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ABSTRACT

In a flat panel display (FPD) production line, unlike a table-type machine that processes one glass at a
time, an inline cell works simultaneously on several glasses unloaded from different cassettes in a serial
manner and is divided into two types (uni-inline cell and bi-inline cell) according to the job loading and
unloading behavior. In order to build a production simulator for this type of FPD production line, an
object-oriented event graph modeling approach is proposed where the FPD production line is simplified
into a job shop consisting of two types of inline cells, and the job shop is represented as an object-
oriented event graph model. This type of job shop is referred to as a heterogeneous job shop. The
resulting model is realized in a production simulator using an object-oriented event graph simulator and is
illustrated with the experimental results from the production simulator.

1 INTRODUCTION

In flat panel display (FPD) production lines, the processing unit of the jobs is a large piece of glass known
as the mother glass, which is later cut into smaller pieces to make the FPD product (Jang 2006). As a
result of the fragility and high quality requirements of these glasses, FPD production lines have adopted
fully automated material handling systems (AMHSs), such as inline stockers and conveyors, that connect
the processing machines. In this system, the glasses are carried inside a container called a cassette, which
means that the transportation unit and processing unit of the jobs are not the same. Therefore, in the FPD
production line, there are ports in front of each processing machine where the glasses are loaded from the
cassette into the processing machine or unloaded from the processing machine into the cassette.

In the FPD production line, unlike a table-type machine that processes one glass at a time, a typical
processing machine works simultaneously on several glasses unloaded from different cassettes in either
serial or parallel manners. Thus, the processing machines included in the FPD production line can be
further divided according to the job loading/unloading and processing behaviors. In order to allow this
heterogeneity in the behavior of a processing machine in an FPD production line, the authors proposed
the concept of homogeneous and heterogeneous job shops in the previous study (Song, Choi, and Park
2012). A homogeneous job shop consists of each job that has its own operation sequences and a single
type of processing machine that performs certain operations on the job, whereas a heterogeneous job shop
consists of two or more types of processing machines that have different job loading/unloading or
processing behaviors. The classical job shop system solely consisting of table-type machines is a typical
homogeneous job shop system. However, in order to simulate an FPD production line, a heterogeneous
job shop system consisting of various types of machines in the line is required.
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Figure 1 depicts an example layout of an FPD production line of a thin-film transistor (TFT) stage. As
seen in Figure 1, the production line consists of inline cells connected by the AMHS of inline stockers
and conveyors. An inline cell is a typical processing machine that is commonly found in FPD production
lines and consists of an inner conveyor that carries the glasses through the equipment and multiple
subordinate processing machines along the conveyor belt (Song, Gu, and Choi 2010). According to the
loading and unloading behaviors, the inline cells are classified into uni-inline cells and bi-inline cells. The
loading and unloading of a cassette in a uni-inline cell occurs at the same input/output (I/O) port, whereas
the bi-inline cell has two types of ports: in-ports for loading the glasses from a cassette and out-ports for
unloading the finished glasses into a cassette. The in-ports and out-ports of a bi-inline cell are often
connected to different inline stockers. If the material handling process can be neglected, the Fab in Figure
1 can be regarded as a typical heterogeneous job shop consisting of two types of inline cells.
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Figure 1: An example layout of a FPD TFT-stage Fab.

Due to their extensive modeling power, job shop models have been widely accepted to represent
various manufacturing systems including serial assembly lines (Lee, Cheng, and Lin 1993) where every
job has the same operation sequence, special job shops, which are often referred to as flow shops (Garey
1976), and semiconductor lines where several types of jobs with different operation sequences are
processed (Balas, Simonetti, and Vazacopoulos 2008). The production system of an FPD line exhibits
some similarities to that of a semiconductor line because each job has a series of processing steps and a
processing machine can perform more than one processing step. Therefore, a job shop model can also be
used when analyzing the problems related to FPD production lines.

Vinod and Sridharan (2009) used a simple discrete event simulation model in their study in order to
propose a meta-modeling approach to finding the optimal dispatching rules for scheduling stochastic
dynamic job shops. Yin and Chen (2009) also proposed a discrete-event simulation framework for real-
time online job shop scheduling, which naturally has dynamic and stochastic characteristics. Mahdavi,
Shirazi, and Solimanpu (2010) considered a more complex job shop that has flexibility and they built a
real-time decision support system. In addition, several other studies that have considered real-world job
shop cases have adopted discrete-event simulation models to represent their target systems (Parthanadee
and Buddhakulsomsiri 2010, Legato and Mazza 2001). The common feature of the job shop models used
in the abovementioned studies is that the machines included in the models are assumed to process one job
at a time; that is, they are simple table-type machines. However, it is difficult to accept this assumption
when modeling an FPD production line due to certain features of the line, as explained above.

In this paper, a heterogeneous job shop model of an FPD production line in the form of an object-
oriented event graph is proposed. An event graph is a formal model, which is quite simple yet extremely
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powerful and natural to represent a discrete-event system (Buss and Sanchez 2002). In event graphs, the
influence of events on the state variables is represented using vertices and the relationships between
events are represented as directed edges between the vertices (Schruben 1983). One of the enrichments in
the event graph is a parameterization of event vertices in which similar events are represented using a
single vertex with different parameter values (Schruben and Schruben 2006). The parameterized event
graph model is one of the most efficient modeling formalisms that is used to represent the behaviors of
the processing machine in an FPD production line (Song, Gu, and Choi 2010; Song, Choi, and Park 2012).

However, in order to develop a production simulator for an FPD production line that consists of
different types of processing machines, the parameterized event graph lacks the ability to model the entire
FPD production line at a manageable level. As a heterogeneous job shop involves more various types of
processing machines or even the AMHS equipment (e.g. inline stocker and conveyor), it becomes more
complex and more difficult to understand and manage the model. In this paper, therefore, an object-
oriented event graph modeling approach to developing a production simulator is presented for the FPD
production line of a heterogeneous job shop.

Buss and Sanchez (2002) proposed an object-oriented modeling approach to the event graph, which
enables small models to be encapsulated in reusable modules that are linked together using a listener
pattern. In this paper, the encapsulation of events are adopted in order to model each type of processing
machine and a simplified linking mechanism is introduced.

The remainder of this paper is organized as follows. Section 2 presents the encapsulated event graph
models of homogeneous job shops for each type of inline cell; these are merged into a single encapsulated
event graph model of a heterogeneous job shop in order to represent the entire FPD production line of
Figure 1 in Section 3. Section 4 presents the simulation execution of the encapsulated event graph model,
and Section 5 presents the experimental results drawn from a production simulator prototype that
implements the proposed model. Conclusions and discussions are given in the final section.

2 EVENT GRAPH MODELING OF INLINE CELLS

In this section, the object-oriented event graph models of two homogeneous job shops of inline cells,
which are sourced from the parameterized event graph models presented in previous work (Song, Gu, and
Choi 2010; Song, Choi, and Park 2010), are presented. In the following subsections, a cassette object and
port object are introduced in order to provide a compact model description. In each inline cell, they are
declared as a record variable (cst) for cassette information and P[m] for the status of ports at a processing
machine, which is identified by m. The attributes of these variables are summarized in Table 1.

Table 1: Record variables declared for use in event graph models of job shops.

Variable Type/Value Description
cst ] int Job type of the glasses in cassette cst
p int Processing step of the glasses in cassette cst
d string ID of the equipment for the next processing step of cassette cst
n int Number of glasses in cassette cst
P[m] x  O~portcapacity Number of empty ports at the /O Port of an inline cell m

rx 0~ portcapacity Number of reserved empty ports at the 1/0 Port
f 0~ portcapacity Number of full-cassette ports at the I/O Port
e  O~portcapacity Number of empty-cassette ports at the I/O Port

The admissible states of a point in the I/O Port of an inline cell are occupied by a full cassette (f);
occupied by an empty cassette (e); not occupied but reserved (rx); and not occupied nor reserved (x). The
following functions are defined in order to update the state of a port:
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*  P[m](rx—f): change the state of a port from ‘reserved’ to ‘full-cassette’.
*  P[m](f—e): change the state of a port from ‘full-cassette’ to ‘empty-cassette’.
*  P[m](e—x): change the state of a port from ‘empty-cassette’ to ‘no-cassette’.
*  P[m](x—rx): change the state of a port from ‘no-cassette’ to ‘reserved’.

2.1 Modeling of a Uni-inline Job Shop

Figure 2 presents the reference model of a uni-inline cell with typical processing equipment commonly
found in FPD production lines. It consists of several 1/O ports (P), a track-in robot (R), and processing
machines, as well as the conveyor. It has a distinguished feature of the glasses of the cassette being loaded
at the uni-inline cell return to the same cassette after processing.

Cassette Port Glass Loading (t = takt time)
New Cassette Loading on| |Queue (B
Arriving at Queue 1/0 Port
g Do
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Q @ @ Inline Cell (x = flow time)
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Figure 2: Reference model of a uni-inline cell.

A cassette with new glasses that is stored in the gueue (Q) is loaded on a port in the I/O ports (P); this
process is called Cassette Loading. The glasses are then loaded into the Inline Cell using the track-in
robot (R), with one glass being loaded at every takt time (1), which is called Glass Loading. 1t takes a flow
time () for the glass to reach the end of the cell where it is unloaded into the same cassette that it was
loaded from at the I/O port. The cassette departs when it is filled with finished glasses and moves to the
queue of a processing machine for the next processing step.

Uni-inline EO Model (u)

(C3)

{Q[u]—cst; cst—Bu]; {B[u]—cst; {if (|B[u]|>0) {R[u]=-1; C2=true;}  {if (|Q[u]|>0 && P[u].rx=0) { P[u](e—rx);
P[u](rx—f); R[u]=0} else {R[u]=1; C2=false;} C3=true} else {P[u](e—x); C3=false};
C1=RsvR(u)} Plu](f—e) } cst.p= NextStep(cst); cst.d= NextEQP(cst) }
Material Handling EO Model
= CA td /M
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if (P[u].x>0) {P[u](x—rx); RSV=true;}}

Figure 3: Encapsulated event graph model of a uni-inline job shop.

Figure 3 illustrates an encapsulated event graph model of a uni-inline job shop, which is a job shop
consisting of uni-inline cells. Used in the encapsulated event graph model are the state variables: (1) Q[u],
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a list of cassettes waiting for processing at a uni-inline cell u; (2) B[u], a list of cassettes loaded on the
ports at a uni-inline cell u; (3) R[u], status of the track-in robot at a uni-inline cell u; and (4) P[u], a record
variable for the 1/O port of a uni-inline cell u. Also, the time-related variables H[u, cst], w[u, cst], and delay[u,
nu] denote the cycle time for a cassette (cst) of glasses, the flow time of the cell, and the transportation
delay time from a uni-inline cell u to other cell nu, respectively. The en-queue function (cstQ[u]) and de-
queue function (Q[u]—-cst) are used to manage the cassette queues (e.g. Q[u], R[u]).

The encapsulated event graph model depicted in Figure 3 consists of two event object (EO) models: a
uni-inline EO model and a material handling EO model. The event object model is an independent
parameterized event graph model that encapsulates a group of events that describe the state changes made
at an object that is comprised of a discrete-event system.

The material handling EO model simplifies the material handling process of the FPD production line
depicted in Figure 1 into the direct transportation of a cassette from a processing machine to another
machine. The following events are encapsulated in the material handling EO model:

e CA(u, cst): (1) en-queue an arriving cassette (cst) into Q[u], (2) reserve an empty port if any, and (3)
schedule a CL event if a port is reserved.
o Move (u, cst): (1) schedule a CA event to occur after delay[u, cst.d] (moving to the next machine).

The uni-inline EO model also encapsulates the following events related to the loading, inline
processing, and unloading of the glasses:

e CL (u): (1) de-queue a cassette (cst) from Q[u], (2) en-queue the cassette (cst) into B[u], (3) set the
status of the port to a full-cassette port (P[u](x—X)), and (4) schedule an FGL event if the track-in
robot R[u] is available (C1=RsvR(u)).

e FGL (u): (1) de-queue a cassette (cst) from B[u], (2) set the status of the track-in robot R[u] to busy,
and (3) schedule an event LGL to occur after ti[u, cst].

o LGL (u, cst): (1) set the status of the track-in robot R[u] to idle, (2) change the port status to an
empty-cassette port, (3) schedule an FGL event if B[u] is not empty, and (4) schedule a CD event to
occur after mtu, cst].

e CD (u, cst): (1) set the port status to a reserved port (P[u](e—rx)) if Q[u] is not empty and no port is
reserved, if else, set the port status to an empty port (P[u](e—X)) and (2) the cassette (cst) is
updated with next processing-step ID (cst.p) and next processing-equipment ID (cst.d) using the
job-routing functions: (1) NextStep(cst) returns the next processing-step ID of a job and (2)
NextEQP(cst) returns the next equipment ID that will process a cassette (cst).

In order to encapsulate a group of events into an event object model, a mirror event is created for
each boundary event at the receiving side. In Figure 3, the CL event of the uni-inline EO model and the
Move event of the material handling EO model are the boundary events of the receiving sides. Thus, their
mirrors events CL* and Move* are introduced in the respective event object models. Note that the
encapsulated event graph model of the uni-inline job shop presented in Figure 3 is embellished from the
parameterized event graph model of the uni-inline job shop presented in Song, Gu, and Choi (2010).

2.2 Modeling of a Bi-inline Job Shop

Figure 4 presents the reference model of a bi-inline cell, which has the distinctive feature of the loading
and unloading of cassettes being separated into in-ports and out-ports. In the bi-inline cell, the underlying
behavior of processing a cassette is essentially the same as that of a uni-inline cell. As the in-port and out-
port are separated, the empty cassette is placed at the in-port when the loading is finished and the out-port
requires an empty cassette to unload the finished glasses. Thus, in order to prevent the equipment from
the blocking, a mechanism for handling the empty cassettes must be provided.
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Figure 4: Reference model of a bi-inline cell.

Figure 5 illustrates an encapsulated event graph model of a bi-inline job shop, which is embellished
from the parameterized event graph model of the bi-inline job shop presented in Song, Choi, and Park
(2012) through grouping events into two event object (EO) models: a bi-inline EO model and a material
handling EO model. Similar to that of the uni-inline job shop, two mirror events (CL* and Move*) are
introduced in order to encapsulate the event objects.
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{ PIlb](f—rx);C2=true} else {PIb](f—x);}
if (|1Q[b]|>0) {RIbl=-1; C3=true}

{POlbl(x—e);

if (PO[b.e=1) {

if (|OQ[b]|>0){C5=true;}
else {C5=false; RO[b]=1;}} }

{PO[b](e—x);
if (PO[b].e>0) { if (|OQ[b]|>0)
{RO[b]=-1;C6=true;}

else {RO[b]=1;C6=false;}};

cst.p= NextStep(cst); cst.d= NextEQP(cst) }

Bi-inline EO Model (b)

else {RI[b]=1;} }

Figure 5: Encapsulated event graph model of a bi-inline cell.

Note that Figure 5 introduces two new events of FGP and X2PO with a number of state variables (PI
and PO replacing P, Rl and RO replacing R, and IQ and OQ replacing B of the uni-line job shop model) in
order to handle the empty cassette. In the LGL event, when the cassette is empty, it is removed from the
in-port; then, the in-port scans its queue (Q) for a cassette to load. In an FGP event, if the track-out robot
(RO) is idle, it is reserved to unload the first glass. In a CD event, an empty cassette is supplied to the out-
port by scheduling an X2PO event to occur after t[b] (time to supply an empty cassette). The FGL event
schedules an FGP event to occur after the first glass is processed (t[b,cst] + n[b, cst]), where 1[b,cst] is the
takt time for a bi-inline cell (b) to process a cassette (cst) with a job-type (cst.j) and processing step (cst.p).

3 EVENT GRAPH MODELING OF A HETEROGENEOUS JOB SHOP

A heterogeneous job shop refers to a job shop consisting of different types of processing equipment.
Figure 6 presents an encapsulated event graph model of a heterogeneous job shop with uni-inline cells
and bi-inline cells, and with a material handling system. The encapsulated event graph model is
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constructed by joining the two models in Figures 3 and 5, and it is a network of three event object (EO)
models: uni-inline EO, bi-inline EO, and material handling EO models.

As seen in Figure 6, the material handling EO model is revised in order to handle the cassette arrival
in the queue of different types of processing equipment where an in-port reservation is used. Therefore,
the CA event is revised by defining the following function RsvP(m) that returns a Boolean variable RSV,
which indicates whether the in-port of an inline cell m (either a uni-inline or bi-inline cell) is reserved or
not. Note that the I/O ports of a uni-inline cell are represented by a state variable P[u] and the in-ports of a
bi-inline cell are represented by a state variable PI[b]. Here, the set variables U and B denote a set of IDs of
uni-inline cells and a set of IDs of bi-inline cells, respectively.

Uni-inline EO Model (u) (IQu]|>0 8& P[u}rx=0)

nu, cst]

{Q[u]—cst; cst—Blu]; {Blu]—cst; {R[u]=1; {if (|Q[u]|>0 && P[u].rx=0) {
P[u](rx—f);RSV=RsvR(u)} R[u]=0} Plu](f—e) } Plu](e—rx)} else {Plul(e—x)};
cst.p= NextStep(cst); cst.d= NextEQP(cst) }

L (RSV && me U) Material Handling EO Model
m n————
(e, 1o /

[ 1
) 1 cst.d, cst

(m, cst (m, cst)
m {cst— Q[m]; RSV=RsvP(m);} {td= delaym, cstd] }

[b,cst]
@ @e, @

ST (RO[b]O
Sty OQblcst

u, cst

{Q[b]—cst;
cst—IQ[b];

Pl[b](rx—>f) : (€3
C1=RsvRI(b)} b
_f{i;’%?tl)(IX—}e));{ {POlb](e—x);
—C3=falee: 5 i 6= if (PO[b].e>0) { if (|OQb]|>0;
e ase, TIADIPY 88 IO it (oQpIpO)CE=tue) O ob covtie)
O IOBIoD) Rt Convgy | €50(05=Te RO else {RO[bI=1:CE=false:};
Bi-inline EO Model (b) else {RIbJ=1;} } cst.p= NextStep(cst); cst.d= NextEQP(cst) }

Figure 6: Encapsulated event graph model of an heterogeneous job shop.

4 SIMULATION EXECUTION OF AN ENCAPSULATED EVENT GRAPH MODEL

The encapsulated event graph model of the heterogeneous job shop presented in Figure 6 consists of three
event object models with scheduling edges that connect the mirror events of an event object to the
boundary events of another event object, as seen in Figure 7(a). The simulation execution of this
encapsulated event graph model is conducted using the object-oriented event graph simulator in Figure
7(b). The object-oriented event graph simulator consists of a simulator coordinator and three event object
(EO) simulators: one for each event object model in the encapsulated event graph model of Figure 7(a).
An EO simulator is similar to the traditional event graph simulator that implements the next-event
methodology with the event routines except that the EO simulator does not schedule future events by
itself.

The simulation coordinator maintains the simulation clock and future event list (FEL) as the
traditional event graph simulator does, and it also maintains another list, named the local event list (LEL),
of the local events scheduled by the EO simulators. A local event (€) is an event record that carries three
attributes: ObjectID, Name, and Time denote the ID of the EO simulator that sent the local event, the
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name of the local event, and its scheduled time to occur, respectively. As depicted in Figure 7(b), an EO
simulator sends a local event (€) to the simulation coordinator by calling the function ScheduleLocalEvent(e)
of the simulation coordinator. Then, the simulation coordinator (1) stores the local events in the LEL, (2)
selects the next local event from the LEL, and (3) sends it back to the respective EO simulator through
calling the function ExecuteLocalEvent(e) of the EO simulator.

(a) Encapsulated Event Graph Model (b) Object-oriented Event Graph Simulator
Material Simulation Coordinator (SC) [N
Handling
- Slm - S |m - S|m
EO Model 2|5 8|% 2|8 8|5 2|5 8|5
3| e BlL ofe 3|d mle
<= 3T clw 3|3 c|s 3|3
[53 &) =1 ol © =1 o| Qo =1
v ﬂ/ a5 3 alg  F a5 =
Uni-inline EO Bi-inline EO Material Uni-inline Bi-inline
Model (u) Model (b) Handling EO Simulator EO Simulator
EO Simulator (u) (b)

Figure 7: (a) An encapsulated event graph model and (b) its object-oriented event graph simulator.

4.1 Simulation Coordinator

Figure 8 presents an event graph model of the simulation coordinator, which is a single server system that
processes the local events in the order of the scheduled event time. The event graph model has two state
variables: LEL represents a buffer of local events and SC denotes the status of a machine, i.e. simulation
coordinator (—1 =reserved, 0 = busy, and 1 = idle).

(RSV)
= tos) ts %

(e.Time > tzog) { ExecuteLocalEvent (¢); Time[ Name |e (local event

If (JLEL] > 0)
{SC = -1 RSV = true} to [ScheduleLE| e, (u,CL,t,)
else {SC = 1;RSV = false;} } ty |GetNextLE |-

Simulation Coordinator (SC = 1; LEL = null;

ScheduleLl
(e)

{e— LEL; {SC=0;
ifsc=1) LE=fl g7
{SC=-1;RSV=true;}  ts=e.Time - CLK;}

else {RSV =false;} }

)
(e.Time

Figure 8: Event graph model of the simulation coordinator.

A brief description of the events used in the event graph model in Figure 8 is as follows:

o ScheduleLE(e): The role of this event is the same as that of the Arrive event in a single server
system where the EO simulator sends an enabled local event (e) to the simulation coordinator.

o GetNextLE: This event functions as the Load event in a single server system. The simulation
coordinator becomes busy (SC=0) and the next local event (€) is retrieved from LEL (LEL—e).

e ExecuteLE: This event functions as an Unload event in a single server system where the loaded job,
local event (e), is ready. The local event () is executed on its EO simulator through calling the
function ExecuteLocalEvent(e).

e Terminate: This event stops the simulation when the simulation clock exceeds the EOS time.

The event graph model of the simulation coordinator in Figure 8 is executed using the next-event
scheduling algorithm (Schruben and Schruben 2006) that maintains the simulation clock (CLK) and the
future event list (FEL). The FEL is an ordered list of future events {Time, Name, e}, where Time is the event
time, Name is the event name, and e is the local event.

Figure 9 illustrates the main program and event routines of the simulation coordinator in a pseudo-
code. The main program of Figure 9(a) implements the next-event scheduling algorithm using four event
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routines. The event routine is a subprogram that describes the changes in the state variables and how the
future events are scheduled. One event routine is required for each event in the event graph model. Figure
9(b) presents the event routines of four events with an initialize routine. Furthermore, the simulation
coordinator defines two functions for handling the local events: ScheduleLocalEvent(e) that stores a local
event in the LEL and ExecuteLocalEvent(e) that executes the event routine of a local event e.

Main Program of Coordinator (@) || Execute-Initialize-Routine (Now) { (b)
Begin SC=1; LEL = nul;

Clock = 0; }

\E\;(rfil(;uzgr(l;tll(allzé-)z?rﬁnej({Ckmk) ' Execllj_gel_-.ScheduleLE-Routine (e, Now) {
Retrieve-event (TIME, E-NAME, e); o —1\ -1 = e - .
Clock = TIME: if (SC=1) { SC=-1; RSV= true;} else {RSV= false;}
case E-NAME of { if (RSV= true) Schedule-event (GetNextLE, Now); }

ScheduleLE: Execute-ScheduleLE-Routine(e, Clock); Execute-GetNextLE-Routine (Now) {
GetNextLE: Execute-GetNextLE-Routine(Clock); SC=0; LEL— e;
ExecuteLE: Execute-ExecuteLE-Routine(e, Clock); if (e.Time < tqg)
Terminate: Execute-Terminate-Routine(Clock); } Schedule-event(ExecuteLE, e, e.Time);

} if (e.Time > tzog) Schedule-event(Terminate, Now); }
End Execute-ExecuteLE-Routine (e, Now) {
ScheduleLocalEvent (e) { ExecuteLocalEvent (e);

Schedule-event ( ScheduleLE, e, Clock); } if (|LEL|>0) {SC=-1; RSV=true;} else {SC=1; RSV=false;}

if (RSV= true) Schedule-event(GetNextLE, Now); }
ExecuteLocalEvent (e) { . .
ObjectList [e.ObjectiD]. ExecuteLocalEvent (e); } Execute-Terminate-Routine (Now) { LEL = null; }

Figure 9: Simulation coordinator: (a) main program and (b) event routines.

Uni-inline EO Simulator:
Execute-CL-Routine (u, Now) {...}
Execute-FGL-Routine (u, Now) {

Blu]—cst; R[u]=0; — Event Routines
e = new LocalEvent (u, LGL, Now + t,[u, cst], u, cst);
Coordinator.ScheduleLocalEvent (e); } }

ExecuteLocalEvent (e) { // invoked from SC
case e.Name of {
CL: Execute-CL-Routine ( e.ObjectID, e.Time);
FGL: Execute-FGL-Routine ( e.ObjectD, e.Time); — ExecutelLocalEvent(e)
LGL: Execute-LGL-Routine ( e.ObjectID, e.cst, e.Time);
CD: Execute-CD-Routine ( e.ObjectID, e.cst, e.Time);
Move: Execute-Move-Routine ( e.ObjectID, e.cst, e.Time); } }

Figure 10: Event object simulator for a uni-inline EO model.

4.2 Event Object Simulator

For each event object (EO) in an encapsulated event graph model, the event object simulator is
constructed with the event routines and a public function ExecuteLocalEvent(). Figure 10 presents an event
object simulator for the uni-inline EO model of Figure 6 in pseudo-code form. The event object simulator
consists of two parts: event routines for each event vertex and a function ExecuteLocalEvent(e). Due to
space limitations, only the event routine for an FGL event is presented: (1) change the state variables and
(2) schedule a new local event LGL to occur after ti[u, cst]. Here, the local event (e) is defined using an
Object ID (u), Event Name (LGL), Event Time (Now + t[u, cst]), and Parameter Variables (u, cst). The
function ExecuteLocalEvent(e) is invoked by the simulation coordinator at the event ExecuteLE, and then it
calls the respective event routine for a given local event (€) using the event name (€.Name).
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5 ILLUSTRATIVE EXAMPLE

Figure 11 presents the system architecture of the production simulator for an FPD Fab, which consists of
three modules: Input Data module, Object-oriented Event Graph Simulator module, and Output Report
module. As seen in Figure 11, two more event object (EO) simulators (Fabln and FabOut) are introduced
in the Object-oriented Event Graph Simulator module in order to control the cassette release under the
CONWIP policy (Spearman, Woodruff, and Hopp 1990): the FabIn EO simulator releases a new cassette
into the Fab when another cassette has completed the last processing step and it maintains a constant level
of work in progress. The RTD handles the job selection and machine selection at the CL and CD events of
the inline cells, respectively.

Real-time Dispatcher

Event|
- Job Machine Observers

i ¢ lCoIIected
AT AR " " Dat:
Uni-inline Cell Bi-inline Cell Material Handling 2t
Input Data |_|Input EO Simulator EO Simulator EO Simulator Output Report
Editor Data i T Generator
) ) ) Outupt
Simulation Coordinator Report

Output Report

Fabin FabOut Viewer
Input Data EO Simulator EO Simulator Output Report
Module Object-oriented Event Graph Simulator Module

Figure 11: System architecture of a production simulator.

Equipment Utilization (%) Turn Around Time (seconds, per product)

- Total TAT

E F E B

Equipment Gantt Chart Fab In/Out (No. Cassettes per Shift)

Utilization (%) = FabIn
0P ID | [sot. [ i |17 18 19 20 21 FeB0u
TCLNO1 9997 0 003 \

TCLNO2 9994 0 0.06 ~
TCLNO3 5585 0 4415 \
TDEPO1 9835 0 165 \
TDEP02 9826 0 174 50
TDEP03 97.86 0 214 \
TETO1 3138 0 6862 ‘ |
5 10 15 20

Figure 12: Simulation results of a FPD Fab.

In the Input Data module, a set of data should be prepared in order to execute the production
simulation: Product, Equipment, Equipment Port, Bill of Process, Loadable Set, Processing Time, FabOut
Plan, and Moving Time. In the Output Report module, a set of observers (Gamma et al. 1994) subscribe
to the events defined in the event object models in order to collect the event data generated from the event
object simulators and to calculate the performance measures at the end of the simulation run.
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Figure 12 presents a simulation output report of the FPD Fab described in Figure 1 under the
CONWIP policy of a 600 cassette limit. From the Fab In/Out report, thirty cassettes are released per shift
(the Fab operates in three eight-hour shifts) from the sixth shift (excluding warm-up periods), which
amounts to 1350 glasses per day. If the CONWIP size is adjusted to 300 cassettes, the turn-around time of
the cassettes is decreased by 20.5%.

6 CONCLUSION

This paper presents an object-oriented event graph modeling approach to developing a production
simulator for an FPD production line that is a heterogeneous job shop of inline cells and a material
handling system. Firstly, the concept of an encapsulated event graph model was provided in order to
model the uni-inline job shop and bi-inline job shop. The encapsulated event graph models of two
homogeneous job shops are combined into a single encapsulated event graph model that consists of a uni-
inline EO model, a bi-inline EO model, and a material handling EO model to represent the entire FPD
production line. The resulting model was realized in a production simulator using an object-oriented event
graph simulator that consists of the simulation coordinator and the event object simulators for each EO
model. The presented encapsulated event graph model successfully captured the heterogeneous properties
of the FPD production line with a valid simulation execution method.

Although the inline cells are typical processing machines that are found in FPD production lines,
other types of processing machines are also found, including chamber-type and oven-type machines. In a
future study, these types of processing machines should be modeled in an event object model and would
be easily integrated into the encapsulated event graph model of the heterogeneous job shop presented in
this paper.

Furthermore, the AMHS is a core facility of FPD production lines, which handle all material flows
between the processing machines through inline stockers and conveyors. In this paper, however, the
AMHS is simplified into a material handling EO model that only considers the transportation delay times
between the processing machines. As the demands for FPD products increase, the capacity of the AMHS
becomes more important to production planners. In order to manage this requirement, the event object
model for each type of AMHS machine should be incorporated into the encapsulated event graph model.
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