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ABSTRACT 

We consider a semiconductor production line in which production stations are afflicted by a defect 
deposition process and immediately followed by an inspection step. We propose to integrate operational 
aspects into quality considerations by formulating a Cycle Time (CT) versus Yield trade off. We connect 
the two performance measures through the determination of the limit for defects at the inspection step.We 
extend former results to a tandem production line and present an optimal greedy algorithm that provides 
the Pareto-optimal set of Upper Control Limit (UCL) values for the line. The obtained model enables 
decision makers to knowingly sacrifice Yield to shorten CT and vice versa.  

1 INTRODUCTION 

Traditionally, the semiconductor industry emphasizes quality over Cycle Time (CT). Yield engineers 
usually set quality control requirements based on targeted Yield, basically leaving the industrial engineers 
to struggle for the best possible CT under these requirements. Lately, following a growing demand for 
products (typically memories) for which CT is of tremendous importance, manufacturers have started to 
reconsider this state of things. Meyersdorf and Yang (1997), as well as Khetan and Fowler (1995) present 
some aspects of the Yield-CT trade-off without quantifying them. More recently, Tirkel, Reshef and 
Rabinowitz (2009) proposed a dynamic monitoring policy instead of the traditional constant sampling. 
Such dynamic policies are not new, but were so far used to improve Yield (Dauzère-Pérès et al. 2010). In 
a similar vein, Goren and Rabinowitz (2011) suggest a model for efficient integration of Yield and CT 
under a combined in-line inspection and repair policy. They suggest random inspection and repair times, 
as well as finite queues while analyzing a queuing network model performance with the decision variable 
being the inspection rate.  

In a former publication, Gilenson, Hassoun and Yedidsion (2012) have formulated the trade-off 
existing at a single station level through the determination of the control limits. Tightening the Statistical 
Process Control (SPC) requirements results in a better yield at the expense of a higher frequency of false 
alarms and superfluous machine stoppage, thus increasing CT. In the current research, we consider a 
multi-station tandem line and extend our previous results by finding the Pareto-optimal set of control limit 
values that optimize the balance between Yield and CT for the whole production process. Before doing 
so, in the next section, we summarize the results for the single station case (some are slightly different 
from Gilenson et al.2012) 
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2 SINGLE STATION SYSTEM 

In the framework of this paper we model a tandem production line (Li and Meerkov 2008). Stations are 
connected by exactly one input and one output. In this section, we consider one of the stations in isolation 
and study the impact of the control limits on both Yield and CT. As illustrated in Figure 1, each 
production station in the network is followed by a metrology step in which the items are examined for 
defects through the use of SPC charts, and the decision whether or not to let the station continue 
producing, is taken. The capacity of the metrology stations is supposed to be infinite and there are no 
queues forming in front of the metrology stations. Each station behaves as a single first-come-first-serve 
waiting line with a single server. 

 

 
Figure 1: Illustration of an arbitrary production step 𝑚. 

In our model, defects are device killers, independently of their exact location. However, the definition 
of a defect, regarding its size or any other characteristic, can be different at each station (in practice, 
certain operations are more sensitive than others).  

2.1  The Control Limit’s Impact on CT 

In a tandem production line, the average arrival rate is equal at all stations and we denote it 𝜆. The service 
duration (processing time) is a constant 𝑡𝑚 . At the metrology station, part of each item’s surface is 
sampled. Let us denote the sample area for station 𝑚by 𝐴𝑚; that is the proportion of sampled dice on the 
item. When the number of defects on the sampled area exceeds a predefined Upper Control Limit for 
station 𝑚  (𝑈𝐶𝐿𝑚 ), the station is said to be Out Of Control (OOC), and production is interrupted. 
Otherwise, the station is said to be In Control (IC). The all-target value for defects is obviously zero; 
therefore, we disregard here any type of lower control limit. Without any loss of generality, we assume 
the number of defects added to the sampled area of a specific item at process step 𝑚, denoted 𝑥𝑚, to be a 
Poisson process with parameter 𝜇𝑚 . The station is described as a two-state station, and its defect 
deposition rate can either be low 𝜇𝑚 or high 𝜇𝑚:𝜇𝑚 > 𝜇𝑚.  

The probability for a monitor to exceed the control limit can be obtained by:  
 

𝑃(𝑂𝑂𝐶𝑚) = 1 − 𝑃(𝑥𝑚 ≤ 𝑈𝐶𝐿𝑚) = 1 − �
(𝜇𝑚)𝑘𝑒−𝜇𝑚

𝑘!

𝑈𝐶𝐿𝑚

𝑘=0

 

 
where𝜇𝑚 ∈ �𝜇𝑚,𝜇𝑚�. The inspection process is subject to errors. We denote by 𝛼𝑚 the probability that a 
monitor exceeds 𝑈𝐶𝐿𝑚 when the defect deposition rate is low (type 1 error), and by 𝛽𝑚 the probability of 
a monitor to remain below the 𝑈𝐶𝐿𝑚 when deposition rate is, in fact, high (type 2 error). We consider a 
sample to be IC if 𝑥𝑚 ≤ 𝑈𝐶𝐿𝑚 and OOC otherwise. Accordingly  
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𝛼𝑚 = 𝑃 �𝑥𝑚 > 𝑈𝐶𝐿𝑚|𝜇𝑚� = �
(𝜇𝑚)𝑘𝑒−𝜇𝑚

𝑘!

∞

𝑘=𝑈𝐶𝐿𝑚+1

= 1 − �
(𝜇𝑚)𝑘𝑒−𝜇𝑚

𝑘!

𝑈𝐶𝐿𝑚

𝑘=0

 

(1) 

 

 𝛽𝑚 = 𝑃�𝑥 ≤ 𝑈𝐶𝐿𝑚|𝜇𝑚� = �
(𝜇𝑚)𝑘𝑒−𝜇𝑚

𝑘!

𝑈𝐶𝐿𝑚

𝑘=0

. (2) 

 
We model the evolution of a single station over time with four states (also depicted in Figure 2):  

 
1. The defect deposition rate is low �𝜇𝑚� and the monitor indicates that the process is IC;  

2. The defect deposition rate is low �𝜇𝑚� and the monitor indicates that the process is OOC (type 1 
error);  

3. The defect deposition rate is high �𝜇𝑚� and the monitor indicates that the process is IC (type 2 
error);  

4. The defect deposition rate is high �𝜇𝑚� and the monitor indicates that the process is OOC.  
 

We denote the probability of the deposition rate to switch from 𝜇𝑚 to 𝜇𝑚by 𝑝𝑚. Once a monitor is 
OOC, production is stopped and the station undergoes an inspection and, if needed, a repair. Such repairs 
are assumed to always be successful and inevitably bring the station back to state 1. In addition, once the 
deposition rate has risen, it will not go back to 𝜇𝑚 unless a repair is conducted. Under these assumptions, 
we can now present the station as a Markov Chain, as shown in Figure 2: 
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Figure 2: Station m as a four-state Markov chain. 

 The number of production cycles between two consecutive deviations from 𝑈𝐶𝐿𝑚 is known as the 
Average Run Length (ARL) and was found to be (Gilenson et al.2012): 

 

 𝐴𝑅𝐿𝑚 =
1 + 𝑝𝑚

𝛽𝑚
1−𝛽𝑚

1 − (1 − 𝑝𝑚)(1 − 𝛼𝑚). (3) 

 
At each production cycle, the probability for the station to be 𝑂𝑂𝐶  and consequently stopped for 
inspection is given by: 

 𝑝𝑚
𝑆𝑡𝑜𝑝 =

1
𝐴𝑅𝐿𝑚

=
1 − (1 − 𝑝𝑚)(1 − 𝛼𝑚)

1 + 𝑝𝑚
𝛽𝑚

1−𝛽𝑚

 (4) 

In our model, the service time, denoted 𝑆𝑚 accounts for both the processing time and repair duration (it is 
often referred to as "effective service time" or "effective processing time", (see Hopp and Spearman 
2008). We have: 
 

𝑆𝑚 = �
𝑡𝑚 + 𝑉𝑚 with probability 𝑝𝑚

𝑆𝑡𝑜𝑝

𝑡𝑚            with probability 1− 𝑝𝑚
𝑆𝑡𝑜𝑝 

 
where the vacation duration, 𝑉𝑚, is a state-dependent random variable. With the stationary probability 
vector for station m 
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𝜋�⃗ 𝑚 =

⎝

⎜
⎜
⎛

1
1 + (1 − 𝑝𝑚)𝛼𝑚 + 𝑝𝑚

(1−𝛽𝑚)

,
(1 − 𝑝𝑚)𝛼𝑚

1 + (1 − 𝑝𝑚)𝛼𝑚 + 𝑝𝑚
(1−𝛽𝑚)

,

𝑝𝑚𝛽𝑚
(1−𝛽𝑚)

1 + (1 − 𝑝𝑚)𝛼𝑚 + 𝑝𝑚
(1−𝛽𝑚)

,
𝑝𝑚

1 + (1 − 𝑝𝑚)𝛼𝑚 + 𝑝𝑚
(1−𝛽𝑚)⎠

⎟
⎟
⎞

 

 
the first two moments of the vacation duration distribution function are: 
 

 𝑣𝑚 = 𝐸[𝑉𝑚] = 𝑣𝑖𝑚 +
𝜋4

𝜋2 + 𝜋4
𝑣𝑟𝑚 (5) 

 𝑤𝑚 = 𝑉𝑎𝑟[𝑉𝑚] = 𝑣𝑖𝑚2 + �
𝜋4

𝜋2 + 𝜋4
�
2
𝑣𝑟𝑚2 . 

 
(6) 

The resulting service time does not meet any familiar distribution. Moreover, the arrival process 
characteristics to a random station within the network are a priori, unknown. Following these two 
understandings, we tackled the determination of the expected value of the station CT by applying a 
𝐺/𝐺/1 queuing model. We denote the expectancy of the CT by 𝐶𝑇𝑚 and the expectancy of waiting and 
service times by 𝐸[𝑊𝑚] and 𝐸[𝑆𝑚] respectively. We have: 

 
 𝐶𝑇𝑚 = 𝐸[𝑊𝑚] + 𝐸[𝑆𝑚]. (7) 
 
According to Kingman’s Bound (Kingman 1962) the mean waiting time in a 𝐺/𝐺/1  queue is 
approximately  

 𝐸[𝑊𝑚] =
𝜌𝑚

1 − 𝜌𝑚
𝐶𝐴𝑚2 + 𝐶𝑆𝑚2

2
𝐸[𝑆𝑚], (8) 

 
where 𝐶𝐴𝑚 and 𝐶𝑆𝑚 are the station’s inter-arrival and service times coefficient of variation (CV), and 𝜌𝑚 
is the station’s utilization that is proportional to both the arrival rate to the system and the service time:  

 
 𝜌𝑚 = 𝜆𝐸[𝑆𝑚]. (9) 
 

The effective service time squared CV is found using 
 

𝐸[𝑆𝑚] = 𝑡𝑚 + 𝑝𝑚
𝑆𝑡𝑜𝑝𝑣𝑚 

 𝑉𝑎𝑟[𝑆𝑚] = �2𝑝𝑚
𝑆𝑡𝑜𝑝 − �𝑝𝑚

𝑆𝑡𝑜𝑝�
2
�𝑤𝑚 (10)  

 
where𝑞𝑚

𝑆𝑡𝑜𝑝  is the station's probability being IC and 𝑝𝑚
𝑆𝑡𝑜𝑝  is the (complementary) probability of the 

station being OOC:   
 

 𝐶𝑆𝑚2 =
𝑉𝑎𝑟[𝑆]𝑚
𝐸2[𝑆]𝑚

=
�2𝑝𝑚

𝑆𝑡𝑜𝑝 − �𝑝𝑚
𝑆𝑡𝑜𝑝�

2
�𝑤𝑚

�𝑝𝑚
𝑆𝑡𝑜𝑝𝑣𝑚 + 𝑡𝑚�

2 , (11) 

 
and the 𝐶𝑇𝑚 is found by substituting 𝜋�⃗ 𝑚  and (8)–(10) into (7):  

 

𝐶𝑇𝑚 =
𝜌𝑚

1 − 𝜌𝑚
𝐶𝐴𝑚2 + 𝐶𝑆𝑚2

2
𝐸[𝑆𝑚] + 𝐸[𝑆𝑚] 
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= �𝑡𝑚 + 𝑝𝑚
𝑆𝑡𝑜𝑝𝑣𝑚� �1

+
𝜆�𝑡𝑚 + 𝑝𝑚

𝑆𝑡𝑜𝑝𝑣𝑚�
1 − 𝜆�𝑡𝑚 + 𝑝𝑚

𝑆𝑡𝑜𝑝𝑣𝑚� 
�

1
2
𝐶𝐴𝑚2

+
�2𝑝𝑚

𝑆𝑡𝑜𝑝 − �𝑝𝑚
𝑆𝑡𝑜𝑝�

2
�𝑤𝑚

2�𝑝𝑚
𝑆𝑡𝑜𝑝𝑣𝑚 + 𝑡𝑚�

2 ��. 

(12) 

 
The explicit form of 𝐶𝑇𝑚 is found by substituting (4) into (12).    

2.2 The Control Limit’s Impact on Yield 

In this section we formulate the impact of 𝑈𝐶𝐿𝑚 on Yield expectancy. In the single station case, the die 
Yield at station 𝑚, denoted by 𝑦𝑖𝑒𝑙𝑑𝑚, is the portion of dice that were not contaminated during process 
step 𝑚 only. The defect deposition over 𝐴𝑚 is a Poisson process with rate 𝜇𝑚 ∈ �𝜇𝑚,𝜇𝑚�. Assuming the 
defects to be uniformly scattered, the deposition process over the entire item is Poisson too with rate 𝜇𝑚

𝐴𝑚
.  

To find the Expectancy of the Defect deposition Rate at station 𝑚, denoted 𝐸𝐷𝑅𝑚, we have to find 
whether the proportion of time defects' deposition rate is either low or high respectively.Using 𝜋�⃗ 𝑚 we 
obtain that: 

 

 

𝐸𝐷𝑅𝑚 =
(𝜋1𝑚 + 𝜋2𝑚)𝜇𝑚 + (𝜋3𝑚 + 𝜋4𝑚)𝜇𝑚

𝐴𝑚

=
(1 + (1 − 𝑝𝑚)𝛼𝑚)𝜇𝑚 + � 𝑝𝑚

1−𝛽𝑚
�𝜇𝑚

𝐴𝑚 �1 + (1 − 𝑝𝑚)𝛼𝑚 + 𝑝𝑚
1−𝛽𝑚

�
. 

(13) 

 
Clearly, the value of 𝑈𝐶𝐿𝑚, by affecting the sensibility to defects, will also affect the stationary 

probabilities of 𝜋�⃗ 𝑚, and thus 𝐸𝐷𝑅𝑚. We denote the number of devices on a single item by 𝑁𝐷. The 
probability of a defect to destroy any specific device on the item is 1

𝑁𝐷
 while the probability for a device 

to stay functional after the deposition of a single defect is �1 − 1
𝑁𝐷
�. The station Yield is:  

 

 
𝑦𝑖𝑒𝑙𝑑𝑚 = �

𝑁𝐷 − 1
𝑁𝐷

�
𝐸𝐷𝑅𝑚

= �
𝑁𝐷 − 1
𝑁𝐷

�

(1+(1−𝑝𝑚)𝛼𝑚)𝜇𝑚+� 𝑝𝑚
1−𝛽𝑚

�𝜇𝑚

𝐴𝑚�1+(1−𝑝𝑚)𝛼𝑚+ 𝑝𝑚
1−𝛽𝑚

� . 
(14) 

 

2.3 Yield to CT Trade-off for a Single Station 

Both 𝐶𝑇𝑚 and 𝑦𝑖𝑒𝑙𝑑𝑚 are monotone decreasing functions of 𝑈𝐶𝐿𝑚, and therefore bijective. Even though 
there is no natural limitation on the 𝑈𝐶𝐿𝑚 values, we keep them within the range ��𝜇𝑚� , �𝜇𝑚�� outside of 
which the monitoring becomes almost ineffective. Accordingly, for any given combination of arrival rate 
𝜆 and a station’s parameters, we can generate the trade-off curve of 𝐶𝑇𝑚to (1 − 𝑦𝑖𝑒𝑙𝑑𝑚). To keep things 
intuitive, we chose to use (1 − 𝑦𝑖𝑒𝑙𝑑𝑚) instead of 𝑦𝑖𝑒𝑙𝑑𝑚 , so that the trade-off occurs between two 
competing minimization measures.  
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Since 𝑈𝐶𝐿𝑚 values are discrete, then plotting 𝐶𝑇𝑚 and (1 − 𝑦𝑖𝑒𝑙𝑑𝑚) by changing the 𝑈𝐶𝐿𝑚 values 
only, gives us a discrete set of points, denoted by Ω𝑚, on the 𝐶𝑇𝑚 to (1 − 𝑦𝑖𝑒𝑙𝑑𝑚) plane, each point 
associated with a unique 𝑈𝐶𝐿𝑚 value.  

Due to the complexity of both 𝐶𝑇𝑚 and 𝑦𝑖𝑒𝑙𝑑𝑚 functions, we have not been able to demonstrate that 
set Ω𝑚 is convex. We conducted an intensive numerical study and could not find a single instance to 
contradict this assumption. Yet, in case a setting in which a trade-off curve that is not convex does exist, 
we propose to use a convex hull, thus replacing concave points by a linear combination of their framing 
points, instead of the original curve (the algorithm used to generate this new curve is rather 
straightforward and thus omitted from this paper).  

3 MULTI-STATION SYSTEM 

In this section we extend our results to deal with a multi-station tandem line. First we show that both CT 
and yield are separable and find the marginal contribution of each station to the line’s CT and yield 
respectively. We then show that the marginal contribution of each station to the CT is convex to its 
contribution to the line’s yield. Since these marginal changes are caused by adjusting the UCL which is 
discrete, then the change in both CT and yield is discrete as well. Accordingly, we devised a greedy 
algorithm to construct the trade-off curve between CT and yield by choosing to adjust, in each step, the 
UCL of the station for which we get the most efficient CT to Yield marginal change.  

3.1 CT Expectancy in a Multi-Station System 

Due to the dependency between the stations induced by the items' flow, calculating the CT expectancy for 
multiple stations is more complex than its counterpart in the single station case. In a tandem production 
line, the arrival rate of station 𝑚 equals the departure rate of the station 𝑚 − 1. Let us denote the squared 
CV of inter-departure time from station 𝑚by 𝐶𝐷𝑚2 . We have:  

 
 𝐶𝐴𝑚2 = 𝐶𝐷𝑚−1

2 . (15) 
 
Marshall (1968) approximates the inter-departure square CV time by:  

 

 
𝐶𝐷𝑚2 ≈ (1 − 𝜌𝑚2 )𝐶𝐴𝑚2 + 𝜌𝑚2 𝐶𝑆𝑚2 . 

 
 

(16) 

By recursively applying this approximation to stations in our system we get:  
 

 

𝐶𝑇𝑚
= �𝑡𝑚 + 𝑝𝑚

𝑆𝑡𝑜𝑝𝑣𝑚�

∗

⎣
⎢
⎢
⎢
⎢
⎡
1 +

𝜆�𝑡𝑚 + 𝑝𝑚
𝑆𝑡𝑜𝑝𝑣𝑚�

1 − 𝜆�𝑡𝑚 + 𝑝𝑚
𝑆𝑡𝑜𝑝𝑣𝑚� 

∑ �∏ �1 − 𝜆2�𝑡𝑖 + 𝑝𝑖
𝑆𝑡𝑜𝑝𝑣𝑖�

2
�𝑚−1

𝑖=𝑗 �𝑚−1
𝑗=1 �𝜆2�2− 𝑝𝑗−1

𝑆𝑡𝑜𝑝�𝑝𝑗−1
𝑆𝑡𝑜𝑝𝑤𝑗−1�

2

+
𝜆2�2− 𝑝𝑚−1

𝑆𝑡𝑜𝑝�𝑝𝑚−1
𝑆𝑡𝑜𝑝𝑤𝑚−1

2
+
�2 − 𝑝𝑚

𝑆𝑡𝑜𝑝�𝑝𝑚
𝑆𝑡𝑜𝑝𝑤𝑚

2�𝑡𝑚 + 𝑝𝑚
𝑆𝑡𝑜𝑝𝑣𝑚�

2

 

(17
) 

 
Which leads to the entire line CT, denoted by 𝐶𝑇, by:  

 

 𝐶𝑇 = � 𝐶
𝑀

𝑚=1

𝑇𝑚 (18) 
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3.2 The Yield Expectancy in a Multi-Station System 

 In the multi station case, the Yield is the portion of dice undamaged throughout the whole process. The 
defect deposition rate at each station is an independent random variable; consequently 𝑌𝐼𝐸𝐿𝐷  is the 
product of the probabilities that a die survives all stations 𝑚 = 1, . . . ,𝑀:  

 

𝑌𝐼𝐸𝐿𝐷 = �𝑦
𝑀

𝑚=1

𝑖𝑒𝑙𝑑𝑚 = �
𝑁𝐷 − 1
𝑁𝐷

�
𝐸𝐷𝑅1

�
𝑁𝐷 − 1
𝑁𝐷

�
𝐸𝐷𝑅2

. . . �
𝑁𝐷 − 1
𝑁𝐷

�
𝐸𝐷𝑅𝑀

 

 = �
𝑁𝐷 − 1
𝑁𝐷

�
∑ 𝐸𝑀
𝑚=1 𝐷𝑅𝑚

. (19) 

 

3.3 Yield to CT Trade-off for a Multi-Step System 

As the 𝐶𝑇 and 𝑌𝐼𝐸𝐿𝐷 for the multi-station system are well defined, we present a greedy algorithm to 
create the 𝐶𝑇 to a (1 − 𝑌𝐼𝐸𝐿𝐷) trade-off curve for the Pareto-optimal set of the entire production line. 
This trade-off curve allows decision makers to maintain a balance between 𝐶𝑇 and 𝑌𝐼𝐸𝐿𝐷 by controlling 
the 𝑈𝐶𝐿𝑚s of the inspection process.  

Let us define 𝑃𝑂𝑆 as the Pareto-Optimal Set of ordered pairs (𝐶𝑇, 1 − 𝑌𝐼𝐸𝐿𝐷) ∈ 𝑅2 each of which 
represents a point on the 𝐶𝑇 to a (1 − 𝑌𝐼𝐸𝐿𝐷) trade-off curve. Initially, 𝑃𝑂𝑆 = {∅}. The algorithm adds 
points to 𝑃𝑂𝑆 one at a time and constructs the efficient frontier of 𝐶𝑇 to a (1 − 𝑌𝐼𝐸𝐿𝐷) trade-off by 
connecting every two consecutive points. But first we have to define all the relevant 𝑈𝐶𝐿𝑚points. We 
define a set of only the 𝑈𝐶𝐿𝑚 values associated with Pareto optima points left on the convex hull (after 
filtering out all the non-convex ones). We denote this set by 𝐽𝑚′ . Since the size of each set is unique we 
define an index 𝑖𝑚 for the elements of the 𝐽𝑚′  set.  
 In order to create the 𝑃𝑂𝑆 we need to calculate the values of 𝐶𝑇and (1 − 𝑌𝐼𝐸𝐿𝐷); therefore the 
𝑈𝐶𝐿𝑚 value for each station in the network should be defined. Let us define the set of all 𝑈𝐶𝐿𝑖𝑚,𝑚 values 
for all stations in the system by:  

 
𝑈𝐶𝐿𝑆 = �𝑈𝐶𝐿𝑖𝑚,𝑚:𝑚 = 1, . . . ,𝑀, 𝑖𝑚 = 1, . . . , |𝐽𝑚′ |�. 

 
The 𝑈𝐶𝐿𝑚 values for each station vary within ��𝜇𝑚� , �𝜇𝑚��. The algorithm initiates when the 𝑈𝐶𝐿𝑚 

are initialized to 𝑈𝐶𝐿1,𝑚 �= �𝜇𝑚��for 𝑚 = 1, . . . ,𝑀. Thus, the (1 − 𝑌𝐼𝐸𝐿𝐷) is minimized while the 𝐶𝑇 
is maximized within all Pareto-optimal points. The algorithm progresses iteratively by choosing, at each 
step, the station for which increasing 𝑈𝐶𝐿𝑖𝑚,𝑚 to 𝑈𝐶𝐿𝑖𝑚+1,𝑚 gives us the lowest 𝐶𝑇 to a (1 − 𝑌𝐼𝐸𝐿𝐷) 
ratio among all the stations in the system.  
 Let us denote the marginal change in 𝐶𝑇𝑚 and 𝑦𝑖𝑒𝑙𝑑𝑚 occurring due to a change in 𝑈𝐶𝐿𝑖𝑚,𝑚 by:  

 
𝜀𝑖𝑚,𝑚 =: �𝐶𝑇𝑚|𝑈𝐶𝐿𝑖𝑚+1,𝑚� − �𝐶𝑇𝑚|𝑈𝐶𝐿𝑖𝑚,𝑚� 

and 
𝜉𝑖𝑚,𝑚 =: �1 − 𝑦𝑖𝑒𝑙𝑑𝑚|𝑈𝐶𝐿𝑖𝑚+1,𝑚� − �1 − 𝑦𝑖𝑒𝑙𝑑𝑚|𝑈𝐶𝐿𝑖𝑚,𝑚�, 

 
respectively. The marginal change in the ratio between 𝐶𝑇 and (1 − 𝑌𝐼𝐸𝐿𝐷) due to the marginal change 
in 𝐶𝑇𝑚 and 𝑦𝑖𝑒𝑙𝑑𝑚 is:  

 
[𝐶𝑇1+. . . +𝐶𝑇𝑚+. . . +𝐶𝑇𝑀] − �𝐶𝑇1+. . . +�𝐶𝑇𝑚 − 𝜀𝑖𝑚,𝑚�+. . . +𝐶𝑇𝑀�

[1 − 𝑦𝑖𝑒𝑙𝑑1 ⋅. . .⋅ 𝑦𝑖𝑒𝑙𝑑𝑚 ⋅. . .⋅ 𝑦𝑖𝑒𝑙𝑑𝑀] − �1 − 𝑦𝑖𝑒𝑙𝑑1 ⋅. . .⋅ �𝑦𝑖𝑒𝑙𝑑𝑚 − 𝜉𝑖𝑚,𝑚� ⋅. . .⋅ 𝑦𝑖𝑒𝑙𝑑𝑀�
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 =
𝜀𝑖𝑚,𝑚

−𝜉𝑖𝑚,𝑚

𝑦𝑖𝑒𝑙𝑑𝑚
𝑌𝐼𝐸𝐿𝐷

. (20) 

 
In each iteration of our algorithm we look for the change in one of the 𝑈𝐶𝐿𝑖𝑚,𝑚 that would result in 

the steepest decline on the 𝐶𝑇 to a (1 − 𝑌𝐼𝐸𝐿𝐷) trade-off curve, i.e., the most efficient change. Since in 
each point in the algorithm we compare the marginal change in 𝐶𝑇 and (1 − 𝑌𝐼𝐸𝐿𝐷) with respect to the 
same Pareto-optimal point (the last Pareto-optimal point that was added to 𝑃𝑂𝑆), then the 𝑌𝐼𝐸𝐿𝐷 in Eq. 
(20) could be considered as a constant, and thus omitted from the comparison. We define 𝜃𝑖𝑚,𝑚 as the 
marginal ratio between 𝐶𝑇  and (1 − 𝑌𝐼𝐸𝐿𝐷)  for two consecutive 𝑈𝐶𝐿𝑖𝑚,𝑚  if there are at least two 
arguments in 𝐽𝑚′  that were not examined yet; otherwise, 𝜃𝑖𝑚,𝑚 receives the value zero. 

 

 𝜃𝑖𝑚,𝑚 = �−
𝜀𝑖𝑚,𝑚𝑦𝑖𝑒𝑙𝑑𝑚

𝜉𝑖𝑚,𝑚
 for 𝑖𝑚 < |𝐽𝑚′ |

0                      otherwise
. (21) 

 
Finally, in order to extract the 𝑈𝐶𝐿𝑚 for each station given a specific point in 𝑃𝑂𝑆 on the Pareto-

optimal curve we define set Ψ. Each element in Ψ is comprised of an ordered pair (𝐶𝑇, 1 − 𝑌𝐼𝐸𝐿𝐷) of 
𝑃𝑂𝑆, and of a vector 𝑈𝐶𝐿𝑆. That is: Ψ = {𝐶𝑇, 1 − 𝑌𝐼𝐸𝐿𝐷,𝑈𝐶𝐿𝑆}. Accordingly, each point on the Pareto-
optimal curve is associated with a specific setting of 𝑈𝐶𝐿𝑚 for each station.  
The algorithm input is: 𝜆, 𝑁𝐷 and {𝜇𝑚,𝑝𝑚, 𝑡𝑚,𝑣𝑚} for 𝑚 = 1, . . . ,𝑀.  
 
Algorithm 1. Constructing the 𝐶𝑇 to a 1 − 𝑌𝐼𝐸𝐿𝐷 trade-off curve  
Initialization:Set 𝑈𝐶𝐿𝑆 = �𝑈𝐶𝐿𝑖𝑚,𝑚:𝑚 = 1, . . . ,𝑀, 𝑖𝑚 = 1, . . . , |𝐽𝑚′ |�;  
   𝐼 = (𝑖1, . . . , 𝑖𝑀) = (1, . . . ,1);Ψ = ∅; and 𝑃𝑂𝑆 = ∅.  
Step 1: Calculate 𝛼𝑚,𝛽𝑚 probabilities for station 𝑚 = 1, . . . ,𝑀 using Eqs. (1) and (2) for 𝑈𝐶𝐿1,𝑚.  
Step 2: Calculate 𝐶𝑇𝑚 using Eq. (17) and (1 − 𝑦𝑖𝑒𝑙𝑑𝑚) using (14) for 𝑚 = 1, . . . ,𝑀.  
Step 3: Calculate 𝐶𝑇 using Eq. (18).  
  Calculate (1 − 𝑌𝐼𝐸𝐿𝐷) using Eq. (19).  
  Set 𝑃𝑂𝑆 = 𝑃𝑂𝑆 ∪ (𝐶𝑇, 1 − 𝑌𝐼𝐸𝐿𝐷).  
  Set Ψ = Ψ∪ (𝐶𝑇, 1 − 𝑌𝐼𝐸𝐿𝐷,𝑈𝐶𝐿𝑆) 
Step 4:Set 𝑚 = 𝑗 = 1, . . . ,𝑀 arg min �𝜃𝑖𝑗,𝑗�, where 𝜃𝑖𝑗,𝑗 is calculated using Eq. (21) and 𝑖𝑗 = 𝐼(𝑗).  

Step 5:  If 𝜃𝑖𝑚,𝑚 = 0 then stop. Otherwise set 𝐼(𝑚) = 𝐼(𝑚) + 1, calculate 𝛼𝑚,𝛽𝑚 probabilities for   
  station 𝑚 using Eqs. (1) and (2) for 𝑈𝐶𝐿𝑖𝑚,𝑚, where 𝑖𝑚 = 𝐼(𝑚).  

 Calculate 𝐶𝑇𝑚 using Eq. (17) and (1 − 𝑦𝑖𝑒𝑙𝑑𝑚) using (14) and return to Step 3. 
 
The algorithm produced the 𝑃𝑂𝑆, that is the 𝐶𝑇 to (1 − 𝑌𝐼𝐸𝐿𝐷) sorted set of points representing the 

trade-off between the two measures. To generate the convex trade-off curve, one can connect each pair of 
consecutive points in the set.  
We illustrate the algorithm results in the following example for an arbitrary set of parameters: 
{𝜇𝑚,𝑝𝑚, 𝑡𝑚,𝑣𝑟𝑚,𝑣𝑖𝑚} for 𝑚 = 1, . . . ,5 as follows: 

Table 1: Stations’ parameter data for the numerical example 
Station 𝜇𝑚 �̄�𝑚 𝑝𝑚 𝑡𝑚 𝑣𝑟𝑚 𝑣𝑖𝑚 
1 1  5  0.99  4  20  5   
2 3  9  0.95  5  15  5   
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3 4  11  0.98  5  15  3   
4 3  7  0.995  10  30  10   
5 6  12  0.95  5  30  3   

 
and present the Pareto-optimal trade-off curve for this set in Figure 4. 
 

 

Figure 4: An example of CTtoa(1-YIELD) Pareto-optimal curve for a multi-station system. 

Figure 4 describes the 𝐶𝑇 improvement in terms of 𝑌𝐼𝐸𝐿𝐷 loss and vice versa for the five stations' 
tandem line. The algorithm chooses, at each step, the most efficient 𝐶𝑇𝑚 to a (1 − 𝑦𝑖𝑒𝑙𝑑𝑚) ratio among 
all stations; therefore the 𝐶𝑇  to a (1 − 𝑌𝐼𝐸𝐿𝐷)  trade-off curve is in fact Pareto-optimal for it is 
constructed according to the functions for each of the stations that are convex.  
We observe that the 𝐶𝑇 does not converge to the sum of the direct processing times, which is 24 time 
units, but is somewhere around 44 time units. The reason for this is obviously the additional waiting time. 
Similar insights are relevant to the 𝑌𝐼𝐸𝐿𝐷 i.e., even when the 𝑈𝐶𝐿𝑆 is set to 𝜇𝑚𝑚

 for all stations and any 
deviation from the 𝑈𝐶𝐿𝑚 is revealed almost immediately, we do not observe a perfect 𝑌𝐼𝐸𝐿𝐷.  

4 SUMMARY 

In this paper we have presented a trade-off between the CT and the Yield that allows control limits of the 
in-line inspection process to be considered as adjustable decision variables. This innovative approach 
defies the classic assumption that control limits are predetermined in accordance with the Yield 
requirements only and allows decision makers to knowingly sacrifice Yield in order to improve the CT or 
vice versa, in order to maximize their profits.  
 We have extended our former results to the multi-station tandem line. The overall CT was calculated 
using the 𝐺/𝐺/1 queuing network approximation, while the final Yield was calculated from the single 
stations' Yields.  

To formulate the Pareto-optimal CT versus Yield trade-off curve of the multi-station tandem line we 
have presented an optimal greedy algorithm that recommends a set of upper control limits for each point 
on a Pareto-optimal curve. This technique allows us to recommend to decision makers the best policy of 
setting the control limits to balance CT and Yield.  
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In order to better adapt this model to the actual semiconductor manufacturing environment, several 
important extensions need to be applied to our model: The capacity of the metrology tools, whose prices 
have skyrocketed in the last years, cannot be dismissedanymore.  Also, there is a clear need to represent 
their assignment to a segment of operations instead of a single one.One could also consider different types 
of stoppages and their approximated impact on CT (Wu, 2014). A vacation process additional to the 
repair process may also be considered.That would represent the high level of tool sharing and re-entrance 
typical in fabs. These new directions might limit the ability of analytical tools to solve the problem, and 
one shall rely more on simulation tools to do so. 

In a different vein, very recent advances in the field of tandem queue analysis (Wu et al. 2013) offer 
new opportunities for  more accurate approximations of the solution to our problem in its current form. 
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