Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

A DECOMPOSITION HEURISTIC FOR A TWO-MACHINE FLOW SHOP WITH BATCH

PROCESSING
Yi Tan John W. Fowler
Lars Monch
Department of Mathematics and Computer Science Department of Supply Chain Management
Universititsstrafie 1 Main Campus, PO BOX 874706
University of Hagen Arizona State University
Hagen, 58097, GERMANY Tempe, AZ 85287-4706, USA

ABSTRACT

In this paper, we discuss a two-stage flow shop scheduling problem with batch processing machines. The
jobs belong to different incompatible job families. Only jobs of the same job family can be batched to-
gether. The performance measure is the total weighted tardiness of the jobs. A decomposition heuristic is
proposed that is based on the idea to iteratively determine due dates for the jobs in the first stage and
earliest start dates of the jobs in the second stage. The two resulting subproblems are solved using a time
window decomposition (TWD) heuristic and a variable neighborhood search (VNS) scheme. Results of
computational experiments based on randomly generated problem instances are presented. We show that
the VNS-based scheme outperforms the TWD heuristic. In addition, we show that the decomposition
scheme can be parallelized in a very natural way. As a result, the amount of computing time is modest,
even for the computational expensive VNS scheme.

1 INTRODUCTION

Semiconductor manufacturing is among the most complex manufacturing processes. It is characterized by
a diverse product mix, a large number of jobs and machines, and a mix of different process types,
including single wafer processes and batch processes (cf. Monch, Fowler, and Mason 2013).
Traditionally, dispatching has been the primary approach to flow control in semiconductor manufacturing,
but recently, scheduling techniques have become popular due to the increasing capabilities of computers.

A batch is a collection of jobs that have to be simultaneously processed on a single machine. Each
batch machine has a capacity that is measured as the maximum number of jobs that can be batched
together. In this paper, we focus on batching in semiconductor wafer fabrication facilities (wafer fabs). In
contrast to batching problems in the backend stage of semiconductor manufacturing, incompatible job
families arise in wafer fabs due to the different nature of the involved chemical processes. Only jobs of
the same family can be used to form a batch, and the processing times of all jobs of the same family are
identical. The batching problems in the backend stage are characterized by the fact that the processing
time of a batch is determined by the longest processing time of the jobs that form the batch.

Because often one third of all operations in a wafer fab are performed on batch processing machines
and because of the long processing times of up to 20 hours compared to the typical average processing
times of less than one hour on non-batching machines (cf. Monch et al. 2011), an appropriate scheduling
of jobs on batch processing machines has a large impact on the overall wafer fab performance. While in
the past single and parallel machine batching problems in wafer fabs have been extensively studied (cf.
Mathirajan and Sivakumar 2006 for a survey), this is not the case for flow shop scheduling problems. But
because it is well-know that, on the one hand, batch processing machines heavily influence downstream
machine groups, while on the other hand information on jobs of upstream machines groups are useful

978-1-4799-7486-3/14/$31.00 ©2014 IEEE 2490

Tan, Monch, and Fowler

when making scheduling decisions on batch processing machines (Robinson, Fowler, and Bard 1995)
investigating a two-stage flexible flow shop with batch processing machines on at least one stage is
desirable. In the present paper, we study a model problem that consists of two batch processing machines
in line. An iterative decomposition scheme is proposed that allows for an efficient determination of high-
quality solutions.

The paper is organized as follows. The researched problem is described and analyzed in Section 2. We
propose the decomposition heuristic in Section 3. Computational results are presented and analyzed in
Section 4. The paper is completed by some conclusions and a discussion of future research directions.

2 PROBLEM SETTING AND ANALYSIS

2.1 Problem

We consider a two-machine flow shop scheduling problem. This problem can be described as follows:

1. Intotal, n jobs have to be processed on the machines of the flow shop.

2. Both stage 1 and stage 2 consist of a single batch processing machine. The maximum batch size of the

machine in stage s is B, .

When a batch is started on a machine no interruption is allowed.

The buffer between the two batch processing machines is unlimited.

5. There exist F incompatible job families. Only jobs belonging to the same family can be batched
together. The family of job j is given by 1< f(j)S F.

6. All jobs of the incompatible job family f* have the same processing time p , on stage s .

W

7. Each job j has a due date d;, a weight w, that is used to model the importance of the job, and a
ready time ;.

Using the three-field notation from scheduling theory, the problem being studied can be represented

as follows:
F2|r;, p—batch,incompatible | TWT , €))
where F2 denotes a flow shop that consists of two stages with a single machine at each stage,

p —batch,incompatible refers to parallel batching with incompatible job families, and TWT abbreviates

the performance measure total weighted tardiness. This measure is defined as TWT = ZW./ (C ;-d;)+ ,
j=1

where C; is the completion time of job ;. In addition, we use x* = max(x,O) for abbreviation. This

scheduling problem (1) is strongly NP-hard since it is well-known that the special case 1||TWT is

strongly NP-hard. Hence, we have to look for efficient heuristics. In order to fully define the problem
under study and to determine the optimal solution for small problem instances, we present a mixed integer
programming (MIP) formulation for problem (1) as follows.

Indices and sets
s=12: set of stages
j=1...,n: set of jobs
f=L...,F: setof families
b=1,..., nb,: setof batches on stage s

Parameters
B, : maximum batch size on the stage s machine

2491

Tan, Monch, and Fowler

P, processing time of family f jobs on the stage s machine
d ;: due date of job j

w, : weight of job j

r,: ready time of job j

{l, if job j belongsto family f

0, otherwise

e, :
M : big number

Decision variables

X Jbs *

_|Lif job j belongs to batch b on the machine of stage s
0, otherwise
L,if batch b on the machine on stages belongsto family /'
Yoy = .
0, otherwise
C , : completion time of job j on stage s

T, : tardiness of job j

s,, - start time of batch b on stage s
mlnz w,T,
j=1
subject to
nby
ijm:l,jzl n,s=12

b=1

D X, <B,s=12,b=1..nb,

j=1

F

D Yy =ls=12b=1...nb,

r=1

€ Xy S Voo J =lL..,nf=1...Fs=12b=1...,nb,

T iy <s,,j=L...nb=1,...,nb

Sty P X, <8y 0s=12,7=1...n,b=1...nb,f=1....F
Ste,p,<C, +M(1—xﬂ”
CjISM(l—ij2)+sb2,j=l n,b=1,...,nb,

C,/z_T/ Sd/.,jzl,...,n

Xy Vos €101},C, T8, 20, j=1n, f=1... . F,s=12b=1...,

Js’

bi=l...ns=12b=1,..nb,f=1,..F

2

(€))

“

(&)
Q)
O]
®)
®
(10)
an
(12)

Our aim is to minimize the TWT value of the jobs. This is expressed by the objective function (2). The
constraints (3) ensure that each job belongs to exactly one batch. The inequalities (4) model the fact that
the number of jobs in each batch cannot be larger than the maximum batch size on a given stage. The
constraints (5) make sure that each batch belongs to exactly one family. Constraints (6) ensure that all the
jobs in a batch on a given stage belong to the same family. Constraints (7) model the fact that a given job

2492

Tan, Monch, and Fowler

cannot start on the first stage before its release date. A sequencing of the batches on a given stage is
represented by constraints (8). Constraints (9) relate the start time of a given batch to its completion time,
while constraints (10) ensure that a batch on the second stage can only start if all the jobs that form this
batch are completed on the first stage. Constraints (11) express the tardiness of each job, while constraints
(12) model the fact that the decision variables are binary or nonnegative, respectively.

2.2 Related Work

We discuss related work with respect to specific two-machine flow shop scheduling problems and with
respect to flow shop scheduling where batch processing machines are involved.

It is demonstrated by Demirkol, Mehta, and Uzsoy (1997) that the conventional shifting bottleneck
heuristic does not work well for flow shops. The problem F2||TT is considered in (Koulamas 1997),
where TT is used as abbreviation for the total tardiness of the jobs. An efficient decomposition procedure
is proposed that exploits the relationship to the 1||77 problem. Mukherjee and Chatterjee (2006) examine
the failure of the shifting bottleneck heuristic in a two-machine flow shop environment. An alternative
decomposition that applies a Schrage-type heuristic is proposed for F2||C, , where C, __ is the make-

span. Several MIP models and heuristics based on these formulations are proposed by Liao and Liao
(2008) for the problem F2|p—batch|C,, , where the processing time of the batch is determined by the
longest processing times of the jobs that form the batch. Different job sizes are possible. In addition,
different buffer configurations including zero intermediate storage are considered.

The problem FFm||TWT is solved using different decomposition approaches by Yang, Kreipl, and

max >

Pinedo (2000) where FFm refers to a flexible flow shop with m stages. However, batch processing
machines are not included. Demirkol and Uzsoy (2000) consider the problem FFm|s ; recrc|L

max >

where s, refers to sequence-dependent setup times and recrc to reentrant flows. The maximum lateness

is denoted by L
considered. Lei and Guo (2011) consider the problem Fm| p —batch, perm|C , where C is the objective

Efficient decomposition schemes are proposed, but again batching machines are not

max *

that is to be minimized; the TT objective, the maximum tardiness, or the weighted number of tardy jobs
are used, respectively. Only permutation schedules, indicated by the perm notation, are of interest. The

processing time of the batch is given as the longest processing times of the jobs that form the batch. VNS
is used to tackle this scheduling problem. A two-machine flow shop scheduling problem is discussed by
Fu, Sivakumar, and Li (2012). The first machine is a batch processing machine, while the second machine
is a non-batching machine. However, only jobs of the same incompatible job family can be batched
together on the first machine. The buffer between the two machines is limited. The objective to be
minimized is the mean completion time, a cycle time-related measure. Batches are formed by heuristics
that are scheduled in a second step by a differential evolution algorithm. Yugma et al. (2012) discuss a
two-stage flexible flow shop scheduling problem where the second stage consists of batch processing
machines. Maximizing the number of performed operations, maximizing the utilization of batches, and
minimizing the TT are the objectives. An iterative sampling procedure and a simulated annealing scheme
based on an appropriate disjunctive graph model are proposed. The problem researched in the present
paper is different because we allow for batching on both of the two stages.

To summarize the discussion, problem (1) is not considered to the best of our knowledge in the
literature so far. In the present paper, we propose a decomposition procedure that can be interpreted in
terms of the lead time iteration scheme proposed by Vepsalainen and Morton (1988) to determine waiting
time estimates of the jobs. We use the TWD approach by Monch et al. (2005) and the VNS scheme by
Klemmt et al. (2009) to solve the resulting single machine subproblems.

2493

Tan, Monch, and Fowler
3 DECOMPOSITION HEURISTIC

3.1 Iterative Scheme

The main idea of the iterative scheme consists in determining appropriate due dates for the first stage and
ready times for the second stage. This situation is depicted in Figure 1.

Job j

First stage Second stage

d, rin S8,

Figure 1: Decomposition of the two-machine flow shop problem.

We denote the due date for job j on the first stage that is used in iteration / by d%). The corresponding

ready and start times on the second stage are r/(lz) and s(/z) , respectively. Once these quantities are known

we are able to consider two single machine scheduling problems. The iterative approach can be
summarized as follows:

. Initialize the iteration counter by /:=1.
2. Set d!

jll), Jj=1,...,n using the waiting time information of the jobs from the previous iteration if any
and solve the resulting scheduling problem for the first stage. The concrete setting of d 5’1) will be dis-
cussed later.

3. Set rl) =C!

; /.11), j=1,...,n, where C%) is the completion time of job j in iteration / on the first stage.

Solve the resulting scheduling problem for the second stage.
4. If the termination criterion is fulfilled then stop, otherwise set / .=/ +1 and go to Step 2.

Next, we describe the initial setting of dj(.’l),j =1,...,n. We use

1 1
dY=r+p, +E(d.i “PpTPp _Vf)za(”j +tputd; _p,iZ) (13)
with p = p,;, for the first iteration. The earliest possible start time of job ; on the second stage is
r; + p - At this point of time, the slack of the job j is d;, — p; — p;, —r;. We add a half of this slack to

the earliest possible start time of the second stage to determine the due date for the first stage.

In the general case, we update the due dates d%), j=1,...,n in iteration />2 by the following

procedure:

2494

Tan, Monch, and Fowler
dj(-ll) = (1 - a)i"_/(;l) + a(dj —Pj— WE-I;))+ ﬁw%’l), (14)
where ,f >0 are parameters and wﬁ.’; D= sﬁ.’{ b rj(é_l) is the waiting time of job ; on the second stage
machine that is a result of the schedule in iteration / —1. The due date for the first stage in iteration / is a
linear combination of the release date of the second stage from iteration /—1 and the last possible starting

time of the job at the second stage such that the due date of the job is met. In addition, the due is increased
by the third term that reflects the waiting time. The parameters «, f have to be varied to obtain small

TWT values. It is easy to see that f=1 leads to

d%) =1 —a)sﬁ’{l) + a(dj - P), (15)
i.e., the due date is a linear combination of the starting time on the previous iteration and the latest
possible starting if no waiting time occurs. From expression (14) we can see that our decomposition
scheme can be interpreted as a specific iterative simulation procedure (cf. Moénch et al. 2013 for the
principles of iterative simulation) where the evaluation of the schedule is interpreted as a deterministic

forward simulation. The iterative scheme terminates when either the same schedule is obtained for a
second time or when a prescribed maximum number of iterations is reached.

3.2 Solution of the Subproblems

Two subproblems of the form 1|r;, p — batch,incomp | TWT have to be solved in a single iteration of the
decomposition scheme. For the sake of completeness, we summarize the decisions of the TWD scheme to
select a batch as follows. To simplify the notation, we assume that job ;j has a due date c7 j» processing
time p;, and a ready time 7, i.e., we do not differentiate between the two stages. When the single batch
processing machine becomes available at time ¢, only jobs with ready times smaller than ¢+ Ar are
considered. The set jf (t):: {j|7j St+At,f(j):f} is formed for each family. We sequence all jobs
within J r (t) with respect to the Apparent Tardiness Cost (ATC) index (cf. Vepsalainen and Morton
1987)

Ij(z):zﬁexp) (gj P +_(71 't))+
p; Kp

: (16)

in non-increasing order. The quantity x is a scaling parameter in the index (16), while p is the average
processing time of the remaining jobs. We consider only the first thresh jobs from the sorted list to form
batches. The resulting set is called J f(t). Consider all batches formed by jobs of the set J r (). Bach of

these potential batches is assessed using the BATC-II batching rule (Monch et al. 2005). The index to
assess a batch of family fis given by

w, g-—p-—t+(rb—t)+)+ |b|
I1,(t)=)Y —Lexp -(R - 17)
»(0) ;pj e 2

where |b| is the number of jobs in b and 7, = max(?j |je b) is the ready time of batch 5. The batch with

the largest BATC-II index is chosen among the different families. The time #'< ¢+ A¢ of the next event is
calculated, i.e., a machine becomes available or a new job has arrived and the entire procedure is
repeated.

The VNS scheme used as a subproblem solution procedure is similar to the scheme presented by
Klemmt et al. (2009) for unrelated parallel machines. We consider four different neighborhood structures.

2495

Tan, Monch, and Fowler

All the structures work on a sequence of batches. The first neighborhood structure moves randomly
selected batches to a randomly selected position on the machine. The second one moves sequences of
consecutive batches in a similar manner. Single batches or sequences of consecutive batches are swapped
by the two remaining neighborhood structures, respectively. The neighborhood structures are applied in
this order. The local search approach within VNS is based on job moves among batches, job swaps, and
swaps of entire batches (cf. Klemmt et al. 2009 for details).

4 COMPUTATIONAL RESULTS

4.1 Design of Experiments

We expect that the performance of the decomposition heuristic depends on the number of jobs, the
maximum batch size, the due date tightness, and the spread of the release dates. Therefore, we randomly
generate problem instances that take into account these factors. The release dates are set using a rough
makespan estimate similar to (Monch et al. 2005), whereas the due dates are chosen considering a flow
factor FF. We model a different bottleneck severity similar to (Yang, Kreipl, and Pinedo 2000).
Therefore, the workload of a batch machine is measured as

1 n
WLS:B—ijS,SZI,2, (18)

s j=1

where we set WL, = min{WLl,WLz} and R :=WL /WL, . Let machine i be the bottleneck machine,
L.e. the machine with the largest workload. We modify the processing times p ; of job j on the bottleneck
machine i to be p i =D g/R; with a bottleneck severity factor g . As a result, we obtain the relation
WL =g -WL
relative to the non-bottleneck machine. The resulting design of experiments is summarized in Table 1.

i.e., g is a measure of how much higher the workload on the bottleneck machine is

min >

Table 1: Design of experiments.

Factor Level Count
Number of jobs per 10, 20, 30 3
family
Number of families 3,6 2
Processing time of a 5with p=0.2,10 with p=0.3, 15 with p=0.3, 1
Job family 20 with p=0.2
Maximum batch size 2,4, 8 9
of a machine
Weight of the jobs w;~U(0,1) 1
Release date of the 1 n 1 n 2
jobs r.~U|0,a] ——— o —)
! J 0.75 B, ;p“ 0.75 B, ;p”
a=0.25,0.75
Due date of the jobs d,=r; + FF(Pﬂ + sz) 2
FF=1115
Bottleneck severity 2=1.2,2.0,3.0 3
Total 648

2496

Tan, Monch, and Fowler

In addition, six small-size problem instances are generated to compare the performance of the
decomposition heuristics with solutions obtained by the MIP formulation (2)-(12). This allows us to
check the correctness of the implementation of the proposed heuristics. The instances have two families,
and each family contains eight jobs. We also assume that B, = B, =4 holds.

We consider three different variants of the decomposition heuristic. When we perform only the first
iteration of the iterative scheme and use TWD as a subproblem solution procedure, we obtain H(TWD).
This heuristic is used as a reference heuristic. H(TWD) serves at the same time as an initial solution for
the two iterative schemes abbreviated by H(iter, TWD) and H(iter, VNS) depending on the subproblem
solution procedure applied. We assess each heuristic H by taking the ratio of the TWT values of the
heuristic and the TWT value of H(TWD), i.e., we compute

Imp(H)=TWT(H)/TWT(H(TWD)). (19)
When a heuristic with stochastic ingredients is considered, each problem instance is solved five times
with different seeds to obtain statistically meaningful results.

4.2 Parameter Setting and Implementation Details

The TWD-based subproblem solution procedures are parameterized by At =4 and thresh =15 because
we know from (Mdnch et al. 2005) that these settings lead to small TWT values. Within TWD, we apply
the BATC-II batching rule with an appropriate value of the look-ahead parameter x for sequencing the
batches. We select the parameter from the interval [0.5,5.0] with step size 0.5 and choose the value that

The
maximum computing time per subproblem together with the / . values are shown for the different

max

corresponds to the smallest TWT value. The maximum number of iterations is denoted by /

max *

heuristics in Table 2. Note that TWD requires less than five seconds per subproblem.

Table 2: Settings for the different heuristics.

Heuristic Maximum computing time (in seconds) Liax
H(TWD) - 1
H(iter, TWD) - 100
H(iter, VNS) 5 20

We also performed some additional experiments with more iterations for H(iter, VNS). However, a
larger number of iterations did not improve the results. The same is true for using more than 100
iterations for H(iter, TWD). The « values in expression (14) are chosen as a =0.25k,k=0,...,8. In our
preliminary experiments, we simply set f=1 to limit the computational burden. The setting S=0 is
slightly outperformed by f=1.

The heuristics are coded using the C++ programming language. The MIP (2)-(12) is implemented
using ILOG CPLEX 12.1. All the tests are performed on an Intel Core 17-4770 3.40 GHz, 8 GB computer
with Windows 7 64-Bit operating system. The grid search for the « values can be parallelized. If m
different o values are to be assessed for one of the three heuristics, we use m processes with m
different « values. Each process independently solves an instance for a given ¢ value. Nine processes of
one of the heuristics are created and deployed on a multi-core computer in our experiments. We use the
smallest TWT value and the longest computing time obtained from these nine processes.

4.3 Results and Discussion

We start by looking at the small-size problem instances. CPLEX was not able to prove the optimality of
the solution for any of these instances within 72 hours of computing time, whereas H(iter, VNS) and

2497

Tan, Monch, and Fowler

H(iter, TWD) terminate within one minute. Note that H(iter, TWD) always stops before /_,, is reached,
i.e., more iterations are not beneficial. The results of the six small-size instances are summarized in Table
3. The smallest TWT values for each instance are presented in bold. We see that CPLEX always obtains
the smallest TWT value, followed by H(iter,VNS), while H(iter, TWD) is often outperformed by the two
remaining approaches. As a result, we know that H(iter, VNS) is able to provide near to optimal solutions
for small-size instances.

Table 3: Comparison of H(iter, VNS) and H(iter, TWD) with CPLEX.

Instance CPLEX H(iter,VNS) H(iter,TWD)
1 37.437 37.437 37.437
2 125.804 125.804 125.804
3 45.099 45.099 60.7461
4 134.949 134.949 150.648
5 33.860 34.194 40.6813
6 43.608 43.608 75.6269

Next, we focus on the experimental results for the 648 instances from the design in Table 1. The
computational results are shown in Table 4. Instead of comparing all problem instances individually, the
instances are grouped according to factor levels such as the number of jobs, the maximum batch size etc.

We report the improvements of H(iter, TWD) and H(iter, VNS) compared to the initial solution. In
addition, we show the average computing time per problem instance and the average number of required
iterations. In total, H(iter, VNS) outperforms the H(iter, TWD) with an improvement of 5.80%. The
computational most expensive heuristic H(iter, VNS) only requires an average time of 125.39 seconds per
problem instance due to the parallelization approach. Even for the largest instances with 180 jobs the
computing time of H(iter,VNS) is only around four minutes and is suitable for real-world applications.

When the number of families and the number of jobs increase, H(iter, VNS) achieves less improvement
with respect to H(iter, TWD). This behavior is caused by the fact that H(iter, VNS) needs more computing
time to solve these hard instances. The average number of iterations required by H(iter,VNS) for the
instances with 180 jobs is 14.72 and is often close to /,,, =20. We can see that the combination of the

two maximum batch sizes does not lead to major performance differences. We do not see any specific
pattern for the (B,, B,) pairs.

A larger a value leads to wide-spread releases of the jobs. In this case, the improvement of
H(iter, VNS) compared to H(iter, TWD) increases significantly because there is more room for
optimization. A larger FF value results in wider due dates for each job. In this case, both H(iter, TWD)
and H(iter, VNS) perform better. Larger values of g reveal a reduced performance of H(iter, VNS) and
H(iter, TWD) because in this situation the scheduling of the bottleneck machine is more important
compared to scheduling jobs on the non-bottleneck machine.

5 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proposed a decomposition technique for a two-machine flow shop with batch
processing. The technique is based on the idea of iteratively improving the internal due dates for the first
stage and the internal ready times of the second stage. The resulting subproblems for each single machine
are either solved by the TWD approach or by a VNS scheme. We demonstrated that the VNS approach
outperforms the TWD approach. The decomposition scheme can be parallelized. This leads to moderate
computing times even when the computationally expensive VNS scheme is applied.

There are several directions for future research. First of all, we think that more computational
experiments are required to better understand the performance of the proposed heuristics.

2498

Tan, Monch, and Fowler

Table 4: Computational results.

Factor Imp Computing time (in s) Number of iterations
H(TWD) I H(iter, TWD) ‘ H(iter, VNS) | H(iter, TWD) ‘ H(iter, VNS) | H(iter, TWD) ‘ H(iter, VNS)
(B1,B2)
2,2) 1.000 0.963 0.891 5.09 117.84 6.92 10.23
2,4) 1.000 0.944 0.878 7.32 147.95 11.49 13.13
(2,8) 1.000 0.934 0.897 12.81 169.15 20.06 14.86
(4,2) 1.000 0.937 0.885 4.36 111.12 6.60 9.75
(4,4 1.000 0.969 0.906 3.43 113.72 6.94 9.93
(4,8) 1.000 0.956 0.899 4.11 128.99 8.42 11.00
(8,2 1.000 0.963 0.910 2.04 87.73 3.76 7.15
8,4 1.000 0.958 0.912 2.50 114.76 5.39 9.31
(8,8) 1.000 0.938 0.863 1.69 134.91 4.82 8.63
n/F
10 1.000 0.950 0.870 1.17 79.84 4.99 7.82
20 1.000 0.950 0.898 4.06 119.03 8.30 10.58
30 1.000 0.954 0.912 9.22 177.30 11.51 12.97
F
3 1.000 0.948 0.866 2.12 95.97 6.90 8.72
6 1.000 0.954 0.920 7.51 154.81 9.63 12.19
n
30 1.000 0.942 0.827 0.46 61.57 3.90 6.09
60 1.000 0.953 0.897 1.88 95.65 6.70 9.19
90 1.000 0.953 0.890 4.03 133.16 9.48 11.22
120 1.000 0.951 0.914 6.23 144.88 9.28 12.31
180 1.000 0.955 0.934 14.42 221.44 13.54 14.72
a
0.25 1.000 0.968 0.938 5.54 136.82 8.45 10.42
0.75 1.000 0.934 0.849 4.09 113.96 8.08 10.49
FF
1.1 1.000 0.973 0.913 2.66 93.37 4.89 7.68
1.5 1.000 0.929 0.873 6.97 157.42 11.64 13.23
g
1.2 1.000 0.933 0.867 6.40 127.70 10.92 10.51
2 1.000 0.952 0.901 4.15 128.00 7.38 10.63
1.000 0.969 0.912 3.90 120.48 6.50 10.22
Overall | 1.000 0.951 0.893 4.81 125.39 8.26 10.45

2499

Tan, Monch, and Fowler

It seems especially reasonable to consider a grid of (a, ﬁ) pairs instead of varying only the « values. In

addition, it is worthwhile to extend the problem setting to a situation where unrelated parallel machines
are on each stage, i.e. where we consider a two-stage flexible flow shop. This setting can be found in
wafer fabs. We believe that it is worthwhile to consider situations where the machines of the upstream
and downstream stage are non-batching machines because then we can investigate the interplay of the two
stages and can derive information on the importance of scheduling on each of the two stages.

Secondly, we are interested in researching the performance of solution approaches for problem (1)
that are not based on decomposition. We expect that neighborhood search-based approaches as used by
Liao and Huang (2010) for a non-permutation flow shop scheduling problem or by Yugma et al. (2012)
for a two-stage flexible flow shop can be useful for the problem studied in the present paper. However,
carrying out all the necessary details is part of future research.

ACKNOWLEDGMENTS

The authors would like to thank Carsten Eilks for interesting discussions on the topic of this paper and for
his programming efforts.

REFERENCES

Demirkol, E., and R. Uzsoy. 2000. “Decomposition Methods for Reentrant Flow Shops with Sequence-
dependent Setup Times.” Journal of Scheduling 3:155-177.

Demirkol, E., S. Mehta, and R. Uzsoy. 1997. “A Computational Study of Shifting Bottleneck Procedures
for Shop Scheduling Problems.” Journal of Heuristics 3:111-137.

Fu, Q., A. L. Sivakumar, and K. Li. 2012. “Optimization of Flow-shop Scheduling with Batch Processor
and Limited Buffer.” International Journal of Production Research 50(8):2267-2285.

Klemmt, A., G. Weigert, C. Almeder, and L. Monch. 2009. “A Comparison of MIP-based Decomposition
Techniques and VNS Approaches for Batch Scheduling Problems.” In Proceedings of the 2009
Winter Simulation Conference, 1684-1694.

Koulamas, C. 1998. “A Guaranteed Accuracy Shifting Bottleneck Algorithm for the Two-machine
Flowshop Total Tardiness Problem.” Computers & Operations Research 25(2):83-89.

Lei, D., and X. Guo. 2011. “Variable Neighborhood Search for Minimizing Tardiness Objectives on Flow
Shop with Batch Processing Machines.” International Journal of Production Research 49(2): 519-
529.

Liao, L.-M., and C.-J. Liao. 2008. “Improved MILP Models for Two-machine Flowshop with Batch
Processing Machines.” Mathematical and Computer Modeling 48:1254-1264.

Liao, L.-M., and C.-J. Huang. 2010. “Tabu Search for Non-permutation Flowshop Scheduling Problem
with Minimizing Total Tardiness. Applied Mathematics and Computation 217:557-567.

Mathirajan, M., and A. Sivakumar. 2006. “A Literature Review, Classification and Simple Meta-analysis
on Scheduling of Batch Processors in Semiconductor.” International Journal of Advanced
Manufacturing Technology 29: 990-1001.

Monch, L., H. Balasubramanian, J. W. Fowler, and M. E. Pfund. 2005. “Heuristic Scheduling of Jobs on
Parallel Batch Machines with Incompatible Job Families and Unequal Ready Times.” Computers &
Operations Research 32: 2731-2750.

Monch, L., J. W. Fowler, S. Dauzére-Pérés, S. J. Mason, and O. Rose. 2011. “A Survey of Problems,
Solution Techniques, and Future Challenges in Scheduling Semiconductor Manufacturing
Operations.” Journal of Scheduling 14:583-599.

Monch, L., J. W. Fowler, and S. J. Mason. 2013. Production Planning and Control for Semiconductor
Wafer Fabrication Facilities: Modeling, Analysis, and Systems. Springer, New York.

2500

Tan, Monch, and Fowler

Mukherjee, S., and A. K. Chatterjee. 2006. “Applying Machine-based Decomposition in 2-machine Flow
Shops.” European Journal of Operational Research 169:723-741.

Robinson, J., J. W. Fowler, and J. F. Bard. 1995. “The Use of Upstream and Downstream Information in
Scheduling Semiconductor Batch Operations.” Infernational Journal of Production Research
33(7):1849-1869.

Vepsalainen, A. P. J., and T. E. Morton. 1987. “Priority Rules for Job Shops with Weighted Tardiness
Cost.” Management Science 33(8): 1035 — 1047.

Vepsalainen, A. J. P., and T. E. Morton. 1988. “Improving Local Priority Rules with Global Lead-time
Estimates: a Simulation Study.” Journal of Manufacturing and Operations Management 1:102-118.

Yang, Y., S. Kreipl, and M. Pinedo. 2000. “Heuristics for Minimizing Total Weighted Tardiness in
Flexible Job Shops.” Journal of Scheduling 3:89-108.

Yugma, C., S. Dauzére-Péres, C. Artigues, A. Derreumaux, and O. Sibille. 2012. “A Batching and
Scheduling Algorithm for the Diffusion Area in Semiconductor Manufacturing.” International
Journal of Production Research 50(8): 2118-2132.

AUTHOR BIOGRAPHIES

YI TAN is a research associate at the Chair of Enterprise-wide Software Systems, University of Hagen.
He is a Ph.D. candidate in Production Engineering at the University of Bremen, Germany. He got his MS
degree in Computer Science from the University of Paderborn, Germany. His research interests are in
planning and scheduling of production and logistics systems. He can be reached by email at
<Yi.Tan@fernuni-hagen.de>.

LARS MONCH is professor of Computer Science at the Department of Mathematics and Computer
Science, University of Hagen where he heads the Chair of Enterprise-wide Software Systems. He holds
MS and Ph.D. degrees in Mathematics from the University of Gottingen, Germany. After his Ph.D., he
obtained a habilitation degree in Information Systems from Technical University of Ilmenau, Germany.
His research and teaching interests are in information systems for production and logistics, simulation,
scheduling, and production planning. He is an Associate Editor of European Journal of Industrial Engi-
neering and of Business & Information Systems Engineering. He can be reached by email at
<lars.moench@fernuni-hagen.de>.

JOHN W. FOWLER is the Motorola Professor and Chair of the Supply Chain Management department
at ASU. His research interests include discrete event simulation, deterministic scheduling, and multi-
criteria decision making. He has published over 100 journal articles and over 100 conference papers. He
was the Program Chair for the 2002 and 2008 Industrial Engineering Research Conferences and the 2008
Winter Simulation Conference (WSC). He is currently serving as Editor-in-Chief for I/E Transactions on
Healthcare Systems Engineering. He is also an Editor of the Journal of Simulation and Associate Editor
of IEEE Transactions on Semiconductor Manufacturing and TOMACS. He is a Fellow of the Institute of
Industrial Engineers (IIE) and currently serves as the IIE Vice President for Continuing Education, is a
former INFORMS Vice President, and was an SCS representative on the WSC Board of Directors from
2005-2013. His email address is <john.fowler(@asu.edu>.

2501

