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ABSTRACT

Variability is an inherent component of all production systems. To prevent variability propagation through
the whole production line, variability must be constantly monitored, especially for bottleneck toolsets.
In this paper, we propose measures to evaluate workload variability for a toolset configuration. Using
industrial data, we show how making the toolset configuration more flexible by qualifying products on
machines decreases variability. By quantifying the toolset workload variability, our variability measures
makes it possible to estimate the variability reduction associated to each new qualification. The industrial
results show significant workload variability reduction and capacity improvement.

1 INTRODUCTION

The dynamic business environment in semiconductor manufacturing industry calls for an increasing product-
mix flexibility. Besides, production systems are restricted by machine capabilities. The ultimate goal of
every manufacturing system is to satisfy customer demand while making the best possible use of the
production facilities.

Variability has stochastic and deterministic sources. The stochastic variability sources are uncontrollable,
and the most well-known are demand, machine breakdown, rework, operator delay, etc. On the other hand,
deterministic variability sources are controllable. They include machine eligibility, batches, setups, re-entrant
flows, etc. The controllable deterministic variability source considered in this paper is product-to-machine
eligibility, called qualification in this paper.

Production variability influences production planning and scheduling, capacity planning, inventory
management, equipment and labor cost, etc. (Kim and Alden 1997). Even little variability in bottleneck
workcenters can cause high variability in the whole production line. Therefore, production variability
reduction at bottleneck workcenters is crucial to prevent variability propagation to the whole production
line. Production variability leads to loss of capacity. Therefore, due to expensive equipment cost, mastering
variability is critical in semiconductor manufacturing. Production variability decreases as manufacturing
systems become more flexible. The flexibility of a manufacturing system is determined based on to which
extent a product can be allocated to a machine. Hence, capacity allocation determines the flexibility of a
production system (Muriel, Somasundaram, and Zhang 2006).

This study is a continuation of the investigations of (Johnzén, Dauzère-Pérès, and Vialletelle 2011) in
which flexibility measures are proposed to quantify the flexibility gain related to performing qualifications.
However, variability is not explicitly considered in these measures. This is why, in this paper, we aim
at reducing production variability by defining variability measures. The workload variations in a single
workcenter in one period are considered. We want to show how variability is reduced when the flexibility
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of the toolset is increased by performing new qualifications. The variability measures proposed can be used
to measure the impact of batch or single wafer processing. However additional constraints must be added
to the optimization model. (Rowshannahad and Dauzère-Pérès 2013) specifically address the problem of
batch processing. Through experiments with industrial data, we illustrate that production variability and
manufacturing flexibility are two sides of the same coin.

This paper is organized as follows. Section 2 briefly reviews related studies and literature in the area
of production variability and manufacturing flexibility. Section 3 details the framework of the study. The
measures that we propose to evaluate the workload variability are presented in Section 4. In Section
5, numerical experiments on industrial data are discussed. Finally, Section 6 provides conclusions and
proposes future work.

2 LITERATURE REVIEW

The present study is mainly related to two domains: Production variability and manufacturing flexibility.
Stochastic modeling has been widely used to measure the production variability of production lines (He,

Wu, and Li 2007). Many studies have been done on the measurement of the variability of the production
flows in a fluid modeling network (Ciprut, Hongler, and Salama 1999). In our study, we only consider one
workcenter in one period and evaluate the variability using an optimization model.

The benefits of process flexibility in capacity utilization and sales increase in supply chains is extensively
studied in (Jordan and Graves 1995). (Graves and Tomlin 2003) define a flexibility measure for supply
chain systems. At plant level, manufacturing flexibility between plants and products, with various capacity
limitations and demands is studied in (Boyer and Leong 1996). At workcenter level, (Johnzén, Dauzère-
Pérès, and Vialletelle 2011) propose flexibility measures to evaluate the manufacturing flexibility of a
given workcenter configuration according to the production volume or production time. The industrial
implementation and consideration of special cases for new and alternate recipes and their impact on toolset
capacity is further studied in (Rowshannahad, Dauzère-Pérès, and Cassini 2013).

The relationship between manufacturing flexibility and production variability is studied in (Muriel,
Somasundaram, and Zhang 2006). The study is conducted on a multi-plant multi-product make-to-order
manufacturing supply chain. Based on an optimization-based simulation model, it is shown that, by
increasing the manufacturing flexibility, the production variability is reduced.

Production throughput variability is calculated for a single workstation with deterministic process times
and random downtimes in (Kim and Alden 1997). Probability density function and variance of time to
produce are developed for a fixed lot size. Finally, it is shown how the proposed probability density function
can be used in discrete event simulation to generate a cycle time distribution of a lot size of one.

(Delp et al. 2006) define a complete X-factor contribution measure to identify the capacity constraining
machine using raw process time, utilization, availability, variability of the processing time and arrival rate
of the lots. This new measure is used to reduce the mean cycle time and cycle time variability.

3 TOOLSET WORKLOAD VARIABILITY AND MANUFACTURING FLEXIBILITY

In semiconductor manufacturing, the production system consists of workcenters called toolsets. A toolset is
a collection of similar but not necessarily identical machines. The process performed on products visiting a
toolset is called a recipe. In other words, a recipe is the process instructions to be performed on a product.
The machines of a toolset are usually not capable of performing all recipes. Before the execution of a
recipe on a machine, the machine must be qualified for that recipe. Increasing the number of qualifications
adds flexibility to the manufacturing system. However, all recipes cannot or should not be qualified on all
machines since recipe-to-machine qualification is costly and time-consuming. In this study, we consider
a recipe to be either (already) qualified or qualifiable on a machine. By qualifying a qualifiable recipe,
the toolset manufacturing flexibility increases. Figure 1 shows three configurations of a toolset. Figure 1a
shows dedicated machines to recipes where no flexibility exists in the manufacturing system. In Figure 1b,
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each recipe is qualified on at least two machines making the manufacturing system partially flexible. Figure
1c depicts a totally flexible toolset where all recipes are qualified on all machines. In the next section,
we define variability measures to evaluate to which extent the increase of the manufacturing flexibility
contributes to workload variability reduction.

Increasing manufacturing flexibility implies at least one new qualification, enabling the qualified machine
to process another recipe by creating a new link between the qualified recipe-machine couple.
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Figure 1: No Flexibility (a), Partial Flexibility (b) and Full Flexibility (c) Recipe-to-Machine Configurations
(inspired from (Graves and Tomlin 2003) and (Muriel, Somasundaram, and Zhang 2006)).

As already specified in the introduction, the notion of manufacturing flexibility in this study refers
to (Johnzén, Dauzère-Pérès, and Vialletelle 2011), where flexibility measures are defined to evaluate the
flexibility gain associated to performing qualifications. One of the main objectives of their measures
is to estimate the impact of qualifications on workload balancing. We have extended and implemented
these measures in industry (see (Rowshannahad, Dauzère-Pérès, and Cassini 2013) and (Rowshannahad and
Dauzère-Pérès 2013)). They are used to evaluate new qualifications in the daily fab operations. However, by
only considering these flexibility measures, the impact of a qualification on the toolset workload variability is
not clear to decision makers. This study aims at throwing light on the other side of qualification management
via variability measurement. Moreover, compared to (Johnzén, Dauzère-Pérès, and Vialletelle 2011), we
also consider machine capacity restrictions.

4 VARIABILITY MEASURES

In order to obtain a unique variability value, the optimal workload balance of the toolset according to its
configuration must be calculated. By minimizing the proposed measures, which are inspired from statistical
moments, the optimal workload balance of a toolset must be calculated. The notations used in this paper
are listed below.

Parameters:
R Total number of recipes,
M Total number of machines in the toolset,
WIPr Total production volume of recipe r,
T Pr,m Throughput rate of recipe r on machine m,
Capam Capacity of each machine m,

Qr,m

{
1 if recipe r is qualified on machine m,
0 otherwise,

γ Workload balancing exponent (γ ≥ 1).

Variables:
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WIPr,m Production volume of recipe r allocated to machine m,

Cm Total production time on machine m (Cm =
R

∑
r=1

WIPr,m

T Pr,m
).

The variability measures introduced in the next sections (VarTime
Uncapa in Section 4.1 and VarTime

Capa in Section
4.2) are used as the objective function (Var••) of the mathematical model below. The only set of constraints
(1b) of the model guarantees that the production volume of recipe r is only allocated to machines that are
qualified for r, i.e. machines m such that Qr,m = 1. By minimizing the selected variability measure subject
to the set of constraints, the optimal toolset workload balance is obtained.

min Var•• (1a)

Subject to
M

∑
m=1|Qr,m=1

WIPr,m =WIPr ∀r (1b)

WIPr,m ≥ 0 ∀r,m

This model can be solved by adapting the Active Set method described in (Johnzén 2009) and (Griva,
Nash, and Sofer 2008). Detailing this method is out of the scope of this paper.

4.1 Uncapacitated Time Variability Measure (VarTime
Uncapa)

For the current toolset qualification configuration, by minimizing the sum of the total process time of each
machine (2), the workload variability is calculated. Then, for each qualifiable recipe-to-machine couple,
we re-calculate the variability (VarTime

Uncapa) by virtually qualifying the qualifiable couple. In order to evaluate
the variability reduction associated to each new qualification, the variability of each new configuration is
subtracted from the variability of the initial configuration.

VarTime
Uncapa =

M

∑
m=1

(Cm)
γ (2)

By increasing the workload balancing exponent (γ), the load of high speed machines is shifted to
slower machines where qualification is allowed. Increasing γ creates a smoother workload distribution on
the toolset.

4.2 Capacitated Time Variability Measure (VarTime
Capa)

Machine failures, operator unavailability, scheduled and unscheduled maintenance are sources of variability
which affect the uptime of machines. The uptimes of each machine in the same toolset can be different and
are considered to be deterministic in this paper. VarTime

Capa (3) evaluates the workload variability of a toolset
while considering the capacity of machines.

VarTime
Capa =

M

∑
m=1

(Cm−Capam)
γ (3)

In order to calculate the variability reduction of each new qualification, as explained in Section 4.1,
the variability of the current qualification configuration and the configuration after each new qualification
must be calculated.

By increasing the workload balancing exponent (γ), the model tries to fit better the toolset workload
to the available capacity by shifting workload from overloaded machines to less loaded machines.
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5 INDUSTRIAL EXPERIMENTS

The Capacitated Time Variability Measure (VarTime
Capa) (3) is used as the objective function of the mathematical

model to conduct experiments on industrial data of a Thermal Treatment Toolset in an “SOI” (Silicon-On-
Insulator) production line. The Thermal Treatment Toolset, which consists of non-homogeneous furnaces,
is a bottleneck toolset. Each standard SOI product must at least visit three times this toolset. For the
industrial experiments, the value of γ is set to 4. Careful observations of the shop floor workload allocation
shows that any value between 4 to 6 suits the model for practical purposes.

First, we consider a data set for one period and study the impact of performing a single qualification
on the percentage of the workload variability reduction. Other independent performance indicators used
to interpret the workload balance are: The overall toolset workload variation percentage (4), overload (5)
and unused capacity (underload) (6) variation percentages. The variation comparison for each performance
indicator is simply calculated as shown in (7) for overload (OL) variation comparison. Using the static
workload balance diagram, we show the impact of one new qualification on the workload variability.
Finally, we discuss the impact of new qualifications on the reduction of the production variability for some
industrial instances taken from the daily fab operations.

Workload Sum =
M

∑
m=1

Cm (4)

Overload Sum =
M

∑
m=1|Cm≥Capam

(Cm−Capam) (5)

Unused Capacity Sum =
M

∑
m=1|Cm≤Capam

(Cm−Capam) (6)

OL Comparison =
(OLNew Con f ig.−OLCurrent Con f ig.)

OLCurrent Con f ig.
×100 (7)

First, we consider an industrial instance of a toolset consisting of 22 machines and 37 recipes for a
single period. Diagram 2 depicts the current toolset workload balance. The vertical lines correspond to
machine capacities. Each horizontal bar represents the workload of a machine. Bars above the capacity
lines show the overloaded machines, and the opposite for underloaded machines.

By calculating the toolset variability associated to each new qualification (creating additional manufac-
turing flexibility), the qualification which reduces the most workload variability, is chosen. The workload
balancing diagram for the new toolset qualification configuration (Figure 3) illustrates how the workload
variability is reduced after performing one new qualification. Note that both diagrams have the same scale.

By continuing to perform new qualifications, the toolset capacity allocation improves. However, instead
of showing the workload diagram, variability and performance indicators are presented in Table 1. It shows
the workload variability, overload and unused capacity reduction and used capacity increase percentages
after new qualifications, i.e. creating new links between recipe set and machine set. It can be observed that
performing more and more new qualifications reduces less and less the production variability. A trade-off
must be made between the cost of performing new qualifications and the benefit of reducing workload
variability.

Figure 4 depicts the results of Table 1. It is worth to note that workload variations are not linear as the
number of new qualifications increases linearly. Some qualifications decrease variability more than others.
However, too many new qualifications do not decrease variability very much.

Table 2 presents how one new machine-to-recipe qualification affects production variability for ten
industrial instances. In general, one new qualification reduces variability, overload and unused capacity
drastically while only slightly increasing the total workload. Note that, in the first instance, the overload is
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Figure 2: Toolset Workload Balance for the Current Recipe-to-Machine Qualification Configuration.
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Figure 3: Toolset Workload Balance for the Configuration After Performing One New Qualification.

completely eliminated (−100%), capacity utilization is highly increased (20.20%) while the total workload
only increases by 3.40%. The experiments illustrate again that the variations do not follow a linear pattern.
Depending upon the data set and toolset configuration, nearly the same amount of variability reduction
can lead to more or less impact on the performance measures. This is illustrated in Instances 1 and 10.
While both instances record a variability decrease of about four percent 4% (−4.13% and −4.71%), the
variations of workload (3.40% and 1.20%), overload (−100% and−1.41%) and unused capacity (−20.20%
and −5.49%) are very different.

Tables 1 and 2 show that the toolset workload increase percentage is not equal to the variability,
overload and unused capacity decrease. This implies that, by performing one new qualification, only a
small increase of workload leads to a high decrease of variability. The reason is that the process times
of recipes are different from machine to machine and, by creating a new link between a recipe-machine
couple via qualification, a better capacity allocation becomes possible.
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Table 1: Number of New Qualifications versus Variability Reduction and Performance Indicators Variations.

Variation

New
Qualification(s)

Variability Workload Overload Unused
Capacity

1 -77.44% 3.33% -37.33% -32.72%
2 -86.32% 4.08% -47.11% -40.02%
3 -89.94% 4.55% -57.58% -44.66%
4 -94.41% 4.94% -59.48% -48.48%
5 -95.58% 5.22% -62.22% -51.20%
6 -96.08% 5.28% -61.99% -51.83%
7 -96.12% 5.23% -65.82% -51.31%
8 -96.60% 5.48% -66.75% -53.78%
9 -97.55% 5.84% -72.56% -57.33%

10 -97.55% 5.84% -72.56% -57.33%
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Figure 4: Toolset Variability, Workload, Overload and Unused Capacity Variation versus Number of New
Qualifications.

6 CONCLUSIONS AND PERSPECTIVES

In this paper, we have studied the relationship between toolset qualification configuration (toolset manufac-
turing flexibility) and workload variability. A product can only be processed in a toolset when its associated
recipe is qualified on at least one machine. Increasing the number of qualifications adds flexibility to the
toolset and allows better capacity allocation.

Variability measures are presented to evaluate the workload variability of a toolset qualification con-
figuration. Based on industrial data, we showed that, by performing the best qualification according to the
proposed variability measures, toolset overload, unused capacity and also variability are reduced.

In conclusion, more manufacturing flexibility is required where the workload variability is the largest
and not simply where the workload is the largest. In other words, more manufacturing flexibility absorbs
workload variability. If the workload variability is low, meaning that (almost) all machines of a toolset are
loaded equally according to their capacity, more manufacturing flexibility does not reduce variability. In
this case, acquiring new machines might be necessary.
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Table 2: Variability Reduction by Performing One New Qualification.

Variation

Instance
Number

Variability Workload Overload Unused Capacity

1 -4.13% 3.40% -100.00% -20.20%
2 -34.52% 2.16% -46.76% -7.36%
3 -76.11% 4.43% -89.42% -22.41%
4 -43.39% 3.99% -28.97% -16.76%
5 -3.29% 2.20% -21.47% -18.06%
6 -21.90% 2.29% -20.05% -15.80%
7 -62.82% 1.06% -5.80% -5.03%
8 -99.76% 4.57% -30.10% -87.41%
9 -49.65% 1.75% -18.86% -18.23%

10 -4.71% 1.20% -1.41% -5.49%

Several perspectives are possible for this study. An important source of variability is batching. The
same variability measures can be used to evaluate how batches affect (increase) workload variability.

The proposed approach leads to local variability reduction. Using stochastic modeling, it would
be interesting to integrate the present toolset variability measurement to decrease the global production
variability. In this case, the impact of manufacturing flexibility on buffer stock requirements between
workcenters can be studied.

Machine failure is often a major element of toolset variability. Although they reflect machine breakdowns,
the machine capacities used in our measures are deterministic. It could be interesting to explicitly consider
machine breakdown probabilities.

Finally, it could also be relevant to formalize the trade-off between the costs associated to performing
and maintaining new qualifications and the gains related to the improved flexibility and variability quantified
with our measures. This could lead to an interesting bi-criteria optimization problem. It remains to be seen
if this will bring enough added value to the decision makers that are currently using our decision support
system, since they will have to provide more information.
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