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ABSTRACT

This paper analyzes the impact of scheduling decisions on the capacity of a semiconductor manufacturing
workstation. The study was conducted on real industrial data of a well-known bottleneck workstation, namely
photolithography, which includes various complex constraints. The results of our numerical experiments
show the importance of an effective optimization algorithm and how it impacts capacity, i.e. the cycle
times of lots and thus the ability to schedule more lots. Additional computational results illustrate that,
when the problem complexity is reduced by ignoring setup times, the impact of determining optimized
schedules is also reduced.

1 INTRODUCTION

Semiconductor manufacturing processes are probably more complex than in any other industry (Gupta
et al. 2006). They correspond to multistage processes with re-entrant flows, which include multiple steps
such as polishing, diffusion, film deposition, photolithography, implant (doping), etc. (Mönch et al. 2011)
For each product type, and depending on the technology, a silicon wafer goes through hundreds of process
steps over a period of a few weeks. Scheduling these wafers is a complex task due to the large number of
products and machines involved and to numerous complex constraints.

In this paper, we focus on the photolithography workstation which is generally a bottleneck area
in semiconductor manufacturing facilities (also called fabs) and contain the most expensive tools. In
photolithography, wafers, often grouped in lots of 25, have to be processed on non-identical parallel
machines. The process consists in transferring an integrated circuit pattern on the wafers. To perform
this operation, some photo resist must be put on the wafer which is exposed to an ultraviolet light. An
auxiliary resource, i.e. a specific mask (or reticle), is necessary to shape the pattern on the wafers. Hence,
the process can only be started if both the lot and the right mask are available. The parallel machine
scheduling problem is further complicated by the fact that a mask must be on the machine for the duration
of the process and that there is usually only one mask per process step of a given product. Moreover,
depending on the product (also called family) of the lot, the machines need a specific configuration linked
to the temperature of the machine settings to run a process. Switching a machine from one configuration
to another requires a setup time related to lowering or increasing the temperature. Finally, each machine
is eligible (called qualification in semiconductor manufacturing; Johnzén, Dauzère-Pérès, and Vialletelle
2011) for only a limited set of families (i.e. it cannot process the lots of other families).

Chiou and Muh-Cherng (2014) and Yan et al. (2011) study various optimization aspects in the
photolithography area. Kock et al. (2011) and Morrison (2011) contributed to tool modeling in this
workstation.
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Generally, when scheduling lots in photolithography, the mean cycle time is one of the most common
criteria to minimize. The goal of our study is to analyze the impact of the efficiency of scheduling algorithms
on production capacity (in terms of cycles times which is directly related to the number of lots that can
be processed). We used The IBM developed methodology called Operating Curve (OC). OCs have been
used in semiconductor manufacturing for some time as a method to benchmark productivity and to manage
the trade-off between cycle time and throughput. An operating curve helps to evaluate the workstation
capacity. Tirkel (2013) studies the factors contributing to production variability, and evaluates the influence
of variability on Cycle Time in a semiconductor manufacturing system. The paper demonstrates the
significant effect of variability on Cycle Time, and indicates that it can exceed the effect of utilization. It
explains how reducing Cycle Time by decreasing variability is more effective than by decreasing utilization.
Diaz et al. (2005) study the impact of masks in photolithography scheduling. As far as we know, no existing
work deals with comparing operating curves with different scheduling algorithms. In addition, our study is
made on different versions of the photolithography scheduling problem (the original one and a simplified
version). Some papers such as the ones of Karmarkar (1987) and Dauzère-Pérès and Lasserre (2002), which
are not related to semiconductor manufacturing, discuss the impact of scheduling on production planning.

The remainder of the paper is organized as follows. In Section 2, we formalize the photolithography
scheduling problem. Section 3 explains how the experimental tests have been conducted. Numerical results
on different industrial instances and with different scenarios are presented and discussed in Section 4. We
conclude and give some perspectives in Section 5.

2 FORMALIZING THE STUDY

In this section, we summarize the description of the considered scheduling problem including the main
constraints and the objective function. We consider a set of N jobs (lots) to schedule on a set of M
machines using a set of ` auxiliary resources (also called masks) that are necessary to process the jobs on
the machines.

The constraints of the problem are listed below:

• A job is processed once and only once on a qualified machine for this job.
• All jobs and all machines are available at time 0.
• There is no preemption, i.e. a job is not interrupted during its processing.
• A machine can only process one job at a time.
• Two jobs having the same required mask cannot be processed at the same time on two different

machines. Indeed, masks are shared resources between jobs and processing a job on a given machine
implies a move of the required mask towards the machine, if the mask is not already loaded in the
machine.

• There are sequence and machine dependent setup times. This is due to the fact that there are job
families and a setup time is required between two jobs from different families that are processed
on the same machine consecutively.

• Only one mask of each type is considered: The model does not handle the case where more than
one mask is available for the same family.

The processing time of a job on a machine is modeled using an Ax+B model with data provided by
our industrial partners. The objective function minimized in this study is the sum of the completion times,
which is equivalent to the average completion time (or cycle time) of the jobs.

To solve the problem, a genetic algorithm is proposed in another paper (Bitar et al. 2014). The originality
of this algorithm lies in the fact that its coding structure represents a dominant subset of solutions for
our objective function. Furthermore, the proposed local search method, with its neighborhood operators,
ensures that an optimal solution can be reached with the algorithm.
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3 DESCRIPTION OF EXPERIMENTAL TESTS

As explained in the introduction, the photolithography workstation is often bottleneck in a semiconductor
manufacturing facility. Hence, the large number of waiting lots and the numerous complex constraints make
it a suitable workstation to analyze by comparing operating curves. This comparison is only performed
by considering cycles times in photolithography and not in the whole factory. In addition, through our
industrial partners, we have real data sets for this workstation. The genetic algorithm proposed in Bitar et al.
(2014) to solve the problem considers three different criteria: Maximization of the number of produced
wafers within a time horizon, minimization of the mean cycle time and minimization of the number of
mask transfers between machines. As already mentioned, we focus in this paper on the mean cycle time
objective and different settings of the genetic algorithm are used to build four different heuristics.

The most advanced version of the genetic algorithm is named Heuristic M. Three other heuristics,
derived from Heuristic M with some modifications on the genetic algorithm key parameters, are named
Heuristic 1, Heuristic 2 and Heuristic 3, respectively.

• Heuristic 3 is the least effective heuristic, but also the fastest. It is derived from Heuristic M by
strongly restricting the search population size (which is set to 10) and the number of iterations
without improvement before stopping the search of the solution, which is set to 10.

• Heuristic 2 has been designed by slightly increasing the values of the same key parameters than
for Heuristic 3. The population size is set to 50 and the number of iterations is set to 100.

• These values are increased even more in Heuristic 1. The population size is set to 80 and the
number of iterations is set to 150.

• In Heuristic M, the population size and the number of iterations are set to 200.

Note that even if the parameters of Heuristic M are larger than in Heuristic 1 and because these
algorithms are stochastic, Heuristic 1 can sometimes produce better results than Heuristic M.

Real industrial data sets are used to conduct the experimental tests. Three sets of data (Instances 1, 2
and 3) corresponding to three different production periods have been extracted. The maximum number of
considered lots is 560.

Each displayed result is the mean cycle time obtained on an instance. The number of machines is 15
and the number of families is 5. The processing times are between 30 minutes and 90 minutes and setup
times are between 0 and 5 minutes. For each figure the X-axis represents the number of lots and the Y-axis
the mean cycle time. Then, for each heuristic, a curve is built to represent the relationship between the
mean cycle time and the number of lots that has been scheduled. This pattern is done twice:

• The first set of experiments corresponds to the original scheduling problem,
• The second set of experiments corresponds to a simplified version, where no setup times are

considered (i.e. all lots are considered to be in the same family).

In the following section, the experimental tests are presented and discussed.

4 NUMERICAL EXPERIMENTS

4.1 Operating Curves for the General Problem

Figure 1 shows the results of the four scheduling algorithms on Instance 3. The average cycle time determined
with heuristic M increases slower with the number of lots than the average cycle time determined with
the other heuristics. Significant differences can be observed between each pair of heuristics. The average
cycle time for the maximum number of lots is close to 400 for Heuristic M while it is twice as large for
Heuristic 1, larger than 1,000 for Heuristic 2 and larger than 1,350 for Heuristic 3. Heuristic 3 is particularly
ineffective, even with less than 100 jobs.

2563



Bitar, Dauzère-Pérès, and Yugma

Figure 1: Operating curves with four scheduling algorithms of different quality on Instance 3.

Figures 2 and 3 show the results obtained on Instances 1 and 2, respectively. Heuristics 1 and M are
very close, and Heuristic 1 is actually sometimes slightly better than Heuristic M. For Instance 3, Heuristics
2 and 3 give poor results, although Heuristic 2 is competitive up to 240 jobs but quickly worsens with
more than 300 jobs. Heuristic 3 is particularly ineffective.

Figures 1, 2 and 3 illustrate the fact that the more effective the scheduling algorithm, the lower the mean
cycle time. Thus, significant gain in production capacity can be obtained by designing and implementing
advanced scheduling algorithms. Moreover, the robustness of an optimization algorithm that determines
good schedules for any instance is interesting, whereas a less effective scheduling method might give good
solutions in some cases (as in Instance 1 for Heuristic 2) but poor solutions in other cases (as in Instance
3 for Heuristic 2).

Table 1 details the results obtained on three different instances. Note that, depending on the instance,
Heuristics 1 and 2 are more or less effective but the hierarchy between the four heuristics remains the same.

4.2 Operating Curves for the Problem Without Setup Times

In this section, we simplify the scheduling problem by ignoring setup times between families. Figure 4
shows that, for Instance 3, the gaps between Heuristics 1, 2 and M are reduced compared to Figure 1. On
the other hand, Heuristic 3 (yellow curve) has not changed much since it is too bad to get very different
results in this case. The three other algorithms give different results compared to the case with setup times.
They all obtain better solutions and one can even note that the lines for Heuristics M and 1 (red line and
green line) intersect.

In Figure 5 associated with Instance 1, the gaps between Heuristics 1, 2 and M have not narrowed
compared to Figure 2. This illustrates again the robustness of optimization algorithms that remain effective
independent of the instance. The average cycle time remains below 300 for the maximum number of lots
with Heuristics 1 and M, while it is larger than 750 for Heuristic 2 and is close to 1,400 for Heuristic 4.

In Figure 6, operating curves for Instance 2 are very similar to those for Instance 1.

2564



Bitar, Dauzère-Pérès, and Yugma

Figure 2: Operating curves with four scheduling algorithms of different quality on Instance 1.

Figure 3: Operating curves with four scheduling algorithms of different quality on Instance 2.
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Table 1: Mean cycle times obtained on three industrial instances.

Instance 1 Instance 2 Instance 3
WIP M H1 H2 H3 M H1 H2 H3 M H1 H2 H3
60 39 40 42 108 35 40 42 75 49 51 55 89
80 49 50 53 123 42 47 48 91 56 55 65 99
100 58 59 61 180 48 54 54 136 69 72 99 132
120 71 73 78 210 55 62 62 169 71 74 133 136
140 78 85 84 246 68 75 78 249 83 94 150 181
160 85 88 106 282 75 84 85 251 96 117 229 219
180 100 102 115 289 88 95 110 344 98 147 241 265
200 104 110 129 466 91 96 137 374 104 149 280 294
220 114 122 131 527 101 109 147 550 114 223 290 347
240 125 130 145 534 109 118 167 566 119 251 466 414
260 131 138 200 646 121 138 228 672 135 270 472 434
300 148 167 217 656 136 148 244 700 154 285 516 534
320 158 175 275 900 159 183 272 741 172 345 545 584
350 176 192 363 908 171 199 375 854 206 421 678 696
400 237 218 423 939 188 206 539 945 229 609 850 758
450 242 283 591 1,026 222 281 575 1,267 304 655 881 911
500 253 296 606 1,312 255 293 612 1,310 367 810 909 1,060
560 299 311 932 1,546 283 302 958 1,430 402 829 1,012 1,357

Figure 4: Operating curves with four scheduling algorithms of different quality without setup times on
Instance 3.
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Figure 5: Operating curves with four scheduling algorithms of different quality without setup times on
Instance 1.

Figure 6: Operating curves with four scheduling algorithms of different quality without setup times on
Instance 2.
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Table 2: Mean cycle times obtained on three industrial instances without setup times.

Instance 1 Instance 2 Instance 3
WIP M H1 H2 H3 M H1 H2 H3 M H1 H2 H3
60 36 37 37 101 30 39 37 98 44 48 47 65
80 45 46 47 144 38 43 46 123 59 52 58 71
100 52 55 55 161 44 49 52 137 66 70 79 90
120 66 67 67 168 51 55 56 234 67 72 84 101
140 71 72 79 314 60 69 75 271 75 85 92 111
160 76 79 91 319 75 79 77 343 88 98 101 147
180 91 91 95 344 82 87 89 393 98 116 131 166
200 94 96 99 352 88 88 107 395 100 111 128 202
220 103 110 111 455 95 97 109 413 113 126 147 254
240 112 119 119 485 101 106 110 524 134 149 164 311
260 120 130 244 521 109 118 208 717 147 158 179 388
300 138 161 268 633 123 141 216 809 155 175 233 407
320 144 162 285 679 129 146 291 946 165 189 272 492
350 156 169 307 749 138 155 335 1,046 170 215 304 513
400 183 195 357 1,056 155 190 411 1,119 219 312 388 696
450 229 229 360 1,293 193 203 421 1,166 289 395 461 866
500 267 284 761 1,320 220 261 634 1,211 320 435 508 965
560 276 298 773 1,389 262 312 803 1,336 355 522 688 1,228

Table 2 details the results on three different instances. It is is interesting to see that, depending on
the instance, the impact of reducing the complexity of the scheduling problem differs. However, overall,
the production capacity increases since average cycle times are lower than in Table 1 and the differences
between the scheduling algorithms have decreased.

5 CONCLUSION

In this paper, experimental tests were conducted on real industrial data to analyze the importance of using
an effective algorithm when scheduling lots in a complex workstation of a semiconductor manufacturing
facility. The main conclusions are that:

• An effective optimization algorithm helps to reduce cycle times of lots, and thus to increase the
workstation capacity,

• Simplifying the problem by ignoring setup times reduces the impact of the quality of the scheduling
algorithm,

• The impact of the scheduling algorithm can change significantly from one instance to another.

An extension of our work could be to consider more industrial instances to determine whether an
algorithm is sensitive to a specific type of additional constraints. It could then be interesting to classify
these instances according to the type of constraints that affects the operating curve the most.

For future research, to analyze the impact of our scheduling algorithm compared to dispatching rules on
factory cycle times, it would be interesting to evaluate its performance in a full factory model that integrates
stochastic aspects such as machine breakdowns. The computing time of schedules is also an important
factor in this analysis. Experiments to study the trade-off between solution quality and computing time
have yet to be made.
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ABDOUL BITAR is a PhD student at the École Nationale Supérieure des Mines de Saint-Etienne (EMSE)
in France since October 2012. He obtained his master degree at Paris VI University (France), in Artificial
Intelligence, Operational Research and Decision. His email address is bitar@emse.fr.
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