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ABSTRACT 

Developing dispatching rules for complex production systems such as semiconductor manufacturing is an 
involved task usually performed manually. In a tedious trial-and-error process, a human expert attempts to 
improve existing rules, which are evaluated using discrete-event simulation. A significant improvement in 
this task can be achieved by coupling a discrete-event simulator with heuristic optimization algorithms. In 
this paper we show that this approach is feasible for large manufacturing scenarios as well, and it is also 
useful to quantify the value of information for the scheduling process. Using the objective of minimizing 
the mean cycle time of lots, we show that rules created automatically using Genetic Programming (GP) 
can clearly outperform standard rules. We compare their performance to manually developed rules from 
the literature. 

1 INTRODUCTION 

Scheduling semiconductor factories is a very challenging task due to the high complexity of the 
manufacturing process as well as the importance of this task in a competitive and capital-intensive 
production environment. This high complexity, and the requirement to be able to react quickly to 
disruptions on the shop floor (e.g. machine failures), have led to the prevalent use of dispatching rules 
(Pfund, Mason, and Fowler 2006). Dispatching rules can be used to take decisions in real-time. Besides 
their low computational requirements, they are easy to understand and implement, providing the 
flexibility to seamlessly incorporate domain knowledge and expertise (Aytug et al. 2005). Incorporating 
such knowledge in an effective way is still a tedious trial-and-error process (Geiger, Uzsoy, and Aytug 
2006). It usually requires a large amount of expertise time and coding effort, to test, modify and 
potentially retest a candidate rule until results are satisfactory. To ease this process, in recent years, the 
use of hyper-heuristics (Burke et al. 2013) has been proposed. In this approach, a meta-heuristic is 
commonly used to select the most suitable heuristic for a problem at hand or to develop an entirely new 
heuristic. Automatically finding dispatching rules belongs to the latter category.  

Building upon and refining work by Pickardt et al. (2010) and Branke, Hildebrandt, and Scholz-Reiter 
(2014), we investigate the use of this hyper-heuristic approach to find dispatching rules minimizing the 
mean cycle time of lots. For this purpose, the complex MIMAC FAB6 model (233 machines; process 
flows with up to 355 operations, more than 3000 jobs per simulation run) is employed. We can show the 
potential of our proposed approach using 3 settings from the literature, where rules were developed 
manually for this model. 
. 
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This paper is structured as follows. After concisely reviewing the related work in Section 2, we 
present our approach in Section 3. Computational experiments are presented in Section 4 and results using 
a basic attribute set are discussed in Sections 5. In Section 6 we investigate, how results are effected, if 
operational due dates are available as additional information in dispatching rules. Section 7 more closely 
analyses rule performance in terms of mean cycle time, mean tardiness, and average work in processes by 
comparing the results of the best GP-evolved rules with the best benchmark rule. The paper concludes 
with a summary and outlook towards future work in Section 8.  

2 PREVIOUS WORK 

Several authors have used Genetic Programming (GP) (Koza 1992; Poli et al. 2008) to generate 
dispatching rules that assemble basic job, machine and system attributes into priority indices. To name 
just a few, Dimopoulos and Zalzala (2001), Geiger, Uzsoy, and Aytug (2006) and Geiger and Uzsoy 
(2008) test this approach on various single machine problems. Jakobović and Budin (2006) investigate the 
use of GP for job shops. Tay and Ho (2008) do the same on a flexible job shop. The authors report that 
evolved rules are usually able to achieve better results than standard rules.  

There is only very little work on using GP to evolve dispatching rules for more complex scheduling 
settings. Pickardt et al. (2010) used the MIMAC FAB4 model to find dispatching rules minimizing 
weighted tardiness. Their very encouraging results were further improved upon in follow-up works 
(Pickardt et al. 2013; Pickardt 2014) using a two-stage approach. In this approach, the first stage uses GP 
to find a good dispatching rule, and the second stage can improve on GP’s results by choosing 
individually for each machine whether the evolved rule or a rule from a pre-defined set of standard rules 
is supposed to be used. Using the two-stage approach, mean weighted tardiness of jobs can further be 
improved. Pickardt (2014) also presents results using GP to evolve dispatching rules for a simplified 
version of the FAB6 model not considering downtimes. Evolved rules outperform standard benchmark 
rules in terms of cycle time and mean weighted tardiness. 

The simulation model used in this paper is from the MIMAC (Measurement and Improvement of 
Manufacturing Capacities) testbed (Fowler and Robinson 1995; Feigin, Fowler, and Leachman 1996). 
This dataset was used in a number of research activities to improve scheduling and dispatching of 
complex manufacturing facilities, especially to manually develop dispatching rules. In Zhou and Rose 
(2011) a composite dispatching rule is presented as a linear combination of ODD (operational due date), 
SPT (shortest processing time next), and LWNQ (least work in next queue). Their combined rule with 
proper weight values is reported to outperform the MOD rule with regard to cycle time as well as 
tardiness-related objectives. Zhou and Rose (2012) use the FAB6 model to present extensions to the IFD 
rule (see section 4.2). Their extended rule, incorporating ideas to balance work in process and selectively 
accelerate urgent lots, is reported to outperform the plain IFD rule. The primary concern of their paper is 
to improve tardiness-related objectives, but also improved cycle time results are reported.  

3 APPROACH 

Our general approach can be classified as using GP (Koza 1992; Poli et al. 2008) as a hyper-heuristic 
(Burke et al. 2013) to develop an entirely new heuristic in the form of a dispatching rule. GP is a meta-
heuristic from the family of evolutionary algorithms that can be used to optimize tree-like data structures 
of variable length, such as the arithmetic expression of a dispatching rule. The advantages of this 
approach in the semiconductor scheduling context are as follows (Pickardt et al. 2010): 

1. The time-consuming GP run can be made off-line. Once a good rule is found it can be used as an 
efficient, on-line/real-time scheduling rule just like any standard rule. 

2. As an automated approach, very little manual work has to be invested, especially to: 
(a) adopt to different objective functions, 
(b) incorporate additional information or assess usefulness of such information for scheduling. 

3. New dispatching rules can be easily integrated in existing software for production control and 
manufacturing simulation. 
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Figure 1: General solution approach. Left: simulation-based GP cycle; Right: sample GP tree encoding a 
hypothetical dispatching rule “0-(PT+PT+S+B)”. 
 

The approach to automatically generate rules is shown graphically on the left hand side of Figure 1. It 
depicts the general cycle of simulation-based GP. The algorithm starts with a population, P, of initially 
random dispatching rules. In step 2, we remove probable duplicates (without using computationally 
expensive simulation runs) using the procedure described by Branke, Hildebrandt, and Scholz-Reiter 
(2014). In step 3, all rules in this population are evaluated using discrete event simulation. In a 
simulation-optimization context as used here, this step is by far the most computationally demanding. As 
we use a population-based optimization algorithm, we always have to evaluate a large number of rules in 
this step. All simulations for a certain rule are independent of each other, so this step can easily be 
parallelized to take advantage of modern multi-core processors. Should the simulation time still be too 
high, distributing the simulation runs in a cloud-like environment would also be possible.  

Once the performance of each rule is known, this information is used in step 4 to create the next 
generation using selection, cross-over and mutation operators to create new rules. GP works on a tree 
representation; so each individual (i.e. a dispatching rule) is a tree structure, which can get arbitrarily 
complex. A sample tree encoding the arithmetic expression “0-(PT+PT+S+B)” is shown on the right hand 
side of Figure 1. GP’s cross-over and mutation operators work on such tree-structures, combining 
individuals to form new ones, and randomly changing/mutating parts of a tree. How such a tree should 
look like, i.e., what can be used as inner nodes (arithmetic operations) and what information can be used 
as leaf nodes (constants and a set of scheduling-relevant information), is a decision the user has to make 
before the optimization run.  

Step 5 again is similar to step 2 as it uses the procedure from Branke, Hildebrandt, and Scholz-Reiter 
(2014) to detect and remove potential duplicates, without having to simulate such rules. In step 6, the new 
population replaces the old one and the main optimization cycle is repeated, starting with step 3. The 
algorithm finally terminates if a certain pre-specified computational budget, i.e. a certain number of 
simulation runs (we use 30,000 for the experiments of this paper), has been expended. The best rule is 
returned as the result of the optimization run. 

4 EXPERIMENTAL SETUP 

4.1 Simulation Model 

For the experiments in this paper, we use the FAB6 model from the publically available MIMAC 
(Measurement and Improvement of Manufacturing Capacities) testbed (Fowler and Robinson 1995; 
Feigin, Fowler, and Leachman 1996). This model represents a semiconductor manufacturing facility with 
the following characteristics: 

• 104 tool groups with a total number of 223 machines, 
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• Batch machines; sequence-dependent setup times, 
• 9 process flows/products, having between 234 and 355 operations, 
• Machine downtimes (failures and maintenance).  

Depending on the setting (see Table 1), between 3143 and 3795 lots are started during the 18-month 
period used for a simulation run.  

The FAB6 model has been used previously in research to manually develop dispatching rules, and 
therefore offers good benchmarks. We use three different settings from the literature, as summarized in 
Table 1. The first setting is based on Zhou and Rose (2011). The second and third settings are based on 
Zhou and Rose (2012). Following their setup for each of these settings, we simulate the system for a total 
duration of 18 months, ignoring data from the first 6 months to focus on the system’s steady state 
behavior. It must be noted that the start rates are slightly lower than the original rates, i.e. the inter-lot 
release time given in Table 1 is higher than the original values. This is because the simulator used by 
Zhou and Rose (2011; 2012) uses the scrap setting present in the original FAB6 model. As this feature is 
currently not implemented in our simulation library, we instead decreased the start rates while keeping the 
product mix constant so the overall bottleneck utilization remains the same.  

We implemented this model in the jasima simulation library (jasima - an efficient Java Simulator for 
Manufacturing and Logistics; http://jasima.googlecode.com). jasima has been used before in the context 
of simulation-based optimization to select or create dispatching rules for job shops (Pickardt and Branke 
2012; Branke, Hildebrandt, and Scholz-Reiter 2014) or semiconductor scenarios (Pickardt et al. 2010; 
Pickardt et al. 2013; Pickardt 2014).  

The FAB6 model includes random influences in the form of machine downtimes. Both the duration 
and time between downtimes are given using an exponential distribution. All other model parameters, 
especially job arrivals, are deterministic. 

Table 1: Start rates and flow factors used. 

 

4.2 Benchmark Rules 

In order to assess the performance of our GP approach, we first conducted a normal simulation study to 
find the best combination of (standard) dispatching rule and batching policy. As dispatching rules we 
consider the standard rules ( Haupt 1989) FIFO (first in first out), ERD (earliest release time first), EDD 
(earliest due date first), ODD (operational due date), MOD (modified operational due date), SPT (shortest 
processing time first), and CR (critical ratio). Additionally we also test the IFD rule as given in Zhou and 
Rose (2012). This rule is mentioned there to be in use at Infineon Technologies AG Dresden and divides 
waiting lots in 3 categories: highest priority is given to jobs already waiting longer than 2 days, medium 
priority to all other jobs that are already late according to their operational due dates, and all other lots are 

New lot released
every … hours

Flow
Factor

New lot released
every … hours

Flow
Factor

New lot released
every … hours

Flow
Factor

C6N3 44.60 86.71 1.80 29.07 2.40
B6HF 100.90 173.05 1.80 26.44 2.40
C4PH 47.67 86.71 1.80 14.53 2.40
C6N2 51.72 41.61 2.40 43.59 2.20
OX2 38.28 41.61 2.40 43.59 2.20
C5F 39.53 41.61 2.40 43.59 2.20
C5P 11.86 11.89 2.60 90.81 1.30
C5PA 18.70 13.87 2.60 90.81 1.30
B5C 33.07 27.75 2.60 90.81 1.30

2.30

Product
Setting 1, 95% Setting 2, 99.5% Setting 3, 99.4%
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put into the lowest priority class. A tie breaker rule is used to distinguish between jobs within the same 
class. For this purpose we use the ODD rule as suggested in Zhou and Rose (2012). 

All rules are used with the ERD rule as a final tie breaker. As some machines require setup times, all 
of these rules are used with a setup-avoidance strategy, improving cycle times considerably. Setup time 
information for the GP-evolved rules is incorporated directly into the arithmetic expression of the rule.  
 To control batch formation we use greedy batching with a certain minimum batch size (MBS). Batch 
formation using MBS first sequences waiting jobs using one of the sequencing rules just described. Then 
the job with the highest overall priority determines the family of the formed batch. This batch is filled 
with as many compatible jobs as possible up to the maximum batch size. As a parameter in this heuristic 
we use a minimum batch size to enforce a certain utilization of machine capacity. In the experiments 
below we denote this using the abbreviation MBS(u) where u is a number between 0 and 1 to specify the 
minimum batch size as a fraction of the maximum size allowed.  
 In the preliminary study to find the best standard rule setting we considered all combinations of 6 
settings for the batching policy (MBS(0), MBS(0.2), MBS(0.4), MBS(0.6), MBS(0.8), MBS(1)) and the 8 
dispatching rules mentioned above. 

4.3 Genetic Programming Settings 

The simulation was coupled with the Evolutionary Computation in Java (ECJ) framework (version 20, 
available from http://cs.gmu.edu/~eclab/projects/ecj/, accessed June 06, 2014) for performing the GP 
operations. It uses the standard sub-tree crossover (produces two offspring trees by exchanging a 
randomly selected sub-tree between the two parents) and point mutation (replacing a node of the tree by a 
new, randomly created sub-tree) as described by Koza (1992). The ramped half and half initialization 
method ensures that the generated trees have a variety of sizes and shapes. The detailed settings used for 
GP are summarized in Tables 2 and 3. 

Table 2: GP parameters used. 

Name Value 
Computational Budget 30,000 simulations (60 generations) 
Population Size 500 
Crossover Proportion 90% 
Mutation Proportion 10% 
Elitism 10 individuals 
Selection Method Tournament Selection (size 7) 
Creation Type Ramped Half-and-Half (Min. Depth 2, Max. Depth 6) 
Max. Depth for Crossover 17 
Operators +, -, *, /, max, if-then-else 
Terminals Constants: 0, 1, 2, 5; 

8 attributes, see Table 3 
 
Besides these settings, we use the removal of (probably) equivalent rules as well as the normalization 

of attributes into a common value range of (0,2). It has been shown by Branke, Hildebrandt, and Scholz-
Reiter (2014) that both of these settings improve convergence speed and reduce variability of 
optimization results of GP in the case of finding dispatching rules for a dynamic job shop scheduling 
problem. Some of the normalization ranges used (see Table 3) are straightforward to obtain (e.g., “pt” or 
“s”), but some, such as “tis” and “tiq”, are more difficult, or theoretically even unlimited. To obtain 
reasonable normalization ranges for these attributes, we performed preliminary simulation runs using the 
FIFO rule and used estimated 95% percentiles as the upper limit of the normalization range. 
To account for the randomness in the simulation model, we used a single replication to evaluate the 
individuals during a GP run. We, however, change the random number seed after each generation. Doing 
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so prevents GP from finding solutions optimized for a particular setting caused by a certain seed, while 
still using common random numbers to rank all individuals of a certain generation. Therefore 60 seeds, 
i.e. problem instances, are used during an optimization run. Performance figures in Section 5 are averaged 
over a different set of 30 problem instances. 

Table 3: Attributes usable in evolved dispatching rules. 

Attribute Norm. Range Explanation 
pt [7,1470] Processing time of a job’s current operation 
ptAvg [7,1470] Average processing time of all waiting jobs 
s [0,90] Setup time 
sAvg [0,90] Average setup time of all waiting jobs 
rOps [1,355] Number of remaining operations 
tis [0,40800] Time in System 
tiq [0,530] Time in Queue 
b [1,18] Batch family size. How many compatible jobs are in queue? 

5 RESULTS FOR BASIC ATTRIBUTE SET 

At first, we performed 10 optimization runs for each of the 3 settings as given in Table 1using the GP 
settings as outlined in the previous section. The upper part of Table 4 shows the mean cycle times 
obtained in days. For each setting, we give the results for a default FIFO rule, the best results obtained by 
any of the benchmark rules tested, as well as average performance (GPavg) and best performance (GPbest) 
of the rules obtained using GP. All results for individual rules are averaged over 30 independent 
replications, with twice the standard error shown in brackets as a measure of result uncertainty. As an 
exception to this, the row “GPavg” shows the average performance of the 10 GP-evolved rules for each 
setting with uncertainty information showing twice the standard error across these 10 results. Finally, the 
reduction in average cycle time between GPbest and FIFO and between GPbest and the best benchmark rules 
are given.  
 As far as the selection of the best benchmark rule is concerned, choosing no minimum batch size 
MBS(0) seems to be advisable for all three scenarios considered. This is probably due to the high system 
utilization which is already sufficient to ensure a high enough batch utilization. Among the standard rules 
ODD and MOD give good results, but are usually outperformed slightly by IFD. Selecting a proper 
dispatching rule yields a cycle time reduction between 1.0 and 1.6 days compared to FIFO. This can be 
significantly improved upon using the GP approach. Evolved rules yield a reduction of cycle times 
between 2.1 and 4.5 days, just by using standard information which is also used in standard rules in a 
more efficient way. Comparing to FIFO, this is a relative reduction of 12.6 %, 14.4 %, or 8.3 % in 
average cycle times. This is a reduction in its reducible component, i.e., the sum of waiting and setup 
times, of 23.8 %, 25.6 % and 17.8 % respectively. Improvements over the best standard rule are lower, 
but still very significant. 
 Comparing results with those from the literature turned out to be difficult, but is attempted in the 
lower part of Table 4. We try to compare indirectly, that is, without re-implementing their methods/rules 
in our simulation software. As mentioned in section 4.1, our software currently does not support the 
“scrap” feature. This feature has a significant effect on cycle time results for the FAB6 model, even if we 
compensate for the lower capacity available when scrap is not considered. To have some baseline results, 
we used the Factory Explorer software from Wright Williams & Kelly, Inc. to run simulations with the 
FIFO and ODD rules for all 3 settings, resembling the settings used in Zhou and Rose (2011; 2012) as 
closely as possible. This means that scrap was enabled and a single replication using the default random 
number seed was performed. Results in the row “manual rule” were taken from Zhou and Rose’s (2011) 
“composite rule” for Setting 1 and Zhou and Rose’s (2012) “IFD+W+D”-rule for Settings 2 and 3. 

A detailed comparison with our GP results is difficult, but judging from the improvements compared 
to FIFO, there seems to be an advantage of the rules found by GP over the manual rules. This does not 
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seem to be the case for Setting 3. Enabling/disabling scrap has a particularly large effect for this setting 
and the manually developed rule can reduce mean cycle time compared to FIFO by 3.6 days. A closer 
investigation is needed to find out why the manually developed “IFD+W+D”-rule achieved a better 
performance for Setting 3, but not for Setting 2. Maybe this can help to either further improve the manual 
rule or find an additional attribute that helps GP to find better rules for Setting 3 as well. 

Table 4: Cycle time results. All times are in days. 

 
 

We also investigated the robustness of the GP-evolved rules. If rules are very specifically adopted to a 
certain setting of parameters, they might show only poor performance when applied to new or different 
situations. To check this, we applied each of the 10 rules optimized for Setting 1(, Setting 2, Setting 3), 
denoted by Rules1(, Rules2, Rules3), to all scenarios. Results are shown in Table 5. As expected, best 
results are obtained when applying the rules to the setting they were developed for. Especially Settings 1 
and 2 seem to be similar and rules developed for either of the scenarios work well for the other as well. 
This is probably due to the fact that basically the same product mix is used for both settings, only 
utilization is increased in Setting 2. Rules developed for Setting 3 work best in this setting and show only 
a weak performance for Settings 1 and 2. They can still achieve a better performance than the best 
benchmark rule even for these settings. 

Table 5: Cycle times achieved on applying GP rules to different settings. All times are in days. 

 

6 ADDITIONAL INFORMATION 

Looking at the results in Table 4 again, we see that the IFD rule rules yield the best results Also the ODD, 
and MOD rules lead to good results, but are usually outperformed by IFD. All of these rules use 
operational due dates as something like intermediate milestones for the process steps. Even if there are no 
externally set due dates and the primary concern is reducing the cycle time of lots, it makes sense to use 

FIFO result: 28.6 (±0.13) FIFO;MBS(0) 31.2 (±0.23) FIFO;MBS(0) 25.3 (±0.12) FIFO;MBS(0)
best benchmark: 27.1 (±0.10) IFD;MBS(0) 29.6 (±0.20) IFD;MBS(0) 24.3 (±0.10) IFD;MBS(0)
GPavg: 25.3 (±0.12) 26.9 (±0.15) 23.4 (±0.14)
GPbest: 25.0 (±0.08) 26.7 (±0.15) 23.2 (±0.08)
improvement
GPbest over FIFO:

3.6 days 4.5 days 2.1 days

impr. GPbest over 
best benchmark:

2.1 days 2.9 days 1.1 days

FIFO result: 29.8 33.2 28.5
ODD result: 27.2 29.9 27.1

manual rule: 27.9 30.0 24.9
improvement 
over FIFO: 1.9 days 3.2 days 3.6 days

optimization results

results from literature

Setting 1 Setting 2 Setting 3

Setting 1 Setting 2 Setting 3
Rules1 25.26 (±0.12) 27.02 (±0.15) 23.68 (±0.13)
Rules2 25.28 (±0.11) 26.92 (±0.15) 23.89 (±0.20)
Rules3 25.80 (±0.13) 28.30 (±0.54) 23.42 (±0.14)
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these rules similar to a parameterized dispatching rule by carefully adjusting the flow factor of lots. This 
way, very good cycle times can usually be achieved.  

As mentioned in Section 3, one advantage of our approach is that it can be used to assess the value or 
usefulness of certain information for scheduling decisions. We demonstrate this by adding two additional 
attributes to our set: the operational due date and the average operational due date of all jobs in the queue. 
Now, by performing 10 optimization runs again, we can compare results with our previous findings. 

Table 6: Optimization results with different attribute sets.  
All times are in days. 

 
 
Results shown in Table 6 are in the same format as in Table 4, i.e., the numbers in brackets list twice 

the standard error; across 10 rules for GPavg, and across 30 independent replications of the individual rules 
GPbest. Comparison of results shows that using the extended attribute set is preferable over our initial 
choice. Even though the search space for GP gets larger, it is able to find better solutions. The best rule 
found improves the cycle time over the old best rule by on average 0.26 days in each of the 3 settings 
investigated. There is an even larger improvement of average rule performance: 0.34 days. Last but not 
least, the variance for GPavg clearly decreases for all three settings, which means, GP can find very good 
rules more reliably using the extended attribute set. 

7 DIFFERENT OBJECTIVE FUNCTIONS 

In the previous sections we only looked at the mean cycle time of lots. To assess the usefulness of a 
certain dispatching rule it is beneficial to also investigate its performance for other common objective 
functions as well. We therefore analyzed the performance of the best benchmark rule (IFD) with the best 
rule found by GP for each setting for 3 different objective functions. Results for mean cycle time (in 
days), mean tardiness (in hours) and average work in process (WIP, in number of wafers) are shown in 
Table 7.  

The table again shows the very good performance of GP rules for mean cycle time, which is the 
objective function used during the optimization process. These rules do not just perform well for this 
objective function, however. Results for mean tardiness are slightly worse than IFD’s performance for 
two out of three settings, but differences are not very high. For the third objective function investigated, 
average work in process, optimized rules again show a considerably better performance than IFD, 
reducing WIP by 8.5 %, 10.8 %, and 5.5 %, depending on the scenario. Therefore the slightly better 
performance of IFD regarding mean tardiness of jobs is accomplished by a considerably higher WIP level 
and an increase in cycle time by between 6.1 %, and 12.1 %. 

Attribute Set GPavg GPbest

old set 25.3 (±0.12) 25.0 (±0.08)
incl. odd+avgOdd 24.9 (±0.05) 24.8 (±0.07)
difference: 0.34 0.24
old set 26.9 (±0.15) 26.7 (±0.15)
incl. odd+avgOdd 26.6 (±0.07) 26.4 (±0.13)
difference: 0.36 0.26
old set 23.4 (±0.14) 23.2 (±0.08)
incl. odd+avgOdd 23.1 (±0.05) 22.9 (±0.09)
difference: 0.32 0.27
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Cycle Time [days]
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Table 7: Detailed comparison with IFD rule. 

 

8 CONCLUSION AND OUTLOOK 

This paper used Genetic Programming (GP) to automatically find dispatching rules minimizing the mean 
cycle time of lots for a complex simulated semiconductor manufacturing facility with 223 machines, and 
up to 355 operations per process flow. Using up to 30,000 simulation runs in an optimization run we were 
able to find dispatching rules clearly outperforming benchmark rules from the literature. We apply our 
approach to 3 different settings taken from the literature.  

In comparison with FIFO, average cycle time could be reduced by up to 14.4 % (4.5 days), which is a 
reduction in its reducible component, i.e. the sum of waiting and setup times, of up to 25.6 %. 

We further demonstrate the usefulness of our approach to assess the value of certain information for 
the scheduling process. Motivated by the good mean cycle time performance of standard rules using the 
operational due date information, we perform additional optimization runs with an extended attribute set. 
By allowing GP to use this information in a dispatching rule, an improvement of 0.34 days in the average 
performance of optimized rules is achieved.  

Also a more detailed comparison of rules performance between GP-evolved rules and the best 
benchmark, IFD, was performed. For other objective functions than those used in the optimization 
process GP rules showed slightly worse mean tardiness results for 2 of the 3 settings investigated. This 
good performance of IFD is achieved at the cost of a considerably higher work in process level (5.5 % to 
10.8 % more wafers/lots) and higher mean cycle times (6,1 % to 12,1 % increase). 

Comparing the performance of GP-evolved rules with manually developed rules for the same scenario 
appeared difficult and results were inconclusive. This certainly needs closer investigation in future work. 
Ideally, comparing and understanding the differences between manual and automatically developed rules 
can be beneficial to initiate an improvement process for better dispatching decisions. 

As further future work, we are currently interested in applying our method and software 
implementation to even larger, more realistic scenarios. We are therefore eager to collaborate with 
semiconductor manufacturers offering real-life scenarios and tough benchmark dispatching rules.  

Finally it would be interesting to extend the optimization algorithm. For instance it would be very 
interesting to improve the convergence speed of GP. Therefore, e.g., surrogate functions could be used to 
replace some of the computationally expensive simulation runs. An approach how to achieve this is 
presented in Hildebrandt and Branke (2014), extending it to more complex scenarios, such as the FAB6 
model used here, is pending. Furthermore it would be very interesting to extend the GP approach to 
consider multiple objectives simultaneously during a single optimization run. The result of such an 
optimization run is a set of Pareto-optimal (non-dominated) dispatching rules, where each rule from this 
set offers a certain trade-off between, e.g., mean cycle time and mean tardiness. Given such a set of rules 
the user could finally decide which rule offers the best trade-off according to his preferences — based on 
quantitative data what trade-offs between conflicting objectives are possible for the system under 
consideration. 

Cycle Time [d] Tardiness [h] WIP [wafer]
GPbest/odd 24.8 (±0.07) 0.0 (±0.00) 4168 (±12)
IFD 27.1 (±0.10) 0.0 (±0.00) 4553 (±17)
diff. IFD-GP: 2.29 0.00 385
GPbest/odd 26.4 (±0.13) 0.2 (±0.04) 4465 (±22)
IFD 29.6 (±0.20) 0.0 (±0.01) 5008 (±33)
diff. IFD-GP: 3.22 -0.18 543
GPbest/odd 22.9 (±0.09) 0.9 (±0.04) 3216 (±12)
IFD 24.3 (±0.10) 0.4 (±0.02) 3403 (±15)
diff. IFD-GP: 1.34 -0.56 187
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