
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

EFFICIENT STORAGE OF TRANSPORT NETWORK ROUTES FOR SIMULATION MODELS

Ramon Alanis

Alberta Health Services
10030 107 Street

Edmonton, AB, T5J 3E4, Canada

ABSTRACT

A heuristic approach is presented which, combined with the use of data structures, reduces storage
requirements to store full optimal paths on transportation networks. The goal is to allow the use of full
road networks on the implementation of simulations for the operation of a fleet of vehicles. The approach
is based on the representation of routing information as a routing matrix, where we exploit structural
properties of routing information to reduce storage requirements.

1 INTRODUCTION

A heuristic approach is proposed which, in combination with basic data structures, allows the efficient
storage of travel routes from any node to any other node on a road network. Our motivation is the need to
implement a simulation model for a fleet of ambulances and the desire to model vehicle travel realistically.
This leads to the use of actual road networks and the need to quickly find the best route to follow when
an ambulance receives a call.

A simulation model of a fleet of vehicles in a city-sized road network presents challenges derived from
the size of the network. We need to model a vehicle fleet, such as ambulances, police cars, fire engines,
or taxis, and at any given moment the vehicles can be directed to move to a new destination. To simulate
these vehicle moves we need to know the route that the vehicles should follow, and we can potentially have
routes from any node to any other node, on a road network that can easily have tens of thousands of nodes.
To model this transportation network we must either precompute and store the routes or compute shortest
paths on demand using Dijkstra’s or a similar shortest path algorithm. Since we may have to find tens or
hundreds of thousands of routes for a single simulation run, performance is of a high priority. As example,
using a road network with 15,227 nodes, the complexity of finding a route using Dijkstra’s algorithm would
be of O(n log(n))≈ 63,689, while extracting a precomputed route will be proportional to the average route
length, which assuming a squared road network would be of O(

√
n) ≈ 123. We therefore decided that

precomputing and storing all the possible routes would produce a fast simulation model, but the price to
pay would be high storage requirements. We recognize a significant precomputing cost, but having to run
many different simulation scenarios we considered the improvement on performance significant.

Many other applications require the real-time computation or retrieval of optimal routes. With an
effective tool, mapping and route-planning web services similar to Google Maps could be easily and
efficiently implemented. One example is a local vehicle-dispatch system that manages a fleet of vehicles
in a city. The methodology in this paper could potentially simplify the development of route planning
services for local areas.

We give a detailed description of the problem in Section 2, where we define the data structures used to
store routing information and the properties that allow compression as well as how we can alter the level of
compression. In Section 3 we describe how our basic problem can be transformed into a traveling salesman
problem (TSP). Section 4 reviews some of the most significant developments in the search for shortest

1931978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Alanis

Figure 1: Road Network. Figure 2: Routing Matrix.

routes and the solution of the TSP. Section 5 shows how to find optimal solutions for small problems using
a well-known TSP formulation or a publicly available TSP solver. Section 6 presents a heuristic approach
that allows for efficient storage of information and can be used for large road networks. Finally, Section 7
summarizes the results obtained and presents conclusions.

2 Problem Description

A road network can be defined as a graph G = (V,A) where V is a set of vertices or nodes, with n = |V |,
and A is a a set of arcs or road segments. There are distances di, j associated with each arc, where the word
distance is used generically, since it may represent the travel cost or travel time. The small nine-node road
network shown in Figure 1 will be used to illustrate concepts in the rest of this chapter.

For this road network and any two nodes i and j, the shortest route pi, j = (pi, j,0, pi, j,1, . . . , pi, j,k), where
pi, j,0 = i and pi, j,k = j, is the path for which the sum of the distances along the path is minimized over all
possible paths connecting i to j. We assume that the shortest paths have been computed by Dijkstra’s or a
similar shortest path algorithm.

To represent the shortest paths from any node to any other node we define the matrix R = {ri, j = pi, j,1}.
In this square matrix of dimension |V |× |V | element ri, j stores the first node after i that would be visited
along the shortest path from node i to j. Once at node l = ri, j we proceed to the following node, which is
the first node after l on the path from l to j, rl, j, and we repeat this until we arrive at rk, j = j. For example,
in Figure 2 we show how to recover the route from node 1 to node 9 for the network in Figure 1.

Unfortunately, the road network for a medium to large city can easily have tens of thousands of nodes,
and storing a route for all possible pairs of nodes would require storage space of the order of O(n2). For
example, the road network for the city of Edmonton, Alberta, Canada, has 15,227 nodes. This leads to a
matrix with 231,861,529 elements of data. This pushes the limit on the amount of main memory allocated
to a single program on a personal computer.

Fortunately, there is a simple fact that can be exploited: if you stand on a typical street intersection you
can travel in only four possible directions. Therefore, for most intersections or nodes, the corresponding
row in our routing matrix R has at most four possible entries, not counting the diagonal entries ri,i = i.
We observe this in Figure 2. In actual road networks, the number of possible directions is not always
four, but it is usually small. For four directions, if we alter the order of the columns in R we can obtain
four long sequences of repeated values. There are many compression schemes that take advantage of this
data replication to store the rows in a more compact way. For example, if there are 10,000 nodes, and the
columns are reordered into four sequences of repeated values, they can be stored using four slightly more
complex data elements instead of the 10,000 required for the original row.

1932

Alanis

For example, we could represent our nine-node road network using the routing matrix shown in Figure
3, where each data element (a,b) represents a sequence of value a repeated b times. The worst case occurs
for row 5 where the number of data elements is 9; for rows 1,3,7, and 9 we require only 3 data elements
per row.

Based on this, we define ci to be the storage cost for row i, equal to the number of sequences of
identical values found in row i. Unfortunately, if the columns are reordered to reduce the storage cost for
row i, there is no guarantee that this ordering will also minimize the storage cost for other rows.

Based on this explanation, our problem is to find the column ordering in our routing matrix that
minimizes the sum of the costs ci for all rows.

Figure 3: Compressed Routing Matrix.

3 Problem Transformation

Since the problem is to find the ordering of the columns that minimizes the total cost, we need a way to
compute the cost of having two columns i and j next to each other. By analyzing a single row k we see
that if rk,i = rk, j then the existing sequence continues, and the additional cost of having rk,i next to rk, j is
0. On the other hand, if rk,i 6= rk, j then the existing sequence ends at rk,i and a new sequence starts at rk, j,
which implies the creation of a new data element and therefore an additional storage cost of 1.

To extend the previous analysis to a pair of columns, we define dv
i, j to be the cost of having column

i next to column j, such that it is equal to the number of rows for which the two columns have different
values. This is also known as the Hamming distance (Hamming 1950) between the columns, and we will
refer to this as the “virtual distance” between columns i and j to distinguish it from physical road-network
distances. We represent this by a virtual distance matrix Dv as illustrated in Figure 4.

Figure 4: Virtual Distance Matrix.

1933

Alanis

The problem can be transformed by changing our perspective, from a geographical space to a “virtual
space” in which the columns in R can be seen as “virtual nodes,” with the distances between each pair of
virtual nodes defined by Dv = {dv

i, j}.
The problem is now to find a route or path visiting all the virtual nodes, without any restriction on

which node is first or last, such that all the nodes are visited exactly once and the total virtual distance is
minimized.

Finding a route visiting all nodes exactly once is also known as the Hamiltonian path problem. Similarly,
a Hamiltonian cycle problem involves finding a path visiting each node exactly once, except that the route
must be closed into a cycle. If we start from a Hamiltonian path problem there is a simple transformation
that converts it into a Hamiltonian cycle problem: we add a dummy virtual node and connect it to every
node in our problem, with all the new arcs having the same very small distance, smaller than that of
any existing arc. This ensures that a minimum-distance Hamiltonian cycle is also a minimum-distance
Hamiltonian path. The solution to the cycle problem can be transformed into a path by eliminating the
dummy node and its associated arcs.

Our problem is a minimum-distance Hamiltonian path problem and it is equivalent (via the transformation
mentioned above) to a minimum-distance Hamiltonian cycle problem, or in other words, the well-known
traveling salesman problem (TSP), one of the most studied problems in graph theory.

4 Literature Review

The current literature is reviewed with a focus on two areas: algorithms to find optimal or minimum-cost
paths between two nodes and algorithms for the TSP.

4.1 Shortest Path algorithms

Even when for our purpose we assume that shortest paths are a pre-computed input, the basic problem
is to provide somehow shortest paths between any pair of nodes, and the solutions, as we will see, go
from computation of shortest paths on demand, to different levels of pre-computing and storage of partial
routing information, with our approach being at the extreme by storing all possible paths.

Finding an optimal or minimum-cost route between two nodes in a graph is a problem whose solution
is widely applied today; however, researchers continue to develop improved algorithms. The classical
solution was proposed by Dijkstra (1959). The original algorithm stores tentative distances from the source
node to each node in the network. We start at the source node and gradually construct a minimum-distance
spanning tree from the source to each node by adding, one by one, directly connected nodes to the tree
and revisiting the minimum distance to the source, until we finally include the destination in our minimum
spanning tree. The execution time for Dijkstra’s original algorithm is of the order O(n2). However, a
continental road map for the US or Western Europe has millions of nodes, so this original algorithm is
probably not being used in your typical GPS device.

The improvements on Dijkstra’s algorithm can be classified into exact algorithms (those that return an
optimal solution) and approximate algorithms, such as those used in some GPS units with limited hardware.
We will focus on exact algorithms.

The first improvement involves performing a bidirectional search. Instead of starting at the source and
gradually constructing a shortest-distance tree, the search starts simultaneously at the source and at the
destination. In the original Dijkstra’s algorithm the search forms an approximately circular shape covering
the nodes around the source, until the destination is included. In a bidirectional search, two circles start
to grow, one around the source and the other around the destination, until some node is visited from both
directions (Dantzig 1962). The number of nodes visited is reduced and a speed-up of approximately a
factor of two is observed.

1934

Alanis

Another improvement can be achieved by implementing Dijkstra’s algorithm using O(n) priority queues,
as described by Thorup (2004). With this method we can achieve execution times of O(n log(n)) without
significantly altering the idea behind the original algorithm.

Another approach is based on the intuitive idea of giving a higher priority to arcs that lead toward the
destination, rather than searching equally in all directions. This is the A* algorithm as proposed by Hart,
Nilsson, and Raphael (1968). In this algorithm we estimate a lower bound on the distance from every
node to the destination, such as the Euclidean distance. Based on this we modify the weight of an arc
(u,v) to w(u,v)−π(u)+π(v) where π(v) is the lower bound on the distance to the destination. With this
adjustment we shrink arcs leading toward the destination while preserving the selection of the optimal path.

Another step on the search for efficiency comes from the use of hierarchical approaches and the removal
or selection of arcs and nodes to simplify the network. Examples include the work of Jing, Huang, and
Rundensteiner (1998) and Cagigas (2005). Jing, Huang, and Rundensteiner (1998) propose a HiTi graph
model where a high graph is divided into smaller subgraphs, leaving at the higher level only those nodes
on the boundary of the subgraphs. This can be extended to multiple levels. At each subgraph we compute
the shortest paths between all possible pairs of boundary nodes, and we replace all the internal nodes by
arcs directly connecting the boundary nodes.

A different approach is reach-based routing (Gutman 2004), based on the concept of “reach.” A reach
metric is computed for each node based on the smaller of the distance from that node to the source and the
distance to the destination on a critical path. These values can be used to eliminate nodes from consideration
in a shortest path algorithm when their reach is too short to reach either the source or the destination. This
approach requires significant precomputation.

Another hierarchical approach, highway hierarchies (Sanders and Schultes 2005), creates a hierarchy
of highway levels. It uses the concept of neighborhood to classify the nodes on any optimal path into
the neighborhood of the source, the neighborhood of the destination, and the other nodes (called highway
nodes). Based on this classification a highway graph is constructed and then simplified by contracting and
removing edges to create a higher-level graph in a hierarchical network. This process can be repeated to
create a multilevel hierarchy.

Transit node routing is a hierarchical approach based on the observation that for long routes there are
important (transit) nodes, such as major intersections that are visited by a large number of shortest-path
routes. If we identify a set of transit nodes in a graph, most route searches consist of finding a route to a
nearby transit node, then finding a route on a higher-level network of transit nodes to a transit node near
the destination, and finally finding a local route on to the destination.

These are just a few examples of recent hierarchical approaches, and some algorithms combine several
of the techniques described. Most hierarchical approaches have in common the creation of a hierarchical
structure to represent the road networks or graphs, with a distinction between local neighborhoods and higher
levels of simplified road networks. We must consider not only the complexity of finding a shortest-path
route, but also the complexity of performing precomputation and the space required to store the precomputed
results that allow for a faster search.

Our approach has a narrower scope than some of the techniques mentioned because we need a simple
approach that can be easily incorporated into a simulation, and some of the techniques above are too
complex to be easily implemented. Nevertheless, our efficient storage of precomputed shortest paths could
be useful in some of the hierarchical methods.

4.2 The Traveling Salesman Problem

The TSP is one of the most widely studied problems in graph theory and combinatorial optimization.
Consider a graph G = (V,A) where V is a set of vertices and A is a set of arcs connecting some of those
vertices, with costs or distances defined by a matrix D = (di, j). The TSP is defined as the problem of
finding a minimum-distance circuit that visits each vertex once and only once. Two common scenarios
include the case where D is symmetric (di, j = d j,i), as in our column-ordering problem, and the case where

1935

Alanis

D satisfies the triangle inequality, i.e., di, j +d j,k ≥ di,k∀i, j,k ∈V . The triangle inequality is a property of
graphs on a plane with Euclidean distances, but it does not hold for our column-ordering problem. This is
a significant drawback since we cannot use the methods that rely on the assumption of Euclidean distances
and the triangle inequality.

The TSP is NP-hard (Laporte 1992), which suggests that finding an optimal solution might be intractable
for our target problem size. One of the earliest approaches was an integer linear programming formulation
by Dantzig, Fulkerson, and Johnson (1954). This original formulation became the foundation for many
subsequent models such as those proposed by Miller, Tucker, and Zemlin (1960) and Desrochers and
Laporte (1991). Branch-and-bound approaches have been proposed by Carpaneto and Toth (1980) and
Miller and Pekny (1991) to solve large TSPs. Some of these methods, in particular the one proposed by
Miller and Pekny (1991), have been able to solve instances with thousands of nodes. However, sometimes
the same methods are unable to solve even relatively small problems.

As already mentioned, this is by no means an exhaustive survey of all the methods available. In our
application exact solutions are not easily found for the large problems that we want to analyze, and heuristic
methods based on tour improvements are slow for our problems. We therefore consider tour-construction
methods, which have the potential to be faster at the cost of suboptimal solutions.

5 Exact Solutions

As a first step we propose the use of the well-known TSP integer programming formulation proposed by
Dantzig, Fulkerson, and Johnson (1959). Unfortunately, it is limited to small problems, with typically tens
to hundreds of nodes, much smaller than the problems that we want to solve.

It is worth mentioning the Concorde TSP Solver, a solver freely available for academic use
(http://www.tsp.gatech.edu/concorde.html), which uses some of the most advanced exact and heuristic
methods to search for optimal solutions. It is considered the state-of-the-art solver for the TSP problem.
Benchmark results are available from the same website for a set of problems, most of which are characterized
as being neither easy nor hard. From these it is clear that current TSP algorithms cannot be used in real-life
applications to consistently solve problems beyond 10,000 nodes. Therefore, heuristic or approximate
algorithms are the only practical approach to our problem.

6 Approximate Solutions

There are many heuristic algorithms for the TSP; Laporte (1992) in his review mentions many of them.
Before selecting one, we analyze some properties of our problem:

1. We have introduced virtual nodes and presented the problem as a TSP, but in reality we do not have
geographically located nodes in a two-dimensional space. Therefore, we must be careful because
geometric assumptions, such as Euclidean distances, usually associated with TSP problems can be
violated for our virtual distances.

2. A typical road network is sparse, with a low ratio of arcs to nodes. In our virtual space we have
a fully connected network, where each virtual node (column) has a direct connection to every
other node. This, together with the previous observation, could have an unexpected impact on
performance if we attempt to use spanning trees or other heuristics that traverse all possible paths
or that take advantage of the geometrical properties of planar networks.

3. If we have two trips that start from the same source but travel to different destinations that are far
from the source but close to each other, then there is a high probability that the two routes will
initially be identical. As an extreme example consider traveling to two different addresses in a
distant town. You are likely to follow the same route for most of the trip, except at the end. Thus,
in our routing matrix it would be convenient to have neighboring nodes in adjacent columns.

1936

Alanis

4. If we could find a Hamiltonian path joining all the original geographical nodes we could satisfy
our goal of having neighboring column nodes that correspond to actual geographical neighboring
nodes.

Figure 5: Ordering or Layers on Processing of Nodes.

Based on the previous observations we decided to implement a heuristic approach loosely based on the
family of tour-construction insertion algorithms but taking into account the properties above. The detailed
heuristic is as follows:

1. Choose arbitrarily a single geographical node as our starting solution. In Figure 5 we could select
node 1 at stage A.

2. Define the set of geographical nodes to be added at the next iteration by choosing all the nodes
not already in the solution but directly connected to nodes in the solution. We refer to this as the
next stage or the next layer to add. In Figure 5 the stages are A, B, C, D, and E.

3. Take a geographical node in the new layer but not already added. For demonstration purposes we
proceed from left to right.

4. Search in the current solution for the geographical nodes directly connected to the node under
consideration and consider adding the corresponding virtual node or column in a position adjacent
to any of the directly connected geographical nodes. We insert the new virtual node in such a way
that the total cost after the insertion is minimized. If we add node k between nodes i and j, then
the cost of the insertion is (dv

i,k +dv
k, j−dv

i, j).
5. Repeat the last two steps until all the nodes in the new layer have been added.
6. If there are still nodes that are not in the solution, return to step 2.

Table 1 illustrates the sequence of steps required to solve our nine-node example.
With the use of efficient data structures this algorithm is of order O(n) based on the number of operations,

since we insert the nodes one by one, and for each node we analyze at most four possible insertion points.
The solution found and displayed in Figure 7 is, in this particular case, a Hamiltonian path, which is

consistent with the intuition indicating that directly connected nodes should have low “virtual distances.”
It therefore leads to the intuition that in an optimal solution adjacent columns are likely to correspond
to geographical nodes with a direct connection, resulting in the formation of geographic paths. In other
examples we have observed optimal solutions composed of several interconnected geographic paths, which
shows that the optimal solution is not always a Hamiltonian path in the geographical network.

We used the same data to formulate a TSP. We added the dummy node 10 to our virtual distance
matrix as shown in Figure 8, and since the shortest node-to-node distance is 2, we assigned a distance of
1 from node 10 to every other node. We solved the problem using the NEOS Concorde Online Solver
(http://www.neos-server.org), and we obtained the solution shown in Figure 6, which matches our heuristic
solution.

1937

Alanis

Table 1: Heuristic Solution Process.

Layer Node to Add Alternative Paths Cost of Addition Selected
A 1 (1) n = 9 (1)

B
4 (4-1) dv

4,1 = 4 (4-1)
(1-4) dv

1,4 = 4

2 (4-2-1) dv
4,2 +dv

2,1−dv
4,1 = 5

(4-1-2) dv
1,2 = 4 (4-1-2)

C

7 (7-4-1-2) dv
7,4 = 4 (7-4-1-2)

(4-7-1-2) dv
4,7 +dv

7,1−dv
4,1 = 7

5

(7-5-4-1-2) dv
7,5 +dv

5,4−dv
7,4 = 3 (7-5-4-1-2)

(7-4-5-1-2) dv
4,5 +dv

5,1−dv
4,1 = 3

(7-4-1-5-2) dv
1,5 +dv

5,2−dv
1,2 = 5

(7-4-1-2-5) dv
2,5 = 4

3 (7-5-4-1-3-2) dv
1,3 +dv

3,2−dv
1,2 = 6

(7-5-4-1-2-3) dv
2,3 = 4 (7-5-4-1-2-3)

D

8
(8-7-5-4-1-2-3) dv

8,7 = 4
(7-8-5-4-1-2-3) dv

7,8 +dv
8,5−dv

7,5 = 3 (7-8-5-4-1-2-3)
(7-5-8-4-1-2-3) dv

5,8 +dv
8,4−dv

5,4 = 7

6

(7-8-6-5-4-1-2-3) dv
8,6 +dv

6,5−dv
8,5 = 3 (7-8-6-5-4-1-2-3)

(7-8-5-6-4-1-2-3) dv
5,6 +dv

6,4−dv
5,4 = 3

(7-8-5-4-1-2-6-3) dv
2,6 +dv

6,3−dv
2,3 = 5

(7-8-5-4-1-2-3-6) dv
3,6 = 4

E 9
(7-9-8-6-5-4-1-2-3) dv

7,9 +dv
9,8−dv

7,8 = 6
(7-8-9-6-5-4-1-2-3) dv

8,9 +dv
9,6−dv

8,6 = 3 (7-8-9-6-5-4-1-2-3)
(7-8-6-9-5-4-1-2-3) dv

6,9 +dv
9,5−dv

6,5 = 7

Figure 6: Solu-
tion. Figure 7: Graphic Solution.

1938

Alanis

Figure 8: Modified Virtual Distances for TSP.

Because the solution represents a circuit, and node 10 is a dummy, we can remove node 10 and
reconnect the start and the end to form a single path: (7−8−9−6−5−4−1−2−3). The total storage
cost can be computed via

• The number of rows, 9, for the initial cost of the first sequence in each row.
• Plus the cost of the TSP solution, 30, for each time that a sequence was broken and a new data

element was required.
• Minus the cost of connecting the dummy node, (1+1) = 2.

Therefore, the total number of data elements is 37, compared to the initial cost of 81 elements in
the original uncompressed routing matrix. The compression rate usually becomes more significant as the
number of nodes grows, as we will see in Section 7.

7 Results and Conclusions

We created two versions of a 100-node road network, a 9 block by 9 block perfect grid (10×10 nodes).
In one version we created an artificially regular routing pattern, such that to travel between any two nodes
the rule is to first travel horizontally and then vertically. In the second version we allowed randomness in
the length of each block, so that each arc had a base length of 10 plus or minus 1, with an equal probability
of +1 or −1. This resulted in optimal routes that were less predictable. In both cases the solution was
obtained by our heuristic in 0.11 s, while the Concorde NEOS Server took 0.13 s for the regular case and
1.39 s for the random case. Both methods found the optimal cost of 460 data elements for the regular
case. For the random case the heuristic method found a cost of 1,058 elements while Concorde found
an optimal cost of 905 elements. Given the original size of the routing matrix (10,000 elements) both
solutions provide excellent results: the optimal TSP-based solution requires 9.05% of the original storage
requirement while the heuristic approach requires 10.58%. From this experiment we learned that:

1. The level of compression depends on other characteristics of the road network in addition to its
size.

2. The heuristic solution, as expected, can be faster and provide good results.
3. The gains in compression seem to increase with the size of the road network.

The results for different networks are summarized in Table 2.

We used eight different road networks to test our models. The networks had 9, 12, 100, 1,936, 2,025,
4,900, and 15,227 nodes. We display 3 of the networks in Figure 9. All the networks are artificial, except
for the last one, which corresponds to the road network for the city of Edmonton, Alberta, Canada.

1939

Alanis

Table 2: Summary of Performance Results.

Nodes Original Heuristic Concorde/IP
Size Cost Time (s) Ratio Cost Time (s) Ratio

9 81 37 0.02 45.68% 37 < 0.01 45.68%
12 144 52 0.02 36.11% 52 < 0.01 36.11%

100 Reg 10,000 460 0.11 4.6% 460 0.13 4.6%
100 Rnd 10,000 1,058 0.11 10.58% 905 1.39 10.37%

1,936 Reg 3,748,096 9,504 2.09 0.25% 9,504 4.23 0.25%
2,025 Reg 4,100,625 9,945 2.57 0.24%
4,900 Reg 24,010,000 24,220 18.01 0.10%

15,227 Real 231,861,529 574,993 187.68 0.25%

Figure 9: Road Networks.

The first solution method attempted was the Dantzig, Fulkerson, and Johnson (1959) IP formulation
already discussed, and it was tested on the models with 9 and 12 nodes. It obtained an optimal solution, but
it is suitable only for very small networks. On larger networks (22 nodes) it failed to find an integer solution
in 2.5 h. It was deemed inadequate for real road networks. The use of Concorde allows the solution of
larger problems. A version of Concorde is available for personal computers, but it is limited to Euclidean
distances, which makes it unsuitable for our application. Another version is available online at the NEOS
Server (http://www.neos-server.org/neos/), and it supports symmetric distance matrices. This service has a
limit on the size of uploaded files that limited our tests to an approximate maximum of 1,936 nodes. This
is roughly equivalent to a grid of 43 blocks by 43 blocks. Given the time to solve the problem (4.23 s) we
expect that the Concorde solver could deal with larger problems.

We tested our insertion method on the networks with 9, 12, 100, 1,936, 2,025, 4,900, and 15,227 nodes.
For 9, 12, 100, and 1,936 nodes we found the optimal solution. For larger problems we found solutions
with high compression ratios but we do not know if they are optimal. It is worth mentioning that our
computer-generated networks are highly regular. On tests with 100 nodes and randomness in the length
of the arcs, and therefore with less predictable routing, our heuristic achieved significant compression but
was not able to find an optimal solution. The storage size required was 17% higher than that of the optimal
solution, and the compression rate achieved was within 0.21 percentage points of that achieved by the
optimal solution.

Our experiments show that the heuristic can handle realistically sized networks in a relatively short
time. The level of compression achieved in such networks is impressive: we observed a reduction from
231,861,529 data elements to just 574,864 for the network with 15,227 nodes. This represents a compression

1940

Alanis

of 99.75% and makes storing the full routing information entirely feasible and not demanding at all for
a city the size of Edmonton. We used these data in a simulation of the Edmonton EMS system, and the
amount of data was easily handled. We achieved fast performance for both the data preparation and the
simulation itself.

The complexity of the storage requirements is not easy to estimate, mostly because, as seen in the two
100-node examples, there is a wide variation depending on the characteristics of the road network. We
approximate the complexity by plotting the number of nodes against the observed number of data elements
required to store the compressed routing matrix. The plot is shown in Figure 10; both axes are transformed
under a log10 transformation, and the plot displays a power trend line that corresponds to the equation
y = 3.1949n1.1205.

This storage formula implies that for a continental-size network of 4,000,000 nodes we could require
79,811,503 data elements. When translated into data structures this indicates that every route in a whole
continent could easily fit into a small flash drive or a small portion of the memory available on a smartphone.

Figure 10: Storage Requirements vs Network Size.

To conclude:

• We have developed a simple heuristic that allows a very significant reduction in the storage
requirements for routing information for a road network.

• The complexity of the heuristic is linear in the number of operations.
• The level of compression achieved increases with the size of the road network. Empirically, we

estimate that it is of order O(n1.1205).

REFERENCES

Cagigas, D. 2005, 8/31. “Hierarchical D* algorithm with materialization of costs for robot path planning”.
Robotics and Autonomous Systems, 52 (2–3): 190–208.

Carpaneto, G., and P. Toth. 1980. “Some new branching and bounding criteria for the asymmetric travelling
salesman problem”. Management Science 26 (7): 736–743.

Dantzig, G. B. 1962. Linear Programming and Extensions. Princeton: Princeton University Press.
Dantzig, G. B., D. R. Fulkerson, and S. M. Johnson. 1959. “On a linear-programming, combinatorial

approach to the traveling-salesman problem”. Operations Research 7 (1): 58–66.

1941

Alanis

Dantzig, G. B., R. Fulkerson, and S. Johnson. 1954. “Solution of a large-scale traveling-salesman problem”.
Journal of the Operations Research Society of America 2 (4): 393–410.

Desrochers, M., and G. Laporte. 1991. “Improvements and extensions to the Miller-Tucker-Zemlin subtour
elimination constraints”. Operations Research Letters 10 (1): 27–36.

Dijkstra, E. W. 1959. “A note on two problems in connexion with graphs”. Numerische Mathematik 1:269–
271.

Gutman, R. J. 2004. “Reach-based routing: A new approach to shortest path algorithms optimized for road
networks”. In ALENEX/ANALC’04, 100–111.

Hamming, R. W. 1950. “Error detection and error correction codes”. Bell System Technical Journal 29 (2):
147–160. MR0035935.

Hart, P. E., N. J. Nilsson, and B. Raphael. 1968, july. “A formal basis for the heuristic determination of
minimum cost paths”. IEEE Transactions on Systems Science and Cybernetics 4 (2): 100–107.

Jing, N., Y. W. Huang, and E. A. Rundensteiner. 1998, MAY-JUN. “Hierarchical encoded path views
for path query processing: An optimal model and its performance evaluation”. IEEE Transactions on
Knowledge and Data Engineering 10 (3): 409–432.

Laporte, G. 1992, June. “The Traveling Salesman Problem - An overview of exact and approximate
algorithms”. European Journal of Operational Research 59 (2): 231–247.

Miller, C. E., A. W. Tucker, and R. A. Zemlin. 1960, October. “Integer programming formulation of
traveling salesman problems”. Journal of the ACM 7:326–329.

Miller, D. L., and J. F. Pekny. 1991. “Exact solution of large asymmetric traveling salesman problems”.
Science 251 (4995): 754–761.

Sanders, P., and D. Schultes. 2005. “Highway hierarchies hasten exact shortest path queries”. In ESA’05,
568–579.

Thorup, M. 2004. “Integer priority queues with decrease key in constant time and the single source shortest
paths problem”. Journal of Computer and System Sciences 69 (3): 330–353. Special Issue on STOC
2003.

AUTHOR BIOGRAPHIES

RAMON ALANIS is Senior Operations Researcher at Alberta Health Services in Edmonton, AB, Canada
and Instructor at the School of Business in Grant MacEwan University. He holds a Ph.D. in Operations
and Information Systems from the University of Alberta and a M.S. in Management Science from Queen’s
University. His email address is ramon.alanis@AlbertaHealthServices.ca.

1942

