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ABSTRACT 

Changeover setups are induced by switching manufacturing processes among products. They commonly 
exist in flexible manufacturing systems. Modeling their queue time impact correctly is of fundamental 
importance in evaluating the performance of production systems. In this paper, the mean queue time 
approximation models are proposed based on the properties of changeover setups. The models are 
validated by simulations and perform well in the examined cases. 

1 INTRODUCTION 

Due to the random effects, queueing theory plays an important role in quantifying the performance of 
manufacturing systems. To use the correct queueing models at the right situation, a comprehensive 
classification is essential. The common stochastic events in a manufacturing system can be either time-
based or run-based and preemptive or non-preemptive (Wu 2014a). The run-based non-preemptive events 
are generally called setups and can be further classified as state-induced and product-induced setups. 
State-induced setups may occur when a machine change its state from idle to busy. As inferred by its 
name, product-induced setups are induced by products rather than state changes. 

 

 

Figure 1.  Classification for setups. 

According to its characteristics, two types of product-induced setups commonly exist in practical 
manufacturing systems, i.e., changeover setup and replacement setup (see Figure 1). While a replacement 
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setup is due to the life of a component or the usage of consumables, a changeover setup is induced by 
switching manufacturing processes among products. In this paper we study the mean queue time 
approximation of a single server queueing system with changeover setups. 

When a machine produces a different product from the current one, it sometimes needs to change 
parts (e.g. masks of a photo lithographer) or parameter settings. If the setup process cannot be done in 
parallel with the processing of the previous product, it will have direct impact on job queue time and 
needs to be modeled explicitly. Since it switches machine settings in order to make different products, it 
is called a product-induced setup caused by changeover, or simply a changeover setup. Changeover setups 
commonly exist in the semiconductor manufacturing. For example, chemical mechanical planarization 
machine (CMP) machines are used to smooth wafer surfaces through both chemical and mechanical 
forces in a semiconductor fab. The process uses both abrasive and corrosive chemical slurry in 
conjunction with a polishing pad and retaining ring. The service times of a CMP machine can be around 
1.5 ~ 2 minutes per wafer depending on the recipes, e.g. Trench, Oxide or Tungsten. The changeover time 
from Oxide to Tungsten is often less than two hours, but the changeover time from Oxide to Trench can 
be longer than five hours. Hence setup time distributions depend on the current product type and the 
product type which will be processed next.  

As shown in Figure 2, changeover setups occur if there are multiple types of products. After the 
production process is switched to a new class, it will manufacture the same type of products consecutively 
until the next setup occurs. Hence, all the service times follow the same distribution between two setups. 
Furthermore, the setups may have different distributions when switching between different product types. 

 
 

 

Figure 2.  Changeover setups. 

When the occurrence of a setup is memoryless and service times are independent and identically 
distributed (i.i.d.), the queueing model for changeover setups has been proposed by Hopp and Spearman 
(2008). Specifically, their model assumes the number of jobs processed between two consecutive 
changeover setups (i.e., serial batch size) follows the same geometric distributions. This assumption 
simplifies the model derivation but also limits its application.  

Changeover setups can be viewed as an extension of polling systems. A typical polling system 
consists of a number of queues, attended by a single server who visits the queues in some orders to render 
service to customers waiting at the queues, typically incurring a changeover time while moving from one 
queue to another. Federgruen and Katalan (1996) characterized the impact from the mean or distribution 
of changeover setup times. They proved that all moments of waiting times and queue length are reduced if 
the higher order moment of changeover setup times is reduced. Takagi (1988, 2000) summarized the 
applications of polling models under the assumptions of cyclic order and Poisson arrivals, and discussed 
the queueing models under four types of dispatching rules: exhaustive, gated, limited and decrementing 
service. The cyclic order was generalized and replaced by a periodic service order table, or a polling table 
(Eisenberg 1972, Baker and Rubin 1987). However, those prior models didn’t consider the case that the 
distribution of changeover setups in manufacturing systems may depend on the current and future product 
types.  
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While polling systems are widely studied, existing models are not general enough to satisfy the needs 
of our cases with changeover setups in practical manufacturing systems. To evaluate the impact on system 
performance from the changeover setups, corresponding queueing models have to be derived. Specifically, 
we propose closed form queue time approximations for the changeover setup under practical settings.  

The paper is organized as follows. Queueing models for changeover setups are proposed in Sections 2. 
Simulation validation is given in Section 3. The importance of behavior analysis is given in Section 4. 
Conclusion is given in Section 5. 

2 THE MODEL 

In practical manufacturing systems, changeovers can be attributed to the following reasons: (1) the move 
target of the current product has been satisfied, (2) a job of different product type has an urgent due date, 
(3) the downstream stations are starving for the other product type, or (4) relative queue lengths among 
products. For example, when the queue length of the current product is zero, the next product could be 
chosen based on their queue length or due dates. However, even if the queue length is not zero, a 
changeover may still occur if the queue length of the other product is too long, or the due date is urgent. 

The key properties of changeover setups are: (1) there are multiple products with different service 
time distributions, and (2) setup time distributions depend on the current product type and the product 
type which will be processed next. In the following we first analyze the general cases with distinct 
changeover setups. 

Assume the inter-arrival times between consecutive jobs are i.i.d. The job arrival rate is ߣ and the 
squared coefficient of variations (SCV) of inter-arrival time is ܿ௔ଶ.	N classes of products are served by a 
single server. The service rule is FCFS (first come first served). The service time of class i is ௜ܵ (i = 1,⋯, 
N). A random changeover setup ௜ܶ,௝ 	൐ 0 is incurred when the server leaves class i to class j (݅ ് ݆). If the 
sever serves class i jobs continuously, no changeover setup is needed, i.e. ௜ܶ,௜ ൌ 0. Define the service 
state by ܥሺݐሻ,  and ܥሺݐሻ ൌ ሺ݅ െ 1ሻܰ ൅ ݆ if the server is performing class i service at ݐ after the completion 
of class j service ሺ1 ൑ ݅, ݆ ൑ ܰሻ. Let ܥሺ0ሻ ൌ ሺ݅ െ 1ሻܰ ൅ ݅ if the server performs class i service at the 
initial epoch. 

Since a changeover setup is induced by multiple independent random factors and only depends on the 
current and the next product types, it is reasonable to assume the occurrence of a changeover setup at each 
job is Markovian, and the service process can be modeled as a discrete time Markov chain ሼܥሺݐሻ, ݐ ൒ 0ሽ 
with state space ሼ1,2, ,⋯ , ܰଶሽ. Assume that the transition probability from serving class i to class k, i.e., 
from state ሺ݅ െ 1ሻܰ ൅ ݆  to state ሺ݇ െ 1ሻܰ ൅ ݅  is ݌ሺ௜ିଵሻேା௝,ሺ௞ିଵሻேା௜	ሺ1 ൑ ݅, ݆, ݇ ൑ ܰሻ . Note that state 
ሺ݅ െ 1ሻܰ ൅ ݆ corresponds to the case that the server is serving class i and state ሺ݇ െ 1ሻܰ ൅ ݅ᇱ denotes that 
the previous service class before class k is ݅ᇱ. ݌ሺ௜ିଵሻேା௝,ሺ௞ିଵሻேା௜ᇲ ൌ 0 if ݅ ് ݅ᇱ. The transition probability 
matrix of ሼܥሺݐሻ, ݐ ൒ 0ሽ	is 

 ܲ ൌ ௠,௡൧ேమൈேమ݌ൣ , (1)

where ݌ሺ௜ିଵሻேା௝,ሺ௞ିଵሻேା௜ᇲ 	ሺ௜ିଵሻேା௝,ሺ௞ିଵሻேା௜݌ ,0= ൌ ,	ሺ௜ିଵሻேା௝ᇲ,ሺ௞ିଵሻேା௜݌  and ∑ ௠,௡݌
ேమ
௡ୀଵ ൌ 1	ሺ1 ൑

݅, ݅ᇱ, ݆, ݆ᇱ, ݇ ൑ ܰ, ݅ ് ݅ᇱ, 1 ൑ ݉ ൑ ܰଶሻ.  
Under the existence of setups, the concept of service time has to be generalized. From the view point 

of capacity, generalized service time is defined as follows (Wu et al. 2011b): 
 

Generalized service time = job departure time െ the time epoch when the job first claims capacity 
of the machine,  

 
where job departure time is the time epoch that a job releases machine capacity. A job claims capacity of 
a machine if (i) the job is present at the machine, (ii) the preceding job has released machine capacity, and 
(iii) the machine is ready to process this job, or is ready to perform a product-induced setup. 
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Hence, the generalized service time at state ሺ݅ െ 1ሻܰ ൅ ݆ is ܩሺ௜ିଵሻேା௝ ൌ ௜ܵ ൅ ௝ܶ,௜. When the Markov 
process ሼܥሺݐሻ, ݐ ൒ 0ሽ is ergodic, the stationary probability vector ߨ ൌ ሺߨଵ, ⋯,ଶߨ ,  exists. The mean	ேమሻߨ
generalized service time at the server is  

ሻܩሺܧ  ൌ෍ܧሺܩ௜ሻߨ௜

ேమ

௜ୀଵ

. (2)

And the expected value of the second moment of generalized service time is 

ଶሻܩሺܧ  ൌ෍ܧ൫ܩ௜
ଶ൯ߨ௜

ேమ

௜ୀଵ

. (3)

For stability, we assume ீߩ ൌ  E(G) < 1. Based on Kingman’s heavy-traffic approximation for aߣ
G/G/1 queue (Medhi 2002), the mean queue time (QT) can be approximated by 

ሺܳܶሻܧ  ൎ
ܿ௔ଶ ൅ ܿீ

ଶ

2
ீߩ

1 െ ீߩ
ሻ, (4)ܩሺܧ

where ܿீ
ଶ ൌ ሺܧሺܩଶሻ െ ሻሻܩଶሺܧ

ሻ൘ܩଶሺܧ . 

3 MODEL VALIDATION 

Simulation experiments are conducted to validate the mean queue time approximation for changeover 
setup models. The following results validates Eq. (4) for the model in which the changeover setups 
depend on the current and the following product types.  

Assume jobs arrive according to a Poisson stream. Ten different mean arrival rates resulting in system 
utilizations ீߩ  from 10% to 95% are considered. There is a single server which provides three classes of 
service. A random changeover setup ௜ܶ,௝ 	is incurred when the server leaves class i service to class j 
service (i,j=1,2,3). The service times and changeover setup times follow gamma distributions. Let  
ሺܧ ଵܵሻ ൌ30 minutes,  ܧሺܵଶሻ ൌ40 minutes, ܧሺܵଷሻ ൌ50 minutes. The mean changeover setup times are 
ሺܧ ଶܶ,ଵሻ ൌ 30, ሺܧ ଷܶ,ଵሻ ൌ 35, ሺܧ ଵܶ,ଶሻ ൌ 28, ሺܧ ଷܶ,ଶሻ ൌ 46, 	ሺܧ ଵܶ,ଷሻ ൌ 42, ሺܧ ଶܶ,ଷሻ ൌ 58. The transition 
probability matrix of ሼܥሺݐሻ, ݐ ൒ 0ሽ	is 

 
2 5 0 0 1 5 0 0 2 5 0 0

2 5 0 0 1 5 0 0 2 5 0 0

2 5 0 0 1 5 0 0 2 5 0 0

0 1 3 0 0 1 2 0 0 1 6 0

.0 1 3 0 0 1 2 0 0 1 6 0

0 1 3 0 0 1 2 0 0 1 6 0

0 0 1 6 0 0 1 6 0 0 2 3

0 0 1 6 0 0 1 6 0 0 2 3

0 0 1 6 0 0 1 6 0 0 2 3

P

 
 
 
 
 
 
 
 
 
 
 
 
    

 
Three cases with different settings are considered:  
 

Case 1: The SCV of ௜ܵ is 0.2, ݅ ൌ1, 2, 3. And SCV’s of ଶܶ,ଵ, ଷܶ,ଵ,	 ଵܶ,ଶ, ଷܶ,ଶ, ଵܶ,ଷ, ଶܶ,ଷ  are 0.2, 0.3, 0.1, 0.5, 
0.1 and 0.4 respectively. 
Case 2: The SCV of ௜ܵ is 0.4, ݅ ൌ1, 2, 3. And SCV’s of ଶܶ,ଵ, ଷܶ,ଵ,	 ଵܶ,ଶ, ଷܶ,ଶ, ଵܶ,ଷ, ଶܶ,ଷ  are 0.2, 0.3, 0.1, 0.5, 
0.1 and 0.4 respectively. 
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Case 3: The SCV of ௜ܵ is 0.2, ݅ ൌ1, 2, 3. And SCV’s of ଶܶ,ଵ, ଷܶ,ଵ,	 ଵܶ,ଶ, ଷܶ,ଶ, ଵܶ,ଷ, ଶܶ,ଷ  are 0.4, 0.6, 0.2, 1, 
0.2 and 0.8 respectively. 
 

Since the SCV of service time is practical manufacturing systems is generally small, all three cases 
have small service time SCV (Inman 1999). The difference between Case 1 and Case 2 is that the SCV of 
௜ܵ in Case 2 is two times of that in Case 1. The difference between Case 1 and Case 3 is that the SCV of 
௜ܶ,௝ in Case 3 is two times of that in Case 1 (i, j=1,2,3). 

Thirty replications are conducted at each utilization ீߩ . Each of the 30 replications is composed of 
1000,000 jobs after discarding the first 2000,000 jobs for warm-up. The results are shown in Table 1, 
where SQT is the queue time from simulation, 95% half-width of the confidence intervals of the 
corresponding sample mean is given after its sample mean and AQT is the approximate queue time 
computed based on Eq. (4). Due to the large sample size, the 95% half-width of the confidence intervals 
are all smaller than 1% in all test cases. The percentage difference from AQT compared with SQT is 
reported in “Diff %” (Diff% = AQT/SQT – 1).  

Table 1. Mean queue time comparison for queueing systems with distinct distributed changeover setups. 

 
 
Comparing Case 2 and Case 3 with Case 1, we find that the increase of variability of service times 

and changeover setups cause the mean queue time increase. The percentage difference (Diff %) is small at 
all utilizations in the three cases. The approximation performs well. Its effect doesn’t change too much 
because of the variability of service times and changeover setups.  

Since Eq. (4) assumes that service time distributions are i.i.d., the errors could be caused by the 
service time dependence among the jobs of the same product type. In other words, the approximate model 
would perform better if the probability to process the same product type consecutively is not extremely 
high. Otherwise, the approximate model tends to underestimate the mean queue time. Furthermore, while 
the model still performs well in heavy traffic, the approximation model performs the best at around 60% 
utilization, which gives the smallest approximate error. This phenomenon could be also caused by the i.i.d. 
assumption of service times. 

4 BEHAVIOR ANALYSIS 

The classification and models proposed in this paper is done by a systematic approach. That is, (1) 
systemic classification of events, (2) defining service time from the view point of capacity, (3) deriving 
queueing models accordingly. As shown in Figure 3, the previous two belong to behavior analysis, while 
the last one belongs to model derivation.  

 

AQT Diff% AQT Diff% AQT Diff%
10% 4.26 ± 0.01 4.25 -0.1% 4.60 ± 0.01 4.594 -0.2% 4.45 ± 0.01 4.44 -0.2%
20% 9.59 ± 0.02 9.57 -0.2% 10.35 ± 0.02 10.34 -0.1% 10.01 ± 0.02 9.99 -0.2%
30% 16.43 ± 0.03 16.40 -0.1% 17.73 ± 0.03 17.72 0.0% 17.15 ± 0.03 17.12 -0.2%
40% 25.52 ± 0.04 25.52 0.0% 27.56 ± 0.05 27.56 0.0% 26.67 ± 0.04 26.63 -0.1%
50% 38.28 ± 0.07 38.27 0.0% 41.29 ± 0.07 41.34 0.1% 40.05 ± 0.06 39.95 -0.3%
60% 57.43 ± 0.12 57.41 0.0% 62.02 ± 0.12 62.01 0.0% 59.94 ± 0.09 59.92 0.0%
70% 89.22 ± 0.20 89.31 0.1% 96.24 ± 0.22 96.46 0.2% 93.23 ± 0.18 93.21 0.0%
80% 152.66 ± 0.48 153.10 0.3% 165.19 ± 0.54 165.4 0.1% 159.23 ± 0.60 159.79 0.4%
90% 342.51 ± 2.00 344.47 0.6% 368.65 ± 2.58 372.1 0.9% 357.75 ± 2.52 359.53 0.5%
95% 723.04 ± 7.32 727.22 0.6% 786.69 ± 8.60 785.5 -0.2% 762.35 ± 8.96 759.02 -0.4%

    SQT
Case 2

   SQT      SQT
Case 3Case 1

ீߩ
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Figure 3.  Methodology for studying manufacturing system behavior. 
 

The importance of behavior analysis can be seen in Wu and Hui (2008) and Wu, McGinnis, and 
Zwart (2011a), for example. Based on a detailed behavior analysis, Wu and Hui (2008) studied the 
characteristic of service time and identify the dependence between effective service times and arrival 
rates. This key observation directly leads to the definition of generalized service time  (Wu, McGinnis, 
and Zwart 2011b). Through a detailed behavior analysis, Wu, McGinnis, and Zwart (2011a) identified the 
dependence between batching times and queueing times. This observation leads to a better queue time 
approximation model for a parallel batching station.  

By the same token, Wu (2014a) proposed a comprehensive classification for different types of 
interruptions of a station in practice manufacturing systems. Queueing models of each type of interruption 
is also given. Behavior analysis is in vain without model derivation, but derivation without thoughtful 
analysis may lead to incorrect models as well. While model derivation is often appreciated in academia, 
behavior analysis can sometimes be overlooked but is indeed a key step to derive a proper model. 

5 CONCLUSION 

In order to satisfy varying customer demand by product variety, flexible manufacturing systems are 
prevalent in modern manufacturing systems. Since changeover setups commonly exist in flexible 
manufacturing systems, properly evaluating its impact on queue time plays a key role in improving 
system performance.  

When (1) there are a single service time distribution and a single setup time distribution, and (2) the 
occurrence of the setup is memoryless and follows geometric distributions, a changeover setups can be 
simply modeled by the queueing model proposed by Hopp and Spearman (2008). Based on this approach, 
integrated queueing models, which consider all types of interruptions or batching behaviors are proposed 
by Wu, McGinnis, and Zwart (2011b) and Wu (2014b), respectively. 

Changeover setups are induced by switching manufacturing processes among products. Under proper 
justification based on the observations from practical production lines, we assume that the occurrence of 
changeover only depends on the current and the next product type. With this assumption, the changeover 
process can be modeled as a discrete time Markov chain. While the model performs well when the service 
time dependence is weak, it may underestimate queue time when the dependence is high. Future research 
is expected to improve the model. 

In addition to a changeover setup, a replacement setup also commonly exists in production lines. 
Model derivation for different types of product-induced setup is left for future research (Wu and Zhao 
2015). In order to quantify the queue time performance of a station in a queueing network, the effect of 
different types of setups on the intrinsic ratio (Wu and McGinnis 2012, Wu and McGinnis 2013) is also 
an interesting topic and left for future research.     
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