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ABSTRACT

Due to rapid urbanization, large cities in developing countries have problems with heavy traffic congestion.
International aid is being provided to construct modern traffic signal infrastructure. But often such an
infrastructure does not work well due to the high operating and maintenance costs and the limited knowledge
of the local engineers. In this paper, we propose a frugal signal control framework that uses image analysis
to estimate traffic flows. It requires only low-cost Web cameras to support a signal control strategy based
on the current traffic volume. We can estimate the traffic volumes of the roads near the traffic signals from
a few observed points and then adjust the signal control. Through numerical experiments, we confirmed
that the proposed framework can reduce an average travel time 20.6% compared to a fixed-time signal
control even though the Web cameras are located at 500 m away from intersections.

1 INTRODUCTION

Traffic jams are often caused by traffic signals and various efforts have been paid to the problem over recent
decades. Many adaptive control strategies have been proposed (Robertson and Bretherton 1991, Lowrie
1982, Mirchandani and Head 2001). However, most of them strongly depend on a detection system with
high accuracy and suitably configured by a skilled engineer. Developing countries cannot apply the latest
signal control technologies to reduce the traffic jams because of budget limitations, the skill levels limits
of the local staff, and so on. Sometimes, they use fixed-time signal control with limited maintenance.
People often ignore traffic signals with such poor control, so policemen must control the traffic manually
at intersections during rush hours.

In this paper, we propose a frugal signal control framework which uses image analysis with low-cost
Web cameras and traffic flow estimates from a limited number of observation points. We have already
deployed a traffic awareness pilot system in Nairobi, Kenya, based on our prior work. Our pilot system
broadcasts the traffic status information using Twitter or SMS and offers route recommendations. This paper
proposes a design for a frugal signal control framework that will extend the pilot system. The system uses
a signal control strategy based on observations obtained from a small number of low-cost Web cameras.

The spread of the Internet allows us to see current video images of vehicle traffic from Web cameras in
city in developing countries (AccessKenya.com 2014, MMDA 2014). However, Web camera images have
low resolutions and low frame-rates so it is hard to estimate the number of vehicles and their velocity, so
we are proposing a method to use such low-quality images (Idé et al. 2013). The method uses a simple
regression model combined with an optimal threshold for binarization instead of the standard template-
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matching approach. This allows us to estimate the vehicle flow at the locations monitored by the Web
cameras sufficiently accurately even if the quality of the images is too low for template matching.

We also note that the number of Web cameras is insufficient for traffic signal control and the locations of
the Web cameras are not determined by considering traffic control but are, for example, simply attached to
convenient buildings near the congested roads. Therefore we use traffic estimation techniques (Morimura,
Osogami, and Idé 2013) to assess the traffic volumes to control the signals. The goal is to estimate the
traffic flow in arbitrary links of network, based on the observed traffic flows from a limited number of
the links. The problem is similar to network tomography and link-cost prediction. However, unlike the
network tomography (Santini 2000, Zhang et al. 2003), we need to infer all of the link traffic instead of
source-destination demands, and, unlike link-cost prediction (Ziebart et al. 2008, Idé and Sugiyama 2011),
our inputs are stationary observations instead of trajectories. Our approach is to approximate each driver’s
movement with a Markov-chain process for road network. The Markov-chain model is created by solving
the inverse Markov chain problem with partial observations. By using the estimated model, we infer the
traffic volumes for the roads near the traffic signals.

We extended our traffic awareness system with these techniques to produce a signal control strategy
based on the estimated traffic volumes. In this paper, our basic heuristic is to make the green lights last
longer on the busier streets to reduce the length of the traffic jam and even the delay of vehicles on each
side of signals.

We describe simulations using the IBM Mega Traffic Simulator (Osogami et al. 2012) to see how
well our techniques work for traffic signal control. The simulation results showed that our signal control
framework reduces the average travel time by 20.6% compared to a fixed-time signal control and reduces
the average delay 22.1%, even though the Web cameras were located 500 m from intersections. The
observations of roads with lower and steadier varying traffic volumes were also important to derive good
green lengths for the signals with our traffic flow estimation module.

The rest of this paper is organized as follows. Section 2 introduces related work. Section 3 describes
the structure of our framework and overviews of the image analysis system, the flow estimation, and the
traffic signal control. Section 4 is about our simulations to assess the performance of signal control with
the estimated traffic volumes and we conclude in Section 5.

2 RELATED WORK

There are many adaptive control research reports (Robertson and Bretherton 1991, Lowrie 1982, Mirchandani
and Head 2001), but they have not been deployed widely due to the costs of implementation and maintenance.
Most of the adaptive control systems rely on high-accuracy sensors. Some research focuses on robustness
and fault-tolerance. Chiu and Chand (1993) propose a distributed adaptive control algorithm that is robust
against faults at some of the intersections and Mirchandani and Head (2001) manage errors from the sensors
by using a Bayesian model but neither considers sensors under such bad conditions as Web cameras. Yin
(2008) proposes a robust signal control algorithm for pre-timed signals considering demand fluctuations.
Our approach does not use pre-timed controls but the robustness may be useful for errors in the image
analysis and the traffic estimates, so this approach could be combined with our system.

There has been some research into signal control using machine learning (Mikami and Kakazu 1994;
Spall and Chin 1997; Srinivasan, Choy, and Cheu 2006). Mikami and Kakazu (1994) used genetic
reinforcement learning to optimize large numbers of signals without extensive communications. A neural
network approach proposed by Spall and Chin (1997) eliminated the complex traffic modeling that made
the system unstable when the traffic changed due to weather influence, seasonal influence or other causes.
Srinivasan, Choy, and Cheu (2006) focused on online learning for neural network-based traffic signal
control. Our approach uses Markov-chain processes in estimating traffic flows to manage poor observation
conditions. The flow estimation phase is independent of the signal control algorithm, so these machine
learning-based signal control algorithms can be combined with our frugal control system and some of them
might fit with our conditions.
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3 OVERVIEW OF OUR FRAMEWORK

In this section, we present an overview of our proposed frugal signal control framework and its main
components. Figure 1 shows the overview.
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Figure 1: Frugal traffic framework overview.

For the Kenya pilot system that offers current traffic status reports and route recommendations through
Twitter, SMS or other means, we used five Windows™machines and one Linux™machine, each of which
has an Intel Geon™4 core processor and 4 GB of memory. The image processing module runs on four
of the Windows™machines, the flow estimation module runs on one Windows Mmachine, and a DB is
running on the Linux machine. First we receive jpeg images using HTTP from about 20 Web cameras
provided by AccessKenya, with about 6-second intervals between the images and analyze them to estimate
vehicle densities and speeds about 50 roads. The estimated densities and speeds are stored in the DB.
The flow estimation module runs at 5-minute intervals using the last 10 minutes of densities and speeds
as stored in the DB. This module estimates the traffic flows and average vehicle speeds for about 5,000
roads in an 8 sq. km. area around the center of the Nairobi. Our current pilot system offers current traffic
status and route recommendation and we extend the system to support a signal control.

3.1 Traffic Camera Image Processing Module

It is desirable to utilize general-purpose Web cameras typically mounted on buildings due to cost and
security concerns when deploying ITS systems in developing countries. Movies and images that can be
obtained from Web cameras typically have very low resolutions (Figure 2 for examples) and very low
frame-rates (1 frame each 6 seconds in our Kenya pilot system). Standard object recognition and template
matching technologies such as those used in number plate recognition (Buch, Velastin, and Orwell 2011)
are inapplicable.

Our image processing module uses sophisticated machine learning techniques (Idé et al. 2013) to
tackle the problem instead of the standard template-matching approach. First, our module binarizes a image
into a black-and-white image to highlight the vehicle areas with an optimizing threshold. Then we find
a regression function relating the number of vehicles and the number of white pixels that represent the
vehicle areas. Our algorithm works well for low-quality images and avoids the need for the individual
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Figure 2: Low quality images from Web cameras.

vehicle recognition, and is also robust against the low frame-rates because our method does not use time
dependencies between the frames such as is used with background subtraction.

Our module also offers a good traffic velocity estimation for low frame-rate observations from Web
cameras. We use two approaches for velocity estimation, one approach based on the movement of a plane
through the road and the other is a Bayesian approach using the time-sequential images.

3.2 Flow Estimation

We have a very limited number of observation points where the Web cameras are installed. It is useful for
various applications if we can estimate the traffic conditions of the unobserved roads. Our flow estimation
module solves the inverse problem of the Markov chain (Morimura, Osogami, and Idé 2013). From the
partial observations at a limited number of states and links, it finds the Markov model with these parameters:
(1) the initial-state probabilities that is the source-link preferences, (2) the state-transition probability matrix
that is the inter-link transition probabilities for all of the intersections, and (3) the stopping probability of
the trips. The observations include the number of vehicles that went through each observation point.

This module was developed using MATLAB™. We have two phases to run each estimation module,
a training phase and an estimation phase. In the Kenya pilot system, the training phase used observation
data from 20 points for 7 days and created training data separately for three time slots of weekdays and
weekends. The training phase takes a few hours for all time slots but we do not need to run the training
phase unless the traffic pattern changes, for example, when a new shopping mall opens. The estimation
phase uses the latest 10 minutes of observed data for each point and takes about 10 seconds. The output of
the module includes the number of vehicles passing through each road segment for a time period as well
as an average vehicle velocity for each road in the given road network.

3.3 Signal Control

We simply used the estimated amount of traffic on the adjacent roads at each signal to define the control
of the signals. We assume that we can change the split of the cycle of the signals periodically through
a network connection. We determine the split of each signal by considering the estimated traffic volume
using the formula y
Gi=A+(C—nA)———
l * ( ) Y j=1.n Vj
where n is the number of phases of the signal, G;(i = 1..n) is a time period for phase i, C is the cycle
length of the signal, A is the minimum length of each phase and V; is the maximum traffic volume for the
lanes that turn green on phase i. We use the traffic volume derived by the traffic estimation module as V;.
We simply define the length of each phase as G; but that actually includes not only the green light time but
the yellow light time, the clearance time, and so on. The cycle length C is defined by various factors such
as the structure of the intersection, the presence of one or more protected turns, the total traffic volume,
and so on (Koonce et al. 2008). We use a fixed cycle length and change the ratio of the time for each
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phase. The minimum length of each phase A is usually determined by the clearance time of each road as
derived from the length of each side of the intersection, and so on (Koonce et al. 2008).

4 SIMULATIONS

In this section, we describe our simulations to assess the dynamic signal control system with limited
observations. First, we investigated how well the signals are controlled and how much the traffic jams are
reduced by varying the distances between the Web cameras and the intersections. As mentioned before, the
locations of the Web cameras are not determined freely but are, for example, simply attached to convenient
buildings near the congested roads. We used estimated traffic volumes to define the traffic signal parameters,
but the accuracy of the traffic estimation decreases as the distance from the observation point increases. This
simulation verifies whether the estimated traffic volumes as derived by the traffic estimation module are
sufficiently accurate and whether our signal control system is sufficiently practical. Second, we investigated
how each observation point affected the performance of the traffic signal control. We used the IBM Mega
Traffic Simulator (Osogami et al. 2012) instead of a field experiment. Figure 3 shows the process flow of
the simulations.

Mega Traffic Simulator #of vehicles tlLJ Flow Estimation

:% Average veloci
Rt R —
g Ve;nicle -

Eé Signal timing J

Figure 3: Simulation process flow.

Each simulation period was 600 seconds long (6 cycles of the traffic signals), and the green lights of
the traffic signals were adjusted based on the results of the last simulation period to take effect in the next
period. We paused the simulation after each 600 seconds, collected the statistics that corresponded to the
image analysis results from the Web cameras (the densities and the average speeds of the vehicles on the
observed roads) and ran a traffic flow estimation module to obtain the traffic volumes on all of the roads.
The green light time was calculated based on the equation from Section 3.3 using the estimated values.

4.1 Traffic Simulator

The IBM Mega Traffic Simulator can simulate millions of vehicles in an entire city to evaluate the lengths of
traffic congestion, the travel time of vehicles, the CO2 emissions, etc. The IBM Mega Traffic Simulator was
developed on the X10-based multi-agent simulation platform XAXIS (Suzumura and Kanezashi 2013), which
offers scalable multi-node simulations on the X86 and Power architectures. The IBM Mega Traffic Simulator
includes tools that extract a road network structure from OpenStreepMap (OpenStreetMap 2014), generate
vehicle trips from simple settings, and generate KML (Open Geospatial Consortium 2014) to visualize the
simulation results so we can quickly create a simple simulation for any location in OpenStreetMap.
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4.2 Simulation Settings

We simulated vehicles in Nairobi, Kenya, where our frugal ITS pilot system was deployed. The road
structure graph of Nairobi has 3,434 nodes and 5,308 arcs. Some traffic signals have already been installed
in Nairobi, but they are not yet in use. We assumed there are six traffic signals to be controlled, as shown
in Figure 4 and that there are from 3 to 5 observation points for each signal. The total cycle length of
each signal is 100 seconds, the minimum green light time was 10 seconds and the green light time for
each phase is calculated by our signal control module as described in Section 3.3. In this experiment,
the north-bound and south-bound lights turn green at the same time for all six signals. The timing of the
east-bound and west-bound lights differ because the green light time of each signal is determined based
on the traffic volume coming into the signal.

The dynamic signal control is useful when the balance of traffic volumes between each side changes.
We changed the traffic balance during the simulations by adding vehicles from the north to the south and
from the south to the north to verify whether our proposed method can respond effectively to manage the
changing traffic flows. The total length of each simulation was 3 hours. A total of 9,636 vehicles travelled
in the 8 km square region for 3 hours and an additional 2,000 vehicles that travelled from north to south
or from south to north departed from their origins at times from 30 to 60 minutes after the start of the
simulation. The traffic from O to 30 minutes represents the time period when vehicles travel smoothly and
the additional 2,000 vehicles represent commuters who could cause traffic jams.

“Kilimani

Figure 4: Simulation map of Nairobi. The streets on the map are based upon OpenStreetMap data
(©OpenStreetMap contributors) and licensed under ODbL. (©)2014 Google Image (©)2014 DigitalGlobe
http://www.google.com/permissions/geoguidelines/attr-guide.html

4.3 Simulation Results

Figure 5 shows the average travel times of the vehicles that pass through each side of the signals while
varying the distance of the camera from the intersection. We tested 0 m, 500 m, 750 m and 1,000 m. We
investigated whether or not the traffic jams are reduced for each distance of the cameras. The case of 0 m
represents the case when we can get completely accurate observations of the traffic volumes. Most existing
systems propose comprehensive signal control algorithms assuming accurate observations. The columns
“fix” in Figure 5 are the results where the green length times of the signals are determined based on the
total traffic volume over the 3 hours and do not change during the simulation. The labels on the x-axis
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Figure 5: Travel time of vehicles.

represents the IDs of the traffic signals in Figure 4 and the directions of the traffic signals, where “NS”
means north or south side and the “EW” means east or west side. The column “total” is the average travel
time of the vehicles that pass through more than one of the signals.

The differences between the estimated and the actual traffic volumes increase as the camera position
becomes father from the intersection. The total travel time decreases by 20.6% for 500 m and by 11.1%
for 1,000 m compared to the case of “fix”. The travel time for 500 m increases by 3.8% compared to that
for 0 m, when we had precisely accurate traffic volumes. The estimated traffic volumes are sufficiently
accurate for the dynamic control of the traffic signals.
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Figure 6: Delay at each intersection.

Figure 6 shows the delay time, which is the elapsed time spent driving at a speed of less than 10 km/h
at each signal. The delay decreases at the two traffic signals in the south (The numbers 5 and 6 in Figure
6). Much more traffic from the south is handled at the southern signals with the dynamic signal control, so
the traffic jams were moved to the north side. The average delay for all of the intersections in the 500-m
case decreased by 82.7 seconds (22.1%) compared to the fixed control approach. The delay at the signal
No. 5 in the 750-m case is long. The observation point in that case was just at the sharp curve and the
lower observed speed led to the difference between the estimated and the actual traffic volume. If we add
some calibration techniques for the reported speeds from the Web cameras, we may be able to achieve
better performance.

Figure 7 shows the results of tests of removing an observation point from one of the four directions at
signal No. 6. This tested whether our system could maintain good performance with a smaller number of
Web cameras. The case “w/o E” removes the east-side camera, “w/o W” removes the west-side camera,
“wf/o S” removes the south-side camera and “w/o N” removes the north-side camera. The performance
was worse without some of the observations on the east or west sides while it was actually improved
without some data from the south or north. Figure 8 shows the estimated and actual traffic volumes after
90 minutes of simulation for each side of the signal with and without observations. The estimated traffic
volume is around 0.2 vehicles/s without a nearby observation point. The volume is influenced by other
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Figure 7: Travel time of vehicles.
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Figure 8: Traffic volume of signal No. 6 with and without observations.

nearby observations. The actual traffic of the north side approaches the correct value so the performance
without the north observations is good. The timing of the signal split is determined by the maximum traffic
volume of the roads, so the observations of the south side do not affect the travel times. The observations
of the roads on which the traffic volumes are low and do not change much are also required to obtain good
traffic signal control using the flow estimation (or some other reference value of traffic volumes may also
be acceptable instead of observations).

We confirmed that our dynamic signal control with distant Web cameras was able to respond to the
changes of traffic volume with good performance through the simulations. Using the existing rich signal
control algorithms and field studies to verify the errors of image processing still remains as our future work.
However, the proposed method using Web cameras can support an inexpensive dynamic signal control
system.

S CONCLUSION

We are working on a frugal traffic signal control framework which uses image analysis and traffic flow
estimation. Our image processing module utilizing binarization works sufficiently well with low-quality
images obtained from low-cost Web cameras and our traffic flow estimation module offers enough high
precision for a traffic signal control with rather limited observations. In simulations, our frugal traffic signal
control reduced the average travel time by 20.6% with 26 Web cameras located at 500 m distance from
the intersections. Of course the performance depends on the scenario, so it is important to find suitable
numbers and locations of Web cameras required for the traffic signal control. However, the result shows the
possibility deploying a frugal and dynamic traffic signal control infrastructure supported by image analysis
and flow estimation. Our future work will include an evaluation with more practical traffic signal control
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strategies, considering errors in the image analysis and evaluating robustness against the various errors for
the signal control.

6 ACKNOWLEDGEMENTS
This research was supported by JST, CREST.

REFERENCES

AccessKenya.com 2014. “AccessKenya.com”. http://traffic.accesskenya.com/.

Buch, N., S. A. Velastin, and J. Orwell. 2011. “A review of computer vision techniques for the analysis of
urban traffic”. IEEE Transactions on Intelligent Transportation Systems 12 (3): 920-939.

Chiu, S., and S. Chand. 1993. “Adaptive traffic signal control using fuzzy logic”. In Proceedings of the
2nd IEEE International Conference on Fuzzy Systems, 1371-1376. IEEE.

Idé, T., T. Katsuki, T. Morimura, and R. Morris. 2013. “Monitoring Entire-City Traffic using Low-Resolution
Web Cameras”. In Proceedings of the 20th ITS World Congress, Tokyo.

Idé, T., and M. Sugiyama. 2011. “Trajectory Regression on Road Networks”. In Proceedings of the 25th
AAAI Conference on Artificial Intelligence, 203-208.

Koonce, P., L. Rodegerdts, K. Lee, S. Quayle, S. Beaird, C. Braud, J. Bonneson, P. Tarnoff, and T. Urbanik.
2008. “Traffic signal timing manual”. Technical report.

Lowrie, P. 1982. “The Sydney coordinated adaptive traffic system-principles, methodology, algorithms”.
In Proceedings of the 1982 International Conference on Road Traffic Signalling, 67-70.

Mikami, S., and Y. Kakazu. 1994. “Genetic reinforcement learning for cooperative traffic signal control”.
In Proceedings of the Ist IEEE Conference on Evolutionary Computation, 223-228. IEEE.

Mirchandani, P., and L. Head. 2001. “A real-time traffic signal control system: architecture, algorithms,
and analysis”. Transportation Research Part C: Emerging Technologies 9 (6): 415-432.

MMDA 2014. “MMDA Traffic Mirror”. http://mmda.nowplanet.tv/.

Morimura, T., T. Osogami, and T. Idé. 2013. “Solving inverse problem of Markov chain with partial
observations”. In Advances in Neural Information Processing Systems, edited by C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Volume 26, 1655-1663: Cambridge,
MA: MIT Press.

Open Geospatial Consortium 2014. “KML”. http://www.opengeospatial.org/standards/kml/.

OpenStreetMap 2014. “OpenStreetMap”. http://www.openstreetmap.org/.

Osogami, T., T. Imamichi, H. Mizuta, T. Morimura, R. Raymond, T. Suzumura, R. Takahashi, and T. Ide.
2012. “IBM Mega Traffic Simulator”. Technical report, IBM Research - Tokyo.

Robertson, D. I., and R. D. Bretherton. 1991. “Optimizing networks of traffic signals in real time: The
SCOOT method”. IEEE Transactions on Vehicular Technology 40 (1): 11-15.

Santini, S. 2000. “Analysis of traffic flow in urban areas using web cameras”. In Proceedings of the 2000
IEEE Workshop on Applications of Computer Vision, 140-145.

Spall, J. C., and D. C. Chin. 1997. “Traffic-responsive signal timing for system-wide traffic control”.
Transportation Research Part C: Emerging Technologies 5 (3-4): 153—-163.

Srinivasan, D., M. C. Choy, and R. L. Cheu. 2006. “Neural networks for real-time traffic signal control”.
IEEE Transactions on Intelligent Transportation Systems 7 (3): 261-272.

Suzumura, T., and H. Kanezashi. 2013. “A holistic architecture for super real-time multiagent simulation
platforms”. In Proceedings of the 2013 Winter Simulation Conference, edited by R. Pasupathy, S.-H.
Kim, A. Tolk, R. Hill, and M. E. Kuhl, 1604-1612. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Yin, Y. 2008. “Robust optimal traffic signal timing”. Transportation Research Part B: Methodological 42
(10): 911-924.

2090



Maeda, Morimura, Katsuki, and Teraguchi

Zhang, Y., M. Roughan, C. Lund, and D. Donoho. 2003. “An Information-Theoretic Approach to Traffic
Matrix Estimation”. In Proceedings of the 2003 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, 301-312: ACM New York.

Ziebart, B. D., A. L. Maas, J. A. Bagnell, and A. K. Dey. 2008. “Maximum Entropy Inverse Reinforcement
Learning”. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence, 1433—1438.

AUTHOR BIOGRAPHIES

KUMIKO MAEDA is a researcher at IBM Research — Tokyo. She belongs to the Smarter Cities Solution
group. She received M.E. and Ph.D. degrees from the Institute of Computer Science and Technology,
Osaka University in 2006 and 2009. Her research interests include vehicle traffic simulations, scheduling
for heterogeneous clusters and mobility models in wireless network simulations. She is a member of the
Information Processing Society of Japan. Her email address is kumaeda@jp.ibm.com.

TETSURO MORIMURA is a researcher at IBM Research — Tokyo. He received M.E. and Ph.D. degrees
in engineering from the Nara Institute of Science and Technology, Japan, in 2005 and 2008. His research
interests include reinforcement learning, machine learning, and their applications to behavior analytics,
business intelligence, and industries. His email address is tetsuro@jp.ibm.com.

TAKAYUKI KATSUKI is a researcher at IBM Research — Tokyo. He received an M.E. degree in elec-
trical engineering and bioscience from Waseda University, Tokyo, Japan, in 2012. His research interests
are machine learning, data mining, and their applications to image processing. His email address is
kats@jp.ibm.com.

MASAYOSHI TERAGUCHI is a researcher at IBM Research — Tokyo. He received an M.E. degree in

computer science and technology from Osaka University, Japan, in 2000. His research interests are social
analytics, crowdsourcing, and Web application security. His email address is teraguti @jp.ibm.com.

2091



