 1, ...,n (5)

dr
i j ≤ D i = 1, ...,m, j = 1, ...,n (6)

5.2 ISO Algorithm

The algorithm is run for a fixed number of iterations (R). First, the simulation model is run by using
qr

i j = 0 and d̂r
i j = 0. The delays from the simulation model d̂r

i j and the makespan Cmaxr are noted for each
iteration r. These values are given to the optimization model to be used in the updating constraints. The
optimization model returns the values for dr+1

i j which are used as controller delays in simulation. The queue
priorities are derived using these controller delay values. At the end of R iterations, the lowest makespan
and corresponding delays are returned.

Algorithm

1: Set qr
i j = 0 and d̂r

i j = 0.
2: while r ≤ R do
3: Run simulation model. Note d̃r

i j.
4: Run optimization model with d̃r

i j as input. Note dr
i j.

5: Derive qr
i j using dr

i j.
6: r = r+1
7: end while
8: return dR

To demonstrate the algorithm, the values for all parameters for the first two iterations are recorded and
presented for the ft08 instance in Tables 2 to 5. As mentioned in the first three steps of the algorithm, the
simulation model is first run (r = 0) with inputs q0

i j = d̂0
i j = 0. The actual delays observed in the simulation

model (d̃0
i j) are noted in Table 2. These values are given as input to the optimization model as mentioned

in step 4. The output of the optimization model (d0
i j) is noted in Table 3. In step 5, the d0

i j values are
assigned as queue priorities and controller delays. This completes one iteration. The queue priorities are
set at ‘smaller-the-higher’, that is, a smaller value indicates a higher queue priority. The simulation model

1626



Kulkarni and Venkateswaran

is run again (r = 1) using these new inputs (q1
i j = d̂1

i j = d0
i j) to obtain the output (d̃1

i j) mentioned in Table 4.
These values are used as input to the optimization model to obtain the next set of results mentioned in
Table 5. This process continues iteratively for a specified number of runs at the end of which the best
simulation makespan is returned as the final output, along with the values of corresponding di j.

Table 2: Simulation output d̃0
i j, makespan: 1028.

43 0 0 0 66 0 112 41
146 0 127 46 143 181 0 140
31 86 0 92 115 31 58 0
75 37 0 0 36 97 0 0
69 0 0 0 0 14 0 60
0 21 46 0 79 0 65 6
28 0 30 1 0 0 0 0
85 0 62 19 42 0 41 41
0 90 0 101 107 105 29 91
31 0 60 11 47 0 0 53

Table 3: Optimization output d0
i j, objective: 445.

0 80 1 20 30 0 0 0
2 80 80 80 80 70 0 0
0 29 80 18 80 0 0 0
65 0 0 0 58 0 0 0
0 0 0 0 0 72 0 0
0 0 0 0 0 32 77 0
0 0 0 0 0 0 15 15
80 0 0 0 0 0 65 0
80 0 0 0 0 22 80 80
21 0 0 0 0 0 0 80

Table 4: Simulation output d̃1
i j, makespan: 1069.

0 74 0 0 38 0 71 0
15 0 90 183 61 76 0 7
5 2 0 0 35 31 0 0
12 59 95 0 52 0 0 0
25 7 0 0 71 0 4 0
22 0 0 0 13 0 6 0
21 61 18 63 0 0 0 0
0 95 0 23 1 8 2 0

141 0 0 27 9 14 35 0
50 11 14 0 0 0 0 40

Table 5: Optimization output d1
i j, objective: 401.

0 78 55 18 0 0 0 0
80 0 0 56 80 0 0 0
0 0 0 0 0 25 12 0
0 0 0 0 61 48 0 0
0 0 0 0 0 0 34 20
0 0 0 0 0 0 0 21
0 0 0 0 0 80 2 0
0 0 0 0 0 0 65 0
0 0 0 0 0 0 80 33
0 0 0 0 0 0 0 58

6 RESULTS

The experiments were performed on the 6×6 benchmark instance ft06, the 8×10 benchmark instance
ft08 and the 20×10 benchmark instance la26. The machine used had the following specification: Intel
Dual Core, 800 MHz, with 3GB RAM. The software used in the implementation are Anylogic: 6.9, Eclipse:
Indigo, CPLEX 12.4.

Using the values of k mentioned in Table 6, the results in the subsequent columns were obtained. Each
experiment was run for 5000 iterations which took less than 100 sec to terminate.

Table 6: Results for ISO.

Data instance km k j Makespan Time(sec)
ft06 1.2 2.5 58 60
ft08 2 4 869 60
la26 5 8 1347 82

The simulation model evaluates a schedule based on the values of decision variables suggested by the
LP. Figure 3 shows the different makespans evaluated by the simulation model for the two benchmark
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instances ft06 and ft08. The X-axis is the iteration number and the Y-axis the makespan. The figures
show the different makespans evaluated in a duration of 100 iterations out of the total 5000 iterations
performed. It is observed that although ISO may find a ‘good’ solution early on, it will still evaluate other
makespans, which may be worse than a previously obtained solution, in order to try to move towards a
better solution. The variability in the makespans over iterations, as seen in Figure 3, is due to the way ISO
operates in order to escape local optima and explore the the entire solution space in a random manner.

  

Iterations             700                          750

100

90

80

70

60

Makespan

(a) ft06.

  

Iterations             500                          550

1600

1400

1200

1000

800

Makespan

(b) ft08.

Figure 3: Makespan as obtained from simulation in ISO method for 6×6 and 8×10.

The MIP methods are known to guarantee optimality for smaller problems. On comparing the results
from ISO with the MIP method(Manne 1959), it is seen that the MIP achieves optimal solution in a few
seconds for smaller problems. However, for the larger problem, the performance of the ISO is better than
the performance of MIP running for 30 minutes.

Table 7: Comparison with MIP.

MIP ISO
Data instance Makespan (5min) Makespan (30min) Makespan Time (sec)

ft06 55* 55* 58 60
ft08 824* 824* 869 60
la26 1372 1359 1347 82

*indicates optimal

The results indicate a potential for the proposed method, especially for larger problems.

7 CONCLUSIONS AND FUTURE RESEARCH

We proposed and presented an iterative solution approach to address the classical job shop scheduling
problem with the objective of makespan minimization. The ISO approach is time efficient, has the flexibility
of adding more information through extra constraints and there is no inherent randomness in the solution
method itself, ensuring repeatability of experiments. Preliminary experiments have shown that the ISO is
computationally faster than MIP in reaching a ‘good’ solution for larger problems.

This work is a part of ongoing research in hybrid solution approaches to the job shop scheduling
problem. The method proposed in this paper will be benchmarked with the popular simulation-based
optimization approach. Detailed analysis of the effect of parameter k will be carried out. Different ways of
using the outputs from the optimization model in the simulation model will be explored. For example, the
output from optimization can be mapped to the simulation model using intermediate processing to come
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up with values of qi j and d̂i j. The algorithm will be tested on more benchmark instances from the OR
library

A APPENDICES

Each instance in the benchmark library consists of a line of description followed by a line containing the
number of jobs and the number of machines. Next, is one line for each job, listing the machine number
and processing time for each step of the job. The machines are numbered starting with 0. The following
is the ft10 instance.

Table 8: Fisher and Thompson 10x10 instance, alternate name (mt10)

10 10
0 29 1 78 2 9 3 36 4 49 5 11 6 62 7 56 8 44 9 21
0 43 2 90 4 75 9 11 3 69 1 28 6 46 5 46 7 72 8 30
1 91 0 85 3 39 2 74 8 90 5 10 7 12 6 89 9 45 4 33
1 81 2 95 0 71 4 99 6 9 8 52 7 85 3 98 9 22 5 43
2 14 0 6 1 22 5 61 3 26 4 69 8 21 7 49 9 72 6 53
2 84 1 2 5 52 3 95 8 48 9 72 0 47 6 65 4 6 7 25
1 46 0 37 3 61 2 13 6 32 5 21 9 32 8 89 7 30 4 55
2 31 0 86 1 46 5 74 4 32 6 88 8 19 9 48 7 36 3 79
0 76 1 69 3 76 5 51 2 85 9 11 6 40 7 89 4 26 8 74
1 85 0 13 2 61 6 7 8 64 9 76 5 47 3 52 4 90 7 45

Klemmt et.al.(Klemmt, Horn, Weigert, and Wolter 2009) have modified the above dataset to use an
8x10 job shop. This dataset is called ft08 and is obtained by removing the last two rows of the above
table. From Table 8, sorting out the data into processing time and sequence:

Table 9: Processing times for Fisher and Thompson 8x10 instance

29 78 9 36 49 11 62 56 44 21
43 28 90 69 75 46 46 72 30 11
85 91 74 39 33 10 89 12 90 45
71 81 95 98 99 43 9 85 52 22
6 22 14 26 69 61 53 49 21 72

47 2 84 95 6 52 65 25 48 72
37 46 13 61 55 21 32 30 89 32
86 46 31 79 32 74 88 36 19 48

The functions written in the model are:

• InitializeJob(): All entities are initialized by assigning their respective sequences and the priority
for the first machine that is visited in their sequence.

• AssignControllerDelay(): When implementing delay schedules, this function is used to delay a
job before it proceeds to the next machine in its sequence. For non-delay schedules, the function
returns a value zero.

• routing(): This function is used to implement the sequences for each job. Each time a job leaves a
machine, this function is called to route it to the next machine in its sequence.

• AssignInterDelay(): This function is used to assign the queue priorities of each job on each machine.
This function is called each time after a new routing occurs.
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Table 10: Sequences for Fisher and Thompson 8x10 instance

1 2 3 4 5 6 7 8 9 10
1 3 5 10 4 2 7 6 8 9
2 1 4 3 9 6 8 7 10 5
2 3 1 5 7 9 8 4 10 6
3 1 2 6 4 5 9 8 10 7
3 2 6 4 9 10 1 7 5 8
2 1 4 3 7 6 10 9 8 5
3 1 2 6 5 7 9 10 8 4

• ControllerDelayTimes(): This function calculates the time an entity has spent before entering the
queue of the next machine in its sequence.

• DelayTimes(): This function calculates the time spent by the in the queue of a machine.
• BeforeProcessing(): This function is called just before a job seizes a machine resource. It notes the

actual start time of servicing by calling function ActualStartTimes() and also calls DelayTimes().
• AfterProcessing(): This function is called after a job releases the machine resource. It notes the time

at which the machine was released by calling the function EndTimes(). It also calls JobSequence()
to read the next machine number and AssignInterDelay().

• AssignProcessTime(): This function is called once the job enters the delay of the machine. The
processing time corresponding to the job and the machine is accessed from the ”processingtimes”
table, which holds all the processing times.
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