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ABSTRACT 

A hierarchical production planning structure enables manufacturing systems to handle customer 
disturbances with different measures on different planning levels. Two different kinds of customer order 
behavior can be observed and are as well discussed in literature. In the first, being forecast-evolution-
behavior, customers provide a forecast quantity for a specific due date for a long horizon in advance and 
update their forecast quantities periodically. In the second, being customer-required-lead-time-behavior, 
customers demand stochastic order amounts with a customer-required-lead-time whereby the 
manufacturing company generates an aggregated forecast, e.g. for product groups. These required lead 
times are usually shorter than the forecast-evolution-horizon, but order quantities do not further change. 
For comparing the influence of both order behaviors on a hierarchical production planning system, a 
simulation study is performed in which logistic performance measures such as service-level, utilization, 
capacity-, inventory- and tardiness-costs are analyzed with respect to a normalized forecast quality 
measure. 

1 INTRODUCTION 

Two different kinds of how customers provide information about the required demand to their suppliers 
can be observed and are as well discussed in literature. Firstly, this is the forecast evolution behavior 
(FEV) where customers provide a forecast quantity for a specific due date for a long horizon in advance 
and update their forecast quantities periodically. At each update occurrence, the customer changes its 
quantity or due date. Usually, less information on customer orders is available for time periods further in 
the future. Secondly, when the customer required lead time behavior (CRL) applies the manufacturing 
company generates an aggregated forecast for a long time in advance (e.g. planned order amount per 
month and product group), sometimes in cooperation with their customers. The customers then order a 
stochastic order amount with a stochastic required lead time. In both order behaviors manufacturing 
companies are facing the problem of information dynamics and uncertainty, i.e. stochastic behavior of 
arrivals, due dates and order amounts over time. However, hierarchical production planning (HPP) 
models such as the MRP II (manufacturing resource planning) concept are mitigating the negative effects 
of this problem. MRP II consists of three planning levels: long-term planning (strategy), intermediate 
planning (tactical) and short term control (operational). 
 The long-term planning involves the three functions: forecasting, resource planning and aggregate 
production planning (APP). The APP determines appropriate levels of production, inventory and staffing 
(internal capacity, external capacity and overtime). According to Hopp and Spearman (2008), 
optimization techniques such as linear (LP) or mixed integer programming (MIP) are used to solve the 
APP optimization problem. 
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The main functions of intermediate planning are master production scheduling (MPS), which 
compares the production plan with the actual customer orders, and material requirements planning 
(MRP), which identifies a list of production orders (see Hopp and Spearman 2008 for MPS and Orlicky 
1975 for MRP). Short-term control conducts scheduling and dispatching tasks for production orders and 
available resources. 
 Based on the decision hierarchy in manufacturing and the information uncertainties, there is still a 
research gap concerning the influence of information dynamics and uncertainties on the decisions taken 
on the upper hierarchical level. Ignoring this information uncertainty influence leads to a lack of 
coordination and integration also reported in surveys by Fleischmann and Meyr (2003), Kok and Fransoo 
(2003) and Missbauer and Uzsoy (2011). 
 A considerable amount of literature is available on aspects of the problem of information uncertainty 
such as stochastic demand, customer required lead time and forecast errors and their influence on the two 
intermediate planning components MPS and MRP. In this literature stream, planning parameters 
including periodicity, safety stocks, planned lead-times and lot sizes are optimized with respect to logistic 
performance measures like a service level threshold value or overall costs divided into capacity, tardiness 
and inventory costs. Furthermore, some literature discusses the interaction of different planning levels in a 
hierarchical production planning structure. To solve the above mentioned problems, analytic models, 
simulation, heuristic techniques or decomposition approaches are used. 

As noted above in the forecast evolution models less information on customer orders is available for 
time periods further in future. The future demand forecasts appear a certain time in advance and gradually 
change until the realization of the order at its due date. In this model, demands have a higher variance the 
longer their time to due date is. Heath and Jackson (1994) modeled the evolution of forecasts as an 
extension of the Martingale Model for Forecast Evolution (MMFE) which is a way for modeling the 
evolution of forecasts (Hausman 1969). They analyzed safety stock levels for a multi-product / multi-
plant production conducting a simulation study. Güllü (1996) explores how total system costs and 
inventory positions are affected when forecasts are incorporated explicitly in production / inventory 
systems. He assumes that forecasts for demand of a certain item are available in each period, and they 
evolve from one period to the next applying an additive evolution model. In order to analyze the effects of 
the forecasts on the production/inventory system he compares the optimal ordering policy and the 
expected costs of the model that keeps forecasts with that of a comparable standard inventory model. The 
paper shows that under mild assumptions the new model yields lower expected costs and inventory levels 
than the standard model. Baykal-Gürsoy and Erkip (2010) review inventory planning approaches in order 
to find out demand-forecasting requirements. The authors consider single- and multi-item supply chains 
under stationary and nonstationary, correlated demand. In their study they also use the MMFE-model. 

One of the first articles which consider the possibility that some information about the customer 
demand in advance of the respective demand can be used in MTS production systems is written by 
Buzacott and Shanthikumar (1994). In this paper the difference between safety stock and safety time 
within an MTS inventory replenishment system is discussed. It is found that safety time is preferable to 
safety stock if there is a good forecast, i.e., the customer required orders and their due dates are known for 
a long period in advance. The safety time considered in this paper is defined as planned lead time minus 
average production lead time. This concept presented in Buzacott and Shanthikumar (1994) for safety 
time is equivalent to applying a planned lead time in a MTO system but additionally a safety stock is held. 
Hariharan and Zipkin (1995) discuss the influence of customer required lead time for a single-stage and 
multi-stage MTS production system. They test different reorder policies and find that in their model a 
constant customer required lead time leads to the same result as a respective reduction of supply lead time. 
This concept of knowing the demand in advance even in stock replenishment systems working under 
MTS is the basis for the literature stream on advance demand information. In this stream of literature 
either the optimal replenishment strategy or the optimal parameters of a predefined replenishment strategy 
are optimized usually assuming a constant customer required lead time. Karaesmen et al. (2002) for 
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example analyze a discrete time single-stage MTS production system with customer demand known a 
constant period in advance. For a base stock policy the parameters order release time, which is equivalent 
to planned lead time, and base stock level are optimized based on inventory and backorder costs. Some 
recent papers using advanced demand information as a stochastic or deterministic customer required lead 
time are Karaesmen et al. (2004), Liberopoulos (2008), Wijngaard (2004), Wijngaard and Karaesmen 
(2007), Tan et al. (2007), and Gayon et al. (2009). 
 The MRP II planning components MPS and MRP outweigh a part of the information dynamics and 
uncertainty that the production system is dealing with. In the current study this effect is investigated for 
the two different order behaviors FEV and CRL. For the two possibilities how customers provide 
information to their suppliers we investigate the influence of optimizing the long term production plan 
(including production amount and capacity levels) assuming a deterministic production system and 
applying it to a stochastic production system which further conducts MPS, MRP and dispatching 
functionalities. For the FEV behavior forecast error is random. For the CRL behavior the monthly 
forecast error and the order amount are random. To compare the performance of the two order behaviors 
within the MRP II structure a forecast quality measure is developed. For different levels of forecast 
quality of the CRL and FEV order behavior, a numerical study is conducted where the amount of capacity 
flexibility needed (1- η) in the APP (MIP-model) to reach an appropriate service level is investigated with 
respect to minimal overall costs including capacity, tardiness and inventory costs. In detail it is observed 
how the optimal planned utilization factor η!"# changes when the forecast quality decreases. Especially 
the performance difference of the two investigated order behaviors within the hierarchical production 
planning environment is analyzed. 
 This article extends the literature on hierarchical production planning by investigating the influence of 
long term decisions on the key performance indicators of the stochastic production system for two 
different order behaviors. A similar study comparing the two order behaviors within a HPP-environment 
has not been performed and published yet. Therefore a discrete event simulation model which mimics the 
HPP-structure is extended by the two order behaviors CRL and FEV. For our research discrete event 
simulation is identified as an appropriate solution method due to the fact that it is not possible to 
analytically model the whole MRP II structure with its links between the planning steps on different 
planning levels and the two stochastic customer order behaviors. To make these behaviors comparable at 
all a normalized forecast quality measure is introduced. In a simulation study different demand levels and 
cost rates are investigated. The remainder of this article is structured as follows. After the model 
description in Section 2 explaining the used HPP-framework with the embedded APP model, the 
investigated problem structure and parameters are presented in Section 3. Section 4 reports the results of 
the numerical study and conclusions are provided in Section 5. 

2 MODEL DESCRIPTION 

The hierarchical production planning approach as illustrated in Figure 1 is modeled with a simulation 
generator (Hübl et al. 2011; Felberbauer, Altendorfer and Huebl 2012). The previous published 
simulation generator is extended by modeling the FEV and CRL order behaviors within the discrete event 
simulation model. Rolling horizon planning is conducted for the long and intermediate range planning 
level. For the APP an interface between the simulation software AnyLogic© and the standard MIP-solver 
CPLEX© is built. The APP is executed three times per year for a planning horizon T of twelve months 
and the results are used within the simulation model for the mid- and short term planning. Due to rolling 
horizon planning, only the plan for the next four months is used during simulation and therefore the 
problem of zero inventory at the end of the planning horizon T can be ignored. The calculation of the 
optimal production program is a function call within the simulation model and there is a cross data 
exchange between the simulation model and the MIP-solver. The MIP-solver uses transaction data 
(inventory levels) and master data (forecasts, processing times and shift system possibilities) from the 
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simulation model and returns the optimal production program (production amount, respective inventory 
levels and internal / external capacity levels). 

 

 
Figure 1: Hierarchical Production Planning approach 

The intermediate-range planning uses the disaggregated optimal production plan and actual customer 
orders in the MPS for the calculation of the gross requirements according to the cumulative MPS method. 
In the daily MRP run, planned order releases are calculated with the main MRP-functions netting, lot 
sizing, backward scheduling and bill of material (BOM) explosion. In the job release module planned 
orders from the MRP run are converted to real production orders if all required sub materials are 
available. Finally, the production orders are produced on the shop floor according to the routing 
information and dispatching rule. The available capacity of the shop floor is determined by the applied 
shift system and the external capacity hired according to the optimal production program. The shop floor 
performance is measured in overall costs consisting of internal and external capacity costs, inventory 
costs and tardiness costs.  
 The APP is modeled as a MIP by employing the decision variables 𝑥!,!,  𝑒!,!, and  𝑤!,!,!. 𝑥!,! ≥ 0 is the 
optimal production program of sales product p out of P sales products in time period t (month). 𝑒!,! ≥ 0 is 
the capacity of machine j in time period t which is processed by an external company which is able to 
provide the required technology of machine j out of J machines. Finally, the binary decision variables 
𝑤!,!,!   ∈ {0,1} are introduced for setting the applied work schedule and therefore the available internal 
capacity per machine j and time period t. The optimal production program 𝑥!,!  and the respective 
inventory levels 𝑙!,! are disaggregated from months t into days τ. The disaggregated inventory levels are 
used in the MRP-Planning approach (mid-term planning) of the simulation, which is calculated daily. The 
optimal production program 𝑥!,! is used as input for the MPS. In our model, the Gregorian calendar of 
2013 is used and two shift plan models (five days per week with two shifts; five days per week with three 
shifts) are available. The internal capacity per machine j, month t, and shift plan 𝑠   ∈ {1,2}, 𝐾!,!,! relies on 
the respective shift plan and the calendar of the considered year. For the two / three shift model and a 
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month t with 20 working days the internal available capacity 𝐾!,!,! = 320  and 𝐾!,!,! = 480  hours 
respectively. The following MIP problem is solved: 
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𝑝 = 1,… ,𝑃 
𝑡 = 1,… ,𝑇 (4) 

𝑙!,! , 𝑥!,! ≥ 0 𝑝 = 1,… ,𝑃 
𝑡 = 1,… ,𝑇 (5) 

𝑒!,! ≥ 0 𝑡 = 1,… ,𝑇 
𝑗 = 1,… , 𝐽 (6) 

   

𝑤!,!,! ∈ 0,1  
𝑡 = 1,… ,𝑇 
𝑗 = 1,… , 𝐽 
𝑠 = 1,… ,2 

(7) 

The objective function (1) minimizes the costs of internal / external capacity (at cost rate 𝑐! and 𝑐! for 
machine j respectively) and the inventory costs (inventory cost rate per day  𝑐!) which accrue by fulfilling 
the required demand. The main trade-off treated in the APP problem is between pre-production on stock 
and application of additional internal or external capacity. Due to constraint (2) only one shift plan can be 
applied for one machine per time period t. Constraints (3) ensure that the capacity needed to produce the 
optimal production program on the machines is lower than or equal to the available capacity of internal 
and external resources. The required capacity with respect to time period t and machine j is calculated 
using the processing time 𝑎!,! per sales product p and machine j and the respective optimal production 
program 𝑥!,!. The external capacity is unlimited and the internal available capacity per machine is 
dependent on the applied shift plan and the planned utilization factor η. The planned utilization factor is a 
real number between zero and one and defines the planned internal production system utilization. η 
provides excess capacity in the internal production system which is necessary to react to the stochastic 
behavior of the demand fluctuation and the forecast error. At the call of the APP, the actual inventories of 
the simulation for all sales products are defined as start inventories 𝑙!,!. Constraints (4) ensure that for the 
planning horizon T the required demand 𝐹!,! per period t is fulfilled by the optimal production program 
and inventory. Finally, the constraints’ (5)-(7) define the decision variables. Two important points to 
mention are that the MIP-problem always stays feasible due to the unlimited external capacity and 
therefore no tardiness costs are included in the objective function of the APP. In the real production 
system with stochastic influences, however, tardiness costs will also occur, which are balanced in the 
following against the additional costs caused by the planned utilization factor η. Note that a lower η leads 
to higher optimal costs in the MIP problem but in the real stochastic production system modeled with this 
decreased η leads to lower tardiness costs since additional capacity is available to react to stochastic 
influences. 
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3 PROBLEM DESCRIPTION 

The modeled production system follows a flow shop structure inspired by different production facilities 
operating in the automotive sector. The production system consists of six machines (M1-M6).  
 Figure 2a shows the BOM and the low level code (LLC) for the four items and six materials. All 
items as well as materials in LLC 0 to LLC 2 are MRP planned. LLC 0 contains all sales products p 
(items). The arrows indicate which child item is required to produce one parent item and the cardinality in 
the arrows states the required number of materials. The materials in LLC 3 are purchased parts. In this 
study purchased parts are always available and need not be taken into consideration for the planning. 
a. b. 

  
Figure 2: Bill of material and routing information 

Figure 2b shows the material flow of the items. Items 1x are produced on machine M5 or M6, items 2x 
are produced on M3 or M4 and items 3x are produced on M1 or M2. Generally, the production orders 
generated by the MRP-planning algorithm are sorted by the modified earliest due date (MEDD) 
dispatching rule where the production orders are sorted according to the due date of their parent item 
(Panwalkar and Iskander 1977). Each processing step requires a deterministic processing time which 
differs according to the low, medium and high capacity demand scenarios. Within one scenario the 
processing time is equal for all items / materials and machine-routing-combinations. 
 The overall forecast amount 𝐹! per year and sales product is a deterministic value and is equal for all 
investigated scenarios. The forecast per sales product and month is constant and is calculated according to 
(8). Note that T is the number of months in a year, thus 12. For all capacity demand scenarios the overall 
forecast amount 𝐹! of sales products 10 and 12 are 12,000 pieces for each and 18,000 pieces for sales 
products 11 and 13 respectively. 

𝐹!,! =
𝐹!
𝑇

  (8) 

 
CRL order behavior 
For the CRL behavior the forecast error incorporates the stochastic difference between monthly demand 
from forecast (being deterministic, see equation (8)) and the stochastic realized monthly demand. The 
forecast error ε!,! is an identically independent truncated-normal-distributed random variable with an 
expected value E ε!,! = 0 and variance 𝑉𝑎𝑟[ε!,!] = 𝛼𝐹!,!

!
. The forecast error parameter α defines the 

quality of the forecast and is independent of time period t and item p. The random monthly demand per 
sales product p and time period t is defined as 𝐷!,! = 𝐹!,! + 𝜀!,!. 
 The actual amount per order 𝑂! for item p is log-normally distributed with expected value 𝐸 𝑂! =
33 and variance 𝑉𝑎𝑟 𝑂! = 24.5 for sales products 10 and 12, as well as expected value 𝐸 𝑂! = 49 and 
variance 𝑉𝑎𝑟 𝑂! = 54.02 for items 11 and 13 which leads to a coefficient of variation of 0.15 for all 
items. The arrival rate 𝜆!,! with respect to item p and time period t is calculated according to 𝜆!,! =
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!!,!
! !!

= !!,!!!!,!
! !!

. Note that in the simulation study the order rate 𝜆!,! is adjusted to account for the forecast 

error but the order amounts remain stable. Each customer order requests a deterministic customer required 
lead time 𝐿 = 3  . Figure 3 illustrates the order behavior of one single customer order for item p within the 
planning system. Figure 3 shows that 20 days before delivery (dependent on the chosen MRP-planning 
horizon, the order release itself is dependent on the sum of lead times of superior materials) there is only 
the forecast information on the expected customer demand with a certain due date available. The 33 
pieces are a forecast value derived according to the monthly forecast amount 𝐹!,! (e.g. 1000 pcs.) and the 
amount of days per month (e.g. 30 days). This information stays unchanged until the real customer order 
arrives 3 days in advance. At this point in time the customer provides information about the real customer 
order amount. Dependent on the low level code and the set of MRP parameters either a production order 
has already been released with the forecasted and therefore incorrect order amount or the production order 
will be released with the realized and therefore correct order amount. It is assumed that customers do not 
change their orders after being stated. 

 
Figure 3: CRL order behavior 

FEV order behavior 
Figure 4 illustrates the information progress of the FEV order behavior. In this case the customer provides 
the forecast horizon (e.g. 20 days) in advance of the real customer order due date a planned order amount 
(e.g. 33 pcs.). This order amount stays constant until the forecast evaluation horizon is reached. Between 
the forecast evolution horizon (e.g. 8 days) and the frozen zone (e.g. 2 days) the customer changes the 
order amount periodically. Figure 4 illustrates a change frequency on a daily basis. Per change the 
forecast error ε! which is an identically independent truncated-normal-distributed random variable with 
an expected value E ε! = 0 and variance 𝑉𝑎𝑟[ε!] = 𝛿𝑑!

!
 is added to the actual order amount. The 

parameter δ defines the variance of the forecast error and is independent of time period t and item p. 
Within the frozen zone the customer order amount stays stable. Assuming that the error terms are 
independent of each other (this is the crucial assumption which is in the specific application slightly 
violated, see numerical study) leads to the following equation for the customer order of item p and 
subperiod τ (day or due date).  

𝑂!,!,!, = 𝑑! + 𝜀!

!!!"

!!!

  (9) 

Here 𝑑! is the constant demand forecast of item p and due date τ, h  is the forecast evolution horizon and 
fz is the frozen zone. 
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Figure 4: FEV order behavior 

For the conducted simulation study we use a forecast evolution horizon h of eight time periods, a frozen 
zone fz of two periods and a daily change frequency. 

 
Forecast quality measure β 
Due to the fact that the presented forecast error variables are completely different in both order behavior 
scenarios a normalized forecast quality measure β is introduced to compare the performance of the FEV 
and the CRL scenarios within the MRP II approach. The development of the forecast quality measure is 
one of the major contributions of the paper. The standardized forecast quality measure per due date τ and 
sales product p is defined as: 

Here 𝑑! is the constant demand forecast of item p and due date τ, n is the sum of planned lead times over 
the low level codes, 𝑂!,!,!is the realized customer order at due date τ and 𝑂!,!,! is the planed order amount 
i-1 periods before the required due date. Averaging the forecast quality values over all due dates τ (with 
limit Δ, i.e. 365 days for one year) and items p results in the overall forecast quality measure β. 

β describes the variance of MRP gross requirements compared to the realized demand occurrence (which 
is the final gross requirement) and is therefore a measure for the information dynamics and uncertainty 
the planning approach has to deal with. A β-value of zero means that the order amounts used for planning 
are exactly the same than the later realized customer orders (perfect forecast quality). A high β-value 
means a poor forecast quality. 
 Two additional measures are introduced to standardize and compare the two order behaviors. Firstly 
the average demand per day 𝑑 is defined as 

and secondly the variance of order demand per day  

In the numerical study we use tuples of similar forecast quality β, equal expected demand per day 𝐸 𝑂!,!  
and similar variance of the daily demand 𝑉𝑎𝑟 𝑂!,!  to compare the FEV and the CRL order behavior. To 
get appropriate levels of the latter explained tuples for the CRL order behavior the parameter α is varied 
and E[L] as well as 𝑉𝑎𝑟 𝑂!,!  have been identified in preliminary studies. For the FEV-scenario δ is 
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varied and forecast evolution horizon h, change frequency and frozen zone fz have been identified in a 
preliminary study. 

4 NUMERICAL RESULTS 

The cost objective in this study is the average overall costs per day separated into inventory, tardiness, 
internal capacity and external capacity costs. Customer orders that cannot be fulfilled at the end of the 
simulation time lead to extra costs in the form of penalties for their delay. The numerical study 
investigates the two different order behaviors FEV and CRL where the approximately optimal planned 
utilization factor 𝜂!"# is found by enumeration (25 possible η -values between 0.55 and 1 are tested) for 
the respective forecast quality tuple (β, 𝐸 𝑂!,! , 𝑉𝑎𝑟 𝑂!,! ). A set of different forecast quality tuples 
ranging from high to medium forecast quality are studied. In the further course of the paper the expression 
optimal- overall costs / planned utilization factor / service level is a synonym for the best value found 
using the latter described enumeration. Additionally, the capacity demand ρ (required capacity per year 
divided by available capacity per shift and year) is varied between low (Ø 2.2 shifts), medium (Ø 2.5 
shifts) and high (Ø 2.8 shifts) situations. The processing times are adjusted to reach the different capacity 
demand levels whereby the customer demand quantities stay equal. For the medium term planning 
method MRP, planned lead times of 2 periods for all materials have been identified in a preliminary 
study, again applying enumeration schemes to find appropriate values, and are not changed within the 
simulation study. Since no setup times are modeled the lot sizing policy lot-for-lot is applied in MRP. No 
safety stocks have been used in this study. The ratio of the inventory cost rate 𝑐!  to the tardiness cost rate 
𝑐! is chosen to be 1:9 for the low level, 1:19 for the medium level and 1:99 for the high level. The ratio of 
the internal and external capacity costs is 𝑐! /𝑐!  =1/2. For a scenario with low capacity costs the internal 
cost rate 𝑐! is 50 currency units per hour (CU/h) of the provided capacity and the external cost rate 𝑐! is 
100 CU/h, for medium capacity costs 𝑐! is 100 CU/h and 𝑐! is 200 CU/h and for high capacity costs 𝑐! is 
200 CU/h and 𝑐! is 400 CU/h. The inventory costs are equal for all scenarios and are determined to 1 CU 
for items 1x and 0.5 CU for materials 2x and 3x per day and unit. In the numerical studies, four whole 
years are simulated with the above described annual forecast / demand behavior, whereby the first year is 
the warm up time of the simulation model and therefore excluded from the analysis. Each parameter set is 
simulated with 10 replications.  
Influence of the Forecast quality measure β for the FEV and CRL order behavior 
Based on a full-factorial design of the above mentioned parameters, the best overall costs, the respective 
optimal planned utilization factor 𝜂!"# and the respective service level are discussed for the FEV and 
CRL order behavior by comparing different levels of the forecast quality measure β. The range of β is 
between 0.13 and 0.39. Table 1 shows the arithmetic mean of the optimal overall costs (over all parameter 
combinations) for the FEV order behavior in Table 1a and for the CRL order behavior quoted inTable 1b. 
The tables Table 1a and Table 1b each consists of three sub tables for the parameters 𝜌, 𝑐! , 𝑐!  and 
𝑐!.The bold row at the bottom of each sub table is the arithmetic mean of the respective β value and the 
bold column on the right hand side of the sub table is the arithmetic mean of the respective parameter 
level. In the bottom right hand corner of the three sub tables the arithmetic mean of the overall costs of 
the whole CRL and FEV scenario is quoted. Table 2 and Table 3 use the same table structure but instead 
of overall costs, the optimal planned utilization factor 𝜂!"# and the respective service level are presented 
with respect to the varying β value and the three levels of the parameters capacity demand, capacity cost 
rate and tardiness cost rate.  
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Table 1: Optimal overall costs with respect to β for the FEV and CRL order behavior. 

a. b. 

  
 
The study shows that the overall costs illustrated in Table 1 have a positive correlation with the forecast 
quality measure β. There is also a positive correlation between the overall costs and the demand ρ, the 
capacity cost rates 𝑐! , 𝑐!  and the tardiness cost rate 𝑐!. 
 The average of overall costs of the FEV order behavior (Table 1a) is 13,227 CU and the overall costs 
of the CRL order behavior is 11.4% higher which leads to overall cost of 14,730 (Table 1b). The study 
shows that for the same level of the forecast quality measure β the hierarchical production planning 
approach MRP II performs for the FEV order behavior better than for the CRL order behavior. It can 
therefore be stated that the MRP II structure handles small, continuous changes in the FEV-scenario far 
better than a unique, short term change in order amount. 
 A cost reduction potential of 6.6% comparing the overall costs of β=0.13 and β=0.39 for the FEV-
scenario is identified in contrast to the CRL order behavior where the cost reduction potential is 43.7%. 
One finding from comparing the FEV and CRL order behavior for different levels of information 
dynamics and uncertainty is that the MRP II structure handles small, continuous changes of order 
amounts in the FEV-scenario far better than the unique, short term changes in the CRL behavior. 

Table 2: Optimal planned utilization factor 𝜂!"# with respect to β for the FEV and CRL order behavior. 

a. b. 

  
 
Table 2 shows that the optimal planned utilization factor 𝜂!"# has a negative correlation with respect to β. 
This leads to the finding that higher forecast quality variance has to be compensated by additional excess 
capacity which has to be considered as soon as in the aggregate planning phase. 
 The results illustrate that the capacity demand ρ has no systematic influence on 𝜂!"#. There is a 
positive correlation of the internal planned utilization factor and the increasing capacity cost rates 𝑐! , 𝑐!  

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
2.2 11,790 11,838 11,921 11,997 12,096 12,182 12,278 12,399 12,487 12,617 12,713 12,211
2.5 13,089 13,152 13,223 13,269 13,307 13,391 13,440 13,499 13,530 13,601 13,663 13,378
2.8 13,688 13,709 13,753 13,758 13,843 13,904 14,090 14,246 14,460 14,663 14,909 14,093
Ø 12,856 12,899 12,966 13,008 13,082 13,159 13,269 13,382 13,492 13,627 13,762 13,227

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
low 6,439 6,474 6,525 6,556 6,623 6,671 6,733 6,805 6,886 6,958 7,032 6,700
med 11,287 11,326 11,377 11,399 11,475 11,547 11,678 11,750 11,868 11,976 12,121 11,619
high 20,840 20,899 20,995 21,069 21,148 21,260 21,397 21,590 21,722 21,948 22,132 21,364
Ø 12,856 12,899 12,966 13,008 13,082 13,159 13,269 13,382 13,492 13,627 13,762 13,227

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
low 12,600 12,622 12,670 12,706 12,766 12,803 12,892 12,964 13,027 13,139 13,237 12,857
med 12,781 12,824 12,892 12,935 13,003 13,082 13,185 13,265 13,352 13,475 13,598 13,127
high 13,185 13,252 13,335 13,382 13,478 13,592 13,731 13,916 14,097 14,268 14,450 13,699
Ø 12,856 12,899 12,966 13,008 13,082 13,159 13,269 13,382 13,492 13,627 13,762 13,227

cb

β

{c
i ,c

e }

β

ρ

β
0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø

2.2 11,282 11,440 11,823 12,242 12,683 13,091 13,437 13,911 14,187 14,395 15,143 13,058
2.5 12,717 12,828 13,053 13,353 13,656 14,157 14,864 15,702 16,221 16,607 17,719 14,625
2.8 13,426 13,457 13,542 14,271 15,305 16,370 17,304 18,495 19,079 19,407 20,925 16,507
Ø 12,475 12,575 12,806 13,289 13,881 14,540 15,202 16,036 16,496 16,803 17,929 14,730

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
low 6,164 6,263 6,414 6,736 7,074 7,435 7,782 8,193 8,454 8,546 9,271 7,485
med 10,921 11,015 11,239 11,695 12,219 12,842 13,431 14,231 14,632 14,899 16,015 13,013
high 20,341 20,446 20,765 21,434 22,350 23,342 24,392 25,684 26,401 26,964 28,501 23,693
Ø 12,475 12,575 12,806 13,289 13,881 14,540 15,202 16,036 16,496 16,803 17,929 14,730

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
low 12,232 12,329 12,496 12,843 13,291 13,791 14,325 15,000 15,259 15,624 16,268 13,951
med 12,400 12,490 12,693 13,132 13,683 14,280 14,914 15,686 16,104 16,495 17,486 14,488
high 12,793 12,905 13,229 13,891 14,671 15,548 16,366 17,422 18,123 18,291 20,034 15,752
Ø 12,475 12,575 12,806 13,289 13,881 14,540 15,202 16,036 16,496 16,803 17,929 14,730

cb

β

{c
i ,c

e }

β

ρ

β

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
2.2 0.90 0.89 0.88 0.88 0.87 0.86 0.86 0.85 0.85 0.83 0.82 0.86
2.5 0.89 0.88 0.88 0.87 0.87 0.86 0.86 0.84 0.84 0.84 0.83 0.86
2.8 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.88 0.88 0.87 0.86 0.89
Ø 0.90 0.89 0.88 0.88 0.88 0.87 0.87 0.86 0.85 0.85 0.84 0.87

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
low 0.90 0.89 0.88 0.88 0.87 0.86 0.86 0.85 0.84 0.83 0.82 0.86
med 0.89 0.89 0.88 0.88 0.88 0.87 0.86 0.86 0.86 0.84 0.84 0.87
high 0.90 0.90 0.89 0.89 0.89 0.88 0.88 0.87 0.87 0.87 0.86 0.88
Ø 0.90 0.89 0.88 0.88 0.88 0.87 0.87 0.86 0.85 0.85 0.84 0.87

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
low 0.92 0.91 0.91 0.91 0.90 0.90 0.90 0.89 0.89 0.88 0.88 0.90
med 0.90 0.90 0.89 0.89 0.89 0.89 0.88 0.87 0.86 0.85 0.85 0.88
high 0.87 0.86 0.85 0.85 0.84 0.83 0.82 0.81 0.81 0.80 0.79 0.83
Ø 0.90 0.89 0.88 0.88 0.88 0.87 0.87 0.86 0.85 0.85 0.84 0.87

β

cb
ρ

β

{c
i ,c

e }

β
0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø

2.2 0.93 0.92 0.89 0.85 0.82 0.78 0.76 0.73 0.71 0.70 0.68 0.80
2.5 0.93 0.92 0.88 0.86 0.83 0.81 0.78 0.74 0.72 0.71 0.68 0.81
2.8 0.95 0.94 0.93 0.89 0.85 0.81 0.78 0.72 0.70 0.69 0.63 0.81
Ø 0.93 0.93 0.90 0.87 0.83 0.80 0.77 0.73 0.71 0.70 0.66 0.80

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
low 0.94 0.92 0.89 0.85 0.81 0.78 0.74 0.70 0.68 0.66 0.61 0.78
med 0.93 0.92 0.90 0.86 0.83 0.80 0.77 0.73 0.71 0.69 0.66 0.80
high 0.93 0.93 0.91 0.88 0.86 0.83 0.80 0.76 0.75 0.75 0.71 0.83
Ø 0.93 0.93 0.90 0.87 0.83 0.80 0.77 0.73 0.71 0.70 0.66 0.80

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
low 0.96 0.95 0.93 0.90 0.87 0.84 0.82 0.78 0.77 0.76 0.74 0.85
med 0.94 0.93 0.92 0.87 0.85 0.81 0.78 0.75 0.73 0.71 0.68 0.81
high 0.91 0.90 0.86 0.82 0.79 0.75 0.72 0.66 0.64 0.63 0.57 0.75
Ø 0.93 0.93 0.90 0.87 0.83 0.80 0.77 0.73 0.71 0.70 0.66 0.80

β

cb
ρ

β

{c
i ,c

e }

β
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for high β values. This finding supports previous literature stating that the more expensive capacity is, the 
higher the production system utilization should be (see e.g. Jodlbauer and Altendorfer 2010). Based on 
this finding, an intuitive result is that a higher tardiness cost rate 𝑐! leads to lower optimal internal 
production system utilization 𝜂!"#. 
 For the FEV order behavior, the average planned utilization factor is 87% and 80% for the CRL order 
behavior. This finding is in line with the lower overall costs for the FEV-system being able to work with 
higher utilization. Latter is accompanied by the finding that an absolute difference in optimal production 
system utilization of 6%/27% is found between β=0.13 and β=0.39 of the FEV/CRL order behavior 
respectively. 

Table 3: Optimal service level with respect to β for the FEV and CRL order behavior. 

a. b. 

  

For the FEV and CRL order behavior illustrated in Table 3a and b, we conjecture, that the optimal service 
level is non-increasing with increasing β value. From a customer’s point of view this leads to the finding 
that worse forecasts with more variance provided to the supplier imply an increasing risk of observing a 
lower service level performance from this supplier. Furthermore, the study confirms the intuitive results 
that the optimal service level decreases with a higher weighting of capacity cost rates 𝑐! , 𝑐!  and 
increases with a higher weighting of tardiness cost rate  𝑐!.  

5 CONCLUSION 

In this paper the effect of two different order behaviors within a hierarchical production planning system 
(MRP II) is investigated. The simulation study conducted shows that excess capacity is needed to mitigate 
the effect of assuming a deterministic setting in the APP optimization problem but facing stochastic shop 
floor behavior. It is shown that the excess capacity needed increases with respect to decreasing forecast 
quality. This excess capacity has already to be included in the APP and an approach with a planned 
utilization factor defining the internal capacity is therefore presented in this paper. The overall costs are 
found to significantly increase with decreasing forecast quality (consistent over all parameter settings). 
The contribution of this study lies in, the modeling of the FEV and CRL order behavior, the development 
of a normalized forecast quality measure and finally the investigation on how the MRP II structure 
mitigates different information dynamics and uncertainties comparing the two order behaviors. We find 
that for lower forecast quality, the CRL order behavior leads to significantly higher costs than the FEV 
order behavior. The study shows that even in this rather robust MRP II system a high cost reduction 
potential is linked to information dynamics reduction. Further research could extend the current study by 
investigating different demand patterns and production structures. Additionally the influence of the CRL 
and FEV parameter on forecast quality could be analyzed in a more detailed way. 

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
2.2 0.91 0.91 0.92 0.92 0.92 0.91 0.91 0.91 0.91 0.92 0.92 0.92
2.5 0.92 0.92 0.92 0.91 0.92 0.91 0.93 0.94 0.94 0.93 0.94 0.93
2.8 0.99 0.99 0.99 0.99 0.98 0.97 0.95 0.94 0.92 0.92 0.90 0.96
Ø 0.94 0.94 0.94 0.94 0.94 0.93 0.93 0.93 0.92 0.92 0.92 0.93

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
low 0.96 0.96 0.96 0.95 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95
med 0.94 0.94 0.95 0.94 0.95 0.93 0.93 0.93 0.92 0.93 0.93 0.94
high 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.91 0.90 0.89 0.89 0.91
Ø 0.94 0.94 0.94 0.94 0.94 0.93 0.93 0.93 0.92 0.92 0.92 0.93

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
low 0.90 0.90 0.90 0.90 0.89 0.89 0.88 0.88 0.87 0.87 0.87 0.89
med 0.94 0.93 0.94 0.93 0.93 0.92 0.93 0.93 0.92 0.93 0.92 0.93
high 0.98 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.98
Ø 0.94 0.94 0.94 0.94 0.94 0.93 0.93 0.93 0.92 0.92 0.92 0.93

cb

β

{c
i ,c

e }

β

ρ

β
0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø

2.2 0.94 0.93 0.94 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.91 0.93
2.5 0.92 0.92 0.93 0.94 0.94 0.93 0.92 0.90 0.90 0.88 0.87 0.91
2.8 0.98 0.98 0.98 0.93 0.90 0.89 0.89 0.91 0.89 0.89 0.91 0.92
Ø 0.94 0.94 0.95 0.94 0.92 0.92 0.91 0.91 0.91 0.90 0.89 0.92

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
low 0.97 0.96 0.97 0.96 0.95 0.95 0.94 0.95 0.94 0.94 0.94 0.95
med 0.94 0.94 0.95 0.94 0.94 0.92 0.92 0.91 0.92 0.91 0.90 0.93
high 0.92 0.92 0.93 0.91 0.88 0.88 0.87 0.88 0.87 0.84 0.84 0.89
Ø 0.94 0.94 0.95 0.94 0.92 0.92 0.91 0.91 0.91 0.90 0.89 0.92

0.13 0.16 0.18 0.21 0.24 0.27 0.29 0.32 0.35 0.37 0.39 Ø
low 0.90 0.89 0.92 0.89 0.88 0.86 0.85 0.86 0.85 0.82 0.82 0.87
med 0.95 0.95 0.94 0.93 0.92 0.92 0.91 0.90 0.90 0.90 0.89 0.92
high 0.99 0.98 0.99 0.98 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.98
Ø 0.94 0.94 0.95 0.94 0.92 0.92 0.91 0.91 0.91 0.90 0.89 0.92
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