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ABSTRACT 

This paper presents a case study that validated the production capacity of an industrial batch chemical 
process. A risk assessment review of the production system identified that different constraints and uncer-
tainties could limit the actual production capacity of the plant to less than designed. To determine if pro-
duction capacity was at risk, we developed a discrete event simulation to simulate a batch chemical pro-
duction process with multiple parallel production units, interlocks in product loading steps, uncertainty in 
processing times caused by equipment failures, degradation of production process over time, and planned 
maintenance shutdowns. We evaluated the impact of variation in the degradation rate of the production 
process, and the impact of changes in renewal frequency on the total production capacity of the plant.  

1 INTRODUCTION 

Simulation modeling has been widely applied to address various type of manufacturing system problems. 
Negahban and Smith (2014) provide a comprehensive literature review and analysis of discrete event 
simulation related publications related to manufacturing applications between 2002 and 2013. The authors 
have noted a clear increase in relevant publications on use of simulation for manufacturing system design 
and operation. In more recent work, Ponsignon and Mönch (2014) used a simulation based approach for 
performance assessment of master planning approaches in semiconductor manufacturing. Melouk et al. 
(2013) developed a simulation optimization based decision support system for evaluating the work in 
process inventory levels and modifications in manufacturing process to reduce utilization costs. Zhang et 
al. (2014) investigated the impact of different operational variables (such as production speed, scrap rate 
and maintenance speed) on the manufacturing costs. 

Discrete event simulation in the process industries is most commonly used in the context of reliability 
and maintainability (RAM) studies (Owens et al. 2010) along with traditional application areas in logis-
tics and supply chain (Buss and Ivey 2001). In a series of Winter Simulation conference papers, and else-
where, the authors and colleagues have shared what we believe are effective practices for maximizing the 
contribution of discrete event simulations to decision support systems as well (see Sharda and Bury 
(2008), Sharda and Bury (2011), Akiya et al. (2011), and Sharda and Akiya (2012)). In this paper, we 
present a case study validating  the production capacity of a batch chemical production system that in-
cluded discrete control logic as well as some time varying processes like equipment fouling. The simula-
tion study was commissioned after an engineering-risk assessment review of a proposed capacity expan-
sion of an existing batch plant. The subject matter experts (SME) identified three risk categories to 
achieving the targeted capacity expansion. These were operational constraints, specific component relia-
bility and equipment degradation or fouling over time. 
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We worked with the project team to define the decisions and the data required to make them, and ne-
gotiated a project charter to develop a DES to generate the required data. While incorporating more and 
more details in a simulation usually results in higher fidelity, there is the risk of out-modeling the availa-
ble data (for input models) or creating models with intractable results. Understanding the client’s deci-
sions and data required to make the decisions as well as the consequences for making a right (wrong) de-
cision helps guide the level of complexity and fidelity needed in a simulation. The primary decision was to 
confirm that proposed  design would deliver the expected production capacity under the process con-
straints required for safe operation and environmental compliance. The second major decision was to de-
termine if a change in maintenance polices would improve system productivity. 

Our results showed that under the given constraints and uncertainties, the production system will be 
able to meet its desired production capacity. Sensitivity analysis of the variation in degradation rate and 
changes in planned maintenance policies reveals that higher production capacity can be attained by more 
frequent planned maintenance as compared to the existing policy. 

This remainder of the paper is organized as follows. In Section 2, we provide a high level overview of 
the production process and the simulation development. Section 3 discusses the simulation results and fi-
nally Section 4 provides the summary of this work. The process has been simplified, and numbers dis-
cussed in the paper have been arbitrarily scaled for business confidentiality. 

2 PROCESS OVERVIEW 

Figure 1 shows an overview of the production process. The production system contains multiple parallel 
units producing a single product. The operational steps of different parallel units are constrained by inter-
locks that prevent simultaneous loading of raw material in the units. This is one of several layers of pro-
tection that ensures safe operation. The production capacity of each unit decreases over  time due to deg-
radation of a component within the unit, and unplanned failures are primarily due to mechanical reliability 
issues. Each of the production units goes through a scheduled sequence of short and long duration correc-
tive maintenance. DES is well suited to model the uncertainties in the production rate caused by failures 
of various components, and facilitates the visualization of the complex system dynamics. The production 
process has 4 different trains, and each train consists of 2 parallel units (see Figure 1 for a more detailed 
overview of each train). Each production unit is a batch process. At the end of the batch operation, the 
product is transferred to the buffer storage and subsequently sent to downstream production units. At the 
beginning of each operation, the raw material is loaded into the production unit. To ensure safe operation, 
the product cannot be loaded simultaneously to other production units for the first X minutes of the load-
ing process. Thus, all of the unit operations were modeled as two step operations , 1) product loading for 
x minutes and 2) remaining steps  to simplify the modeling logic. 

Based on the analysis of historical operating data and input from the project team,  we assume that 
there are no upstream or downstream bottlenecks. This simplifying assumption accelerated the modeling 
timeline as it kept the focus of the modeling work on generating the data required to evaluate the produc-
tion capacity and maintenance policies. 

Although simplified to a two-step sequence, each of the steps was supported by the required safety 
and control logic as these represented the primary constraints on the process throughput.  The perfor-
mance of each production unit degrades over time due to degradation of a certain component within the 
unit. Based on SME feedback, it was assumed that each unit’s performance degraded linearly from a 
“good” condition to a “bad” condition over a period of 30 days. Under a “good” unit condition, the unit 
can hold a batch size of 2000 Kg and the cycle time is 30 minutes. Under a “bad” case, the unit can hold a 
batch size of 1000 Kg and the cycle time is 60 minutes. Thus, over a period of time, the production unit 
runs a smaller batch size and takes higher cycle time to produce a batch. The batch size (in Kg) and cycle 
time (in minutes) can be computed using the following equations (1) and (2): 
 
Batch size (t)= 2000+s1× t, where slope s1 = (1000-2000)/30= -33.33  (1) 
Cycle time (t)= 30+ s2× t, where slope s2 = (60-30)/30=1 (2) 
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Figure 1: High level overview of the production process 

Where t is the unit’s working time (in days), excluding the downtimes. We assumed that during a 
downtime, the unit performance does not degrade. Therefore, only actual working time of the unit was 
used to compute the degradation rate. 

 

 
Figure 2: Changes in batch size and cycle time over a period of time 

Each production unit is subject to periodic “short” and “long” duration maintenance (referred to as re-
newals). These renewals return the units to their optimal production capabilities (i.e. batch size= 2000 Kg, 
and cycle time=30 minutes). The “short” duration renewal requires a downtime of 8 hours (every 30 days) 
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and “long” duration renewals requires a downtime of 48 hours (every 90 days). For each production unit, 
there are 12 renewals/year, including 8 “short” duration and 4 “long” duration renewals. In order to min-
imize the production variability due to the long and short term renewals, renewals for different production 
units were scheduled uniformly over a period of time. Within each month, the renewals were equally 
spaced in order to minimize production fluctuations. Similarly, the long duration renewals for different 
production units were equally spaced throughout a 12 month period to avoid significant production fluc-
tuations. 

We also conducted a sensitivity analysis of production rates against variation in the degradation rates 
(± 10% variation) and changes in the time between renewals  (22.5 and 45 days instead of 30 days). Fig-
ure 3 and Figure 4 shows the effect of 10% variation in the degradation rate on batch size and cycle time. 
With a 10% decrease in degradation rate (better performance), the performance of production unit will 
degrade at a slower rate, and the unit will be able to produce a bigger batch size in a shorter cycle time as 
compared to the base case (at the end of 30th day). We assumed a linear degradation change, so 10% de-
crease in degradation rate (better performance) implies that the new batch size will be 
1000+0.10*1000=1100 kg, and the cycle time will be 60-0.10*60=54 minutes. Similar explanation fol-
lows for 10% increase in degradation rate (worse performance). For a 10% decrease in the degradation 
rate (better performance), the batch size and cycle time at any time (t) can be computed using equations 
(3) and (4): 
 
Batch size (t)= 2000+s1× t, where slope s1 = (1100-2000)/30= -30  (3) 
Cycle time (t)= 30+ s2× t, where slope s2 = (54-30)/30=0.8 (4) 
 

For a 10% increase in the degradation rate (worse performance), the batch size and cycle time at any 
time (t) can be computed using equations (5) and (6): 
 
Batch size (t)= 2000+s1× t, where slope s1 = (900-2000)/30= -36.67  (5) 
Cycle time (t)= 30+ s2× t, where slope s2 = (66-30)/30=1.2 (6) 

 
The resulting changes in the cycle time and batch size are plotted in the next two figures (3 &4). 
 

 
Figure 3: Sensitivity Curves for degradation rate on cycle time 
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Figure 4: Sensitivity Curves for degradation rate on batch size 

The discrete event simulation model for the in-scope process was developed using ExtendSim version 
8.0.1  <www.extendsim.com> simulation software. We chose to model this system using discrete 
events without the use of the discrete rate library because of the focus on the interlocks and the states of 
the system to drive control decisions.  Maintenance data was used to generate time to failure and time to 
repair distributions.  The model was also designed to run in either the “pre-improvement” and “post-
improvement”  mode.  
 
We used the following settings in the simulation model: 

• Number of simulation replications: 20  
• Simulation run length: 10 years 
• Warm up period: 3 months.  

3 RESULTS 

We used the simulation model to first compute the predicted production rates in “pre-improvement mode” 
against the historical record. This provided the validation of the model results. The simulation model was 
then used to establish the expected “post-improvement” baseline. This confirmed that the improvements 
would deliver the required productivity. Next, we studied the variation in degradation rate (±10% varia-
tion) and time between renewals (22.5 and 45 days) on overall production.  
 Figure 5 and Figure 6 show the effect of using different time between renewals on cycle time and 
batch size of the production unit. We assumed that the long duration renewal (48 hour) would always be 
performed after 90 days. For example, under a 22.5 day time between renewals, there would be 3 “short” 
time duration renewals (8 hour) before a “long” time duration renewal. After the renewal, the production 
unit would be reset to its “good” working conditions. We note that while a shorter time duration renewal 
improves the average production rate (quantity produced/cycle time), it also increases the  downtime of 
the unit.  

Figure 7 shows the impact of renewal frequency and changes in the degradation rate of production 
units on the overall production. The red dotted line indicates the desired production capacity of the plant 
(54 Kilo Tons Per Annum (KTPA)). The 95% confidence interval from the simulation results were small, 
and were thus excluded from the figure. 
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Figure 5: Effect of renewal frequency on cycle time 

 

 
Figure 6: Effect of renewal frequency on batch size 

 The results indicate that without upstream and downstream bottlenecks, the production process would 
be able to meet the desired production rates (54 KTPA) for all the cases except with an increase in the 
degradation rate. As expected, the results indicate that the variation in the degradation rate of the produc-
tion units can have a significant impact on the total production. The results also indicate that the variation 
in the renewal frequency can have a significant impact on improving the production capacity. For the 
Base Case, the results indicate that a change in renewal frequency from 30 to 45 days can lead to 0.71 
KTPA improvement in production (~1% of the total annual production). Fewer renewals also decreases 
the yearly maintenance expenses thus improving the total plant margin. 
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Figure 7: Impact of renewal frequency and degradation rate on total production. Dashed line is target pro-
duction. 

4 SUMMARY 

This paper presents a case study to validate the production capacity of a batch chemical production sys-
tem after a proposed expansion project. We developed a discrete event simulation to simulate the manu-
facturing with multiple parallel production units, interlocks in product loading steps, uncertainty in pro-
cessing times due to equipment failures, degradation of production process over time, and planned 
maintenance shutdowns. We evaluated the impact of variation in the degradation rate of the production 
process, and the impact of changes in renewal frequency on the total production capacity of the plant. Our 
results indicate that the production process will be able to meet the designed production capacity under 
different constraints under the baseline conditions. However, the product process will not be able to attain 
the desired production capacity if the degradation rate of the production process increases significantly. 
Our results also indicate that higher production capacity and reduced costs can be attained by less fre-
quent planned maintenance (45 days) as compared to the existing policy (30 days). 
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